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Abstract: Arterial stiffness has been linked to impaired cognitive function and dementia but the reason for the 
association is uncertain. This review proposes that collagen type IV is a critical factor linking arterial stiffness and 
dementia. Several genome wide association studies have related arterial stiffness to Collagen type IVα. Proteomic 
studies of arteries, demonstrated higher levels of collagen IVα1 in persons with high arterial stiffness. Collagen type 
IV defects are associated genetic causes of dementia as well as dementia of a variety of other causes. There are 
plausible causal roles for collagen type IV in dementia. Disorders of Collagen type IV can produce (I) fibro-hyalinosis 
and elastosis of small arterioles leading to cerebral ischemia and infarction; (II) dysfunction of the blood brain 
barrier leading to cerebral hemorrhage; (III) carotid artery stiffness with increase pulse pressure induces cerebral 
blood vessel damage leading to cerebral atrophy. The mechanisms by which Collagen type IV can lead to vascular 
stiffness include its degradation by matrix metalloprotease type 2 that (a) stimulates vascular smooth muscle cells 
to produce more extracellular matrix or (b) liberates peptides that damage the subendothelial space. Factors, such 
as TGF-β1, and LDL cholesterol especially oxidized LDL can increase collagen type IV and produce vascular stiff-
ness and dementia. Fibroblast growth factor 23, and abnormal NO signaling have been linked to collagen type IV 
or increased vascular stiffness and an increased risk of dementia. Recognition of the central role of collagen type 
IV in arterial stiffness and dementia will inspire new research focused on determining whether its modification can 
benefit arterial and brain health.
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Introduction

Vascular or arterial stiffening in the larger arter-
ies is a recognized contributor to a number of 
cardiovascular disorders and predicts cardio-
vascular morbidity and mortality [1]. Measure- 
ment of arterial stiffness has been assessed 
clinically by the measurement of pulse wave 
velocity (PWV) between two segments of the 
arterial tree, such as the carotid-femoral arter-
ies (cfPWV), brachial-femoral (bfPWV), brachi-
al-ankle (baPWV) as well as the assessment of 
carotid artery distensibility [1, 2]. Although 
there are overlaps between vascular dementia 
and Alzheimer’s disease, aortic stiffness has 
been linked to Alzheimer’s disease and vascu-
lar dementia both of which involves significant 
impairment in cognitive function leading to 
dementia [3]. A multivariate analysis within a 

meta-analysis, after adjusting for a wide range 
of possible confounding factors, concluded  
that the majority of studies comprising over 
6,000 individuals showed a significant relation-
ship between arterial stiffness and dementia 
[3]. Since that meta-analysis, additional studies 
have confirmed the association of arterial stiff-
ness and cognitive impairment and dementia 
[4-8], although there are some exceptions [9]. 
The relationship of arterial stiffness to demen-
tia is independent of other factor as demon-
strated by the significant association of cfPWV 
with increased risk of dementia, even after 
adjusting for education, race, ApoE4 status, 
diabetes mellitus, hypertension and body mass 
index [8]. Targeted assessment of carotid artery 
stiffness, has shown an association with impair-
ment of cognitive performance in individuals 
with or without type 2 diabetes [10]. 
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The question has been asked; what is (are) the 
etiologic factor(s) that link(s) arterial stiffness 
to impaired cognitive function and dementia? 
This article advances the proposal that colla-
gen IV alpha is a critical factor linking arterial 
stiffness and dementia. 

Collage IV alpha

Type IV collagen is a unique kind of collagen, as 
it resides almost exclusively in the basement 
membrane in various tissues including arteries 
[11, 12]. Collagen type IV consists of 6 distinct 
alpha chains which combine to form three dis-
tinct heterodimers that consist of various com-
binations of trimeric α-chain associations [13]. 
The genes COL4A1 and COL4A2 reside on chro-
mosome 13, COLA3-COLA4 on chromosome 6 
and COL4A5 and COL4A6 on chromosome X 
[11]. COL4A1 and COL4A2 encode proteins of 
respectively 1669 and 1712 amino acids that 
share 45% identity [14]. The protein heterodi-
mers are assembled in the endoplasmic re- 
ticulum, then transported to the Golgi and sub-
sequently have vesicular release from the cell 
[11, 15, 16]. In the extravascular space, the 
heterotrimers participate in a macromolecular 
network with lateral interactions via associa-
tion of their 7S domains [14]. Type IV collagen 
functions not only as a scaffold for assembly 
and mechanical stability but also in cell-cell 
interaction which encompasses cell adhesion, 
cell migration, proliferation, survival and differ-
entiation [11, 17]. Importantly, type IV collagen 
is the binding substrate for a range of cell types, 
including platelets, integrin and non-integrin 
receptors [11]. 

Collagen IV alpha and aortic stiffness

Genetics 

A genome wide association study (GWAS) of 
4221 individuals in a Sardinia cohort found 
that a SNP (single nucleotide polymorphism) 
rs3742207 in the COL4A1 gene was significant-
ly associated with PWV [18]. This finding was 
replicated both in an independent sample with-
in the SardiNIA cohort, and in a separate popu-
lation of an Old-Order Amish group [18]. The 
association of rs3742207 and vascular stiff-
ness was independent of age, sex, blood pres-
sure and serum creatinine [18]. In another 
cohort - the Twins UK cohort, in a subset of 121 
women who had repeat measurements of vas-

cular stiffness (cfPWV and carotid distensibili-
ty), COL4A1 gene expression was significantly 
associated with progression of vascular stiff-
ness over approximately a 4 year time frame 
[19]. In multivariate regression analysis, the 
transcripts most strongly correlated with pro-
gression of cfPWV were COL4A1 and ENPP1 
[19]. COL4A1 expression correlates with long 
term improvement in aortic stiffness (aortic 
PWV) after bariatric surgery as COL4A1 expres-
sion in white adipose tissue was the only one 
(out of 52 genes examined) that independently 
predicted PWV improvement after adjusting for 
age, sex, blood pressure, heart rate and ciga-
rette smoking status [20]. Indeed, COL4A1 
explained 25% of the change in vascular stiff-
ness over time [20]. In a Chinese Uygur popula-
tion, but not another Chinese group, two SNPs 
(rs605143 and rs565470) of the COL4A1 gene 
were significantly associated with PWV and the 
difference remained significant after multivari-
ate adjustment [21]. In contrast to these stud-
ies, the Framingham study did not report an 
association of arterial stiffness with these 
SNPs [22], however, the chip used in that study 
apparently ‘did not include rs3742207 or any 
neighboring SNP in the same linkage disequilib-
rium’ [18]. Although other SNPs in the COL4A1 
gene have been associated with PWV after 
adjustment for age and sex [18, 22], but this 
was not always consistent [23].

Proteomics 

Arterial levels of collagen type IV are associat-
ed with vascular stiffness. Protein extracts of 
the left mammary arteries at the time of cardi-
ac surgery, demonstrated higher levels of col-
lagen IVα1 in persons with high arterial stiff-
ness (cfPWV) [24]. Four hundred and eighteen 
proteins were examined and 28 proteins were 
found to be differentially expressed in patients 
with increased cfPWV [24]. In multivariate anal-
ysis including consideration of blood pressure, 
collagen type IVα-1 was one of only 9 proteins 
that characterized patients with increased arte-
rial stiffness [24].

Interestingly, peroxidasin knockout mice, with 
reduced collagen type IV sulfilimine cross-links, 
manifest a reduction in renal tubular basement 
membrane stiffness establishing a role for col-
lagen type IV in organ stiffness and linking it to 
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the sulfilimine cross-links in collagen type IV 
[25].

Putative mechanisms 

There are a number of potential explanations 
for the relationship between COL4A-1 and vas-
cular stiffness. One proposal has indicated that 
degradation of collagen type IV by matrix metal-
loprotease, type 2, a collagenase secreted and 
activated by vascular smooth muscle cells, per-
mits vascular smooth muscle cells to enter the 
subendothelial space where they produce more 
extracellular matrix which in turn stiffens the 
artery [18]. A similar postulate is that degrada-
tion of type IV collagen by matrix metalloprote-
ases liberates peptides that may damage the 
composition of the subendothelial space [18]. 
Another mechanism is that COL4A increases 
intima thickness and by altering endothelial 
function and thereby increase arterial stiffness 
[20]. 

Fibroblast growth factor 23 (FGF23) levels in 
the population are associated with vascular 
stiffness independent of age, sex, biochemical 
covariates and established CV risk factors [26]. 
The association is especially strong in patients 
with chronic kidney disease (CKD) [27]. Serum 
FGF23 levels are significantly increased in mice 
containing the targeted deletion of the NC1 
domain of the Collagen type IVα3 chain [28]. 
The mechanism by which FGF23 increases vas-
cular stiffness maybe operative through FGF23-
induced increases in superoxide that inhibits 
NO bioavailability, and causes endothelial dys-
function [29]. Ferric citrate, an oral phosphate 
binder that decreases serum FGF23 concentra-
tions in patients with CKD, reduced renal fibro-
sis in the Col4a3 knockout rat model of CKD 
[30]. To the extent that renal fibrosis mirrors the 
increase in collagen in large vessels, higher cir-
culating levels of FGF23 can induce vascular 
stiffness. Fibroblast growth factor 21 is asso-
ciation with arterial stiffness in type 2 diabetes 
mellitus [31]. Advanced glycation end products, 
common in diabetes mellitus, are linked to arte-
rial stiffness, possibly through binding to the 
non-collagenous NC1 domain of type IV colla-
gen as well as binding to itself to form dimers 
and in turn interfere with normal assembly of 
type IV collagen [32].

COL4A1 mutations lead to defects in the main-
tenance of vascular tone and endothelial cell 

function [33]. COL4A1 mutations are associat- 
ed with reductions in basal nitric oxide syntha- 
se activity attributed to defective deposition of 
collagen type IV in the basement membrane, 
that activates an unfolded protein response 
[33]. 

An Ingenuity Pathway Analysis found that 
COL4A1 mutations, associated with worsening 
PWV, are regulated by the CTNNB1 gene which 
produces β-catenin that regulates and coor- 
dinates cell-cell adhesion and gene transcrip- 
tion [19]. Interestingly, β-catenin signaling may 
be associated with increased cyclin D1 expres-
sion and VSMC proliferation and may play an 
role in vascular disease [34]. 

Collagen IV alpha and dementia

Genetic mutations in collagen type IV alpha 
chains (COL4A1 and COL4A2) have been as- 
sociated with a spectrum of cerebrovascular, 
renal, ophthalmological, cardiac, and muscular 
abnormalities [35]. The phenotypic manifesta-
tions, however, are quite variable [35]. COL4A1 
upregulation has been proposed to be a central 
factor in the pathogenic mechanism producing 
both Swedish hereditary multi-infarct dementia 
(hMID) and pontine autosomal dominant micro-
angiopathy and leukoencephalopathy (PADMAL) 
[36-38]. Both of these genetic variants are 
associated with fibro-hyalinosis and elastosis 
of small arterioles with atrophy of media and 
proliferation of the intima, all of which can lead 
to multiple lacunar infarcts and white matter 
atrophy presumably through reduction in cere-
bral blood flow [38]. Although there are no pre-
cise data, it has been suggested that muta-
tions in COL41/2 account for a large proportion 
of familial cases of small vessel disease [39]. 

Another type of dementia - Lewy body dementia 
is associated with insoluble aggregates com-
posed mainly of phosphorylated alpha-synucle-
in (αSyn) [40]. In A30P alpha-synuclein trans-
genic mice, COL4A2, was upregulated in the 
brain implicating this collagen in αSyn-induc- 
ed toxicity [41]. αSyn can elicit an ER stress 
response, sensitize cells to further insult and 
promote the aggregation of wild type αSyn [42]. 

Independent of the presence of genetic abnor-
malities of COL4A1/2, brains of patients with 
dementia of different causes, show microin-
farcts and a dense microvascular meshwork of 
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collagen type IV-positive micro-vessels with 
numerous string vessels [43]. Collagen type 
IV-positive string vessels have been suggested 
to represent endothelial recession, which is 
associated with cessation of blood perfusion in 
the vessels affected [43, 44].

Mechanism of collagen type IV and dementia

There are a number of potential mechanisms 
whereby collagen type IV can play a causative 
role leading to dementia. Animal models sug-
gest a direct relationship between increased 
carotid arterial stiffness and reduced cerebral 
blood flow leading to cognitive dysfunction in 
mice [45]. Carotid arterial stiffness, in mice, is 
associated with increased collagen type IV in 
cerebral vessels in the somatosensory cortex 
[45]. Abnormalities of collagen type IV can pro-
duce narrowing in cerebral small arteries pro-
ducing insufficient blood flow due to small ves-
sel disease [39] which leads to microinfarcts 
and brain atrophy, resulting in cognitive dys-
function and dementia [46, 47]. Another mech-
anism involves the key role that collagen type IV 
plays at the basement membrane which forms 
the blood brain barrier which is composed 
mainly of endothelial cells, pericytes, astro-
cytes and the basement membrane [48]. The 
basement membrane contributes critically to 
the functioning of the blood brain barrier [49]. 
Damage or dysfunction of the blood brain bar-
rier has been implicated in the pathogenesis of 
vascular cognitive impairment [50]. Impair- 
ment in cognitive function on a vascular basis, 
as well as vascular dementia, have been attrib-
uted, in part, to damage to the blood brain  
barrier producing cerebral micro-hemorrhages 
[51]. Thus, alterations of the blood brain barrier 
by defects or alteration of collagen IV can rea-
sonably be linked to loss of cognitive function. 
This is consistent with the increasing data link-
ing the extracellular matrix of the blood brain 
barrier with neurodegenerative diseases [52].

NO induces the expression of integrin αvβ3 in 
endothelial cells which play a role in facilitating 
endothelial cell adhesion to the basement 
membrane matrix [53]. NO-induced increases 
in collagen type IV synthesis, in pulmonary 
endothelial cells act via a PKG signaling path-
way and then through an integrin-FAK signaling 
pathway [54]. There is a feedback mechanism 
as inhibition of collagen type IV synthesis 

decreases FAK phosphorylation and inhibits 
NO-induced increase in FAK phosphorylation 
[54].

Possible dysregulation of collagen type IV 
biosynthesis leading to arterial stiffness and/
or vascular dementia

The biosynthesis of collagen type IV is complex 
and involves many posttranslational modifica-
tions catalyzed by several specific and nons- 
pecific enzymes and other factors [11, 55]. 
Factors that increase biosynthesis of collagen 
type IV include: high shear stress that increas-
es type IV collagen mRNA in endothelial cells 
[57], TGF-β1 that stimulates expression of col-
lagen type IV mRNA [58-61]. TGF-β1 expression 
is increased by high glucose, angiotensin II, 
reactive oxygen species, lipids, and thrombox-
ane A2 [59]. Autocrine production of TGF 
increases collagen IV production [60], high glu-
cose, independent of TGF-β1 [61] increases 
secretion of collagen type IV. LDL, independent 
of TGF-β1, increase expression of collagen IV in 
endothelial cells via activation of the MAPK 
pathway [74], LDL-C and oxidized LDL can oper-
ate through immune complexes engaging Fc 
gamma receptor I and III with the involvement 
of p38 MAPK, JNK and PKC pathways produc-
ing an increase in collagen IV expression [80]. 

Generally, collagen synthesis has been consid-
ered to involve three collagen hydroxylases, two 
collagen glycosyltransferases, two specific pro-
teinases to cleave the N and C propeptides 
from the procollagen molecules and one spe-
cific oxidase to initiate crosslink formation [55]. 
Other enzymes include peptidyl proline cis-
trans isomerase and protein disulfide isomer-
ase, as well as the chaperone Hsp47, which 
perform various functions in collagen formation 
[55]. Some investigators contend that the nor-
mal expression of collagen type IV is under con-
trolling mechanisms specific to each organ and 
to individual chains [56]. 

Patients with repaired coarctation of the aorta 
have increased vascular stiffness and this 
impairment in arterial elasticity is strongly 
associated with elevations in plasma TGF-β lev-
els compared to healthy age- and sex-matched 
control subjects [62]. Animal models support 
the relationship between TGF-β and vascular 
stiffness. Decreased miR-181b with aging plays 
a critical role in extracellular matrix remodeling 



Collagen type IV, arterial stiffness and dementia

5965	 Am J Transl Res 2023;15(10):5961-5971

by removing the brake on the TGF-β, pSMAD2/3 
pathway [63]. In a mouse model of Western 
diet (high-fat/high-sugar), TGF-β signaling is a 
contributor to femoral artery stiffening [64]. 
TGF-β was also increased in aorta tissue of 
mice on a high fat diet that was associated with 
the increase in aortic stiffening [65]. 

Overexpression of TGF-β1 has been found in 
the brain in Alzheimer dementia and is associ-
ated with neuro-inflammation, accumulation of 
extracellular matrix compounds, cerebrovascu-
lar stiffness, and the development of vascular 
hypertrophy [66]. Transgenic mice overexpress-
ing TGF-β1 have similar lesions in the brain as 
Alzheimer disease-like cerebrovascular pathol-
ogy [66]. 

TGF-β1-induced anti-apoptotic factor leads to 
dephosphorylation of amyloid precursor pro-
tein at Thr668, followed by its degradation 
leading to amyloid fibrils [67]. Genetic studies 
also support a role for TGF-β1 in Alzheimer-
dementia [68].

Fibroblast growth factor (FGF) is associated 
with arterial stiffness in several but not all stud-
ies [27, 31, 69, 70]. Higher circulating FGF23 
was associated with an increased risk of 
dementia, in the Framingham study, suggesting 
that FGF23-related biological pathways may 
play a role in the development of dementia [71]. 
Acidic FGF potentiates glial-mediated neurotox-
icity by activating FGFR2 IIIb protein [72] and 
brain neuronal loss leads to impairment in cog-
nitive function.

Increased low density lipoprotein cholesterol 
(LDL-C) can link collagen type IV to dementia. 
Hypercholesterolemia increases collagen type 
IV expression and produces fibrosis [73]. LDL-C 
exerts a significant effect on the expression of 
collagen type IV [74]. LDL-C is associated with 
an increased risk of Alzheimer disease, inde-
pendent of other vascular risk factors even 
after adjustment for APOE-4 carrier status [75]. 
Elevated LDL-C levels were associated with 
higher probability of having early onset Al- 
zheimer disease [76]. Two meta-analysis have 
demonstrated that LDL-C levels is a risk factor 
for cognitive impairment [77, 78]. While LDL-C 
increases collagen IV expression, oxidized LDL-
containing immune complexes oxLDL-markedly 
stimulated collagen type IV expression [74, 79, 
80]. LDL exerts a significant effect on the 

expression of collagen IV in endothelial cells  
via activation of the MAPK pathway [74]. LDL 
enhances connective tissue growth factor 
(CTGF) promoter activity, the mRNA and the 
protein levels of CTGF, TGF-β, and collagen type 
IV in endothelial cells [74]. LDL-C can be opera-
tive through TGF-β, and in addition oxidized  
LDL containing immune complexes engages Fc 
gamma receptor I and III with the involvement 
of p38 MAPK, JNK and PKC pathways to 
increase collagen IV expression [80]. 

Several factors can operate in both pathways 
to produce vascular stiffness and cognitive 
impairment. LDL cholesterol is associated with 
the development of arterial stiffness [81, 82] 
and LDL cholesterol lowering therapy mainly 
with statins reduces arterial stiffness [83]. 
Nitric oxide may play a role in linking vascular 
stiffness and dementia. Endothelial function 
and NO bioavailability are important determi-
nants of aortic biomechanics and function [84], 
suggesting that impaired NO availability would 
increase vascular stiffness. This proposal is 
supported by the study that increasing NO 
availability by dietary supplementation of its 
precursor L-citrulline can reduce a person’s 
arterial stiffness [85]. Reduced nitric oxide bio-
availability by endothelial NOS (nitric oxide syn-
thase) can reduce cerebral blood flow [86]. 
Alzheimer disease may compound the problem 
as amyloid-beta peptides can generate reac-
tive oxygen species that increase NO degrada-
tion [87]. Abnormal NO signaling has been 
linked to various neurodegenerative diseases 
including Alzheimer’s disease [88]. 

In summary, there are a number of specific fac-
tors that are associated with increased vascu-
lar stiffness and include: TGF-β [62], fibroblast 
growth factor (FGF) [27, 31, 69, 70], FGF-23 
[27, 70], LDL cholesterol [81-83] and impaired 
NO availability [85]. There are a number of vas-
cular factors that are associated with impair- 
ed cognitive function and/or dementia, and 
include: TGF-β which is associated with Al- 
zheimer dementia [66-68], FGF23 which is  
not only associated with an increased risk of 
dementia [71] but also is associated with axo-
nal loss in the frontal lobe and fragmentation of 
white matter network organization [90]; acidic 
FGF potentiates glial-mediated neurotoxicity by 
activating FGFR2 IIIb protein and brain neuro-
nal loss that leads to impairment in cognitive 
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function [72]. LDL-C that is associated with an 
increased risk of Alzheimer disease, indepen-
dent of other vascular risk factors even after 
adjustment for APOE-4 carrier status [75]. 
Abnormal NO signaling that has been linked to 
various neurodegenerative diseases including 
Alzheimer’s disease [88]. 

Conclusion

There is ample evidence to link Collagen type IV 
in the pathogenesis of both vascular stiffness 
and dementia through a number of different 
pathways (Figure 1). It is unlikely that collagen 
type IV is the only factor explaining the relation-
ship between arterial stiffness and the cogni-
tive decline, in patients with vascular stiffness. 
Arterial stiffness itself may compromise cere-
bral blood flow leading to neurodegeneration 
and cognitive impairments [45], or a systemic 
increase in pulse pressure produced by in- 
creased arterial stiffness may lead to structu- 
ral damage to cerebral small vessels [89]. 
However, available data on COL4A1 mutations, 
and factors modulating collagen type IV synthe-
sis and degradation, link collagen type IV to 
both vascular stiffness and dementia. These 
data suggest next steps to test the common 
mechanism(s) to determine whether specific 
therapies will benefit arterial and brain health.
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