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Abstract: Various progresses in tumor therapy during the recent decades have significantly reduced the cancer 
related deaths globally. However, there is still a high rate of mortality in these patients. The early stage tumors have 
no aggressive and clear clinical symptoms in the majority of cancer types, which causes a high rate of therapeutic 
failure in advanced tumor stages. Therefore, identification of the molecular tumor biology can be promising to 
introduce the early diagnostic markers. MicroRNAs (miRNAs) are the key regulators of cellular processes that can 
also be involved in tumor progression as tumor-suppressor or oncogene. Due to the high stability of miRNAs in body 
fluids, they can be used as the non-invasive diagnostic tumor markers. In the present review, we discussed the role 
of miR-494 in tumor progression. It has been shown that miR-494 has mainly a tumor suppressor function by regu-
lation of transcriptional and structural factors and signaling pathways such as transforming growth factor-β (TGF-β), 
WNT, and Janus kinase (JAK)-signal transducer and activator of transcription (STAT). The phosphatase and tensin 
homolog/phosphoinositide 3-kinase (PTEN/PI3K) axis has been also reported as the main target of miR-494 as 
an oncogene. These findings suggest that miR-494 is a non-invasive diagnostic marker for the early diagnosis and 
therapeutic management of cancer patients.
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Introduction 

Cancer has been considered as one of the lead-
ing causes of human deaths worldwide during 
the recent decades [1]. Various therapeutic  
and diagnostic strategies have been introduced 
for the cancer patients [2, 3]. However, there is 
still a high rate of mortality in cancer patients 
that is mainly associated with late diagnosis. 
Therefore, a detailed understanding about the 
molecular tumor biology can be promising to 
suggest the efficient diagnostic markers for the 
early detection of cancer. MicroRNAs (miRNAs) 
are important post-transcriptional regulators 
that function through the translational repres-
sion or mRNA degradation [4, 5]. A single 
miRNA simultaneously regulates the expres-
sion of dozens of target mRNAs [6]. MiRNAs 
have regulatory roles in cell proliferation, apop-
tosis, and migration [7]. Aberrant expression of 
miRNAs has been frequently reported in vari-

ous tumor types [8-10]. This highlights the  
therapeutic and diagnostic values of the miR-
NAs in cancer patients [11-13]. The sensitivity 
of detection techniques has improved during 
the recent years in which the sample types 
have expanded from formalin-fixed paraffin/
fresh frozen tissues to miRNAs in body fluids 
[14-16]. Circulating miRNAs have a high stabili-
ty in body fluids by binding with the high-density 
lipoproteins (HDL) or argonaute proteins that 
make them the potential non-invasive diagnos-
tic biomarkers for cancer [11, 17, 18]. MiR-494 
is located on human chromosome 14q32.31 
[19]. Aberrant expression of miR-494 has been 
observed in different stages of tumor progres-
sion [20]. MiR-494 has been introduced as an 
oncogene [21-23] or tumor suppressor in differ-
ent tumor types [24-27]. Therefore, the present 
review aimed to investigate the role of miR-494 
during tumor progression to suggest it as a 
novel reliable non-invasive marker for the diag-
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nostic and prognostic purposes among cancer 
patients (Table 1). 

PI3K/AKT signaling pathway

PI3K/AKT is a pivotal signaling pathway in mo- 
dulation of cell survival, differentiation, and 
apoptosis [28]. MiR-494 has an important role 
in tumor progression via regulation of PI3K/
AKT pathway (Figure 1). Phosphatase and ten-
sin homolog (PTEN) is a lipid phosphatase that 
inhibits tumor progression through the sup-
pression of PI3K/AKT pathway [29]. There were 
significant miR-494 up regulations in glioblas-
toma (GBM) cells and tissues. MiR-494-3p pro-
moted GBM cell proliferation and invasion while 
suppressed apoptosis through PTEN inhibition 
[30]. There were significant miR-494-3p up reg-
ulations in endometrial, colorectal, glioma, cer-
vical, and hepatocellular cancer tissues that 
contributed to poor prognosis. MiR-494-3p 
enhanced the cell proliferation and invasion by 
PTEN targeting [31-35]. Long non-coding RNAs 
(lncRNAs) have a dual function during tumori-
genesis as oncogene or tumor suppressor [36-
38]. The reduced MEG3 expression and reverse 
correlation with VEGF expression implied that 
MEG3 negatively regulated the proliferation of 
Hemangioma (HA) cells. MEG3 suppressed cell 
proliferation, colony formation, and tumorigen-
esis in HAs xenograft model. MEG3 reduced 
tumor cell proliferation via VEGF and CCND1 
inhibition in HAs cells. MEG3 reduced HA pro-
gression by miR-494 sponging and regulation 
of PTEN/PI3K/AKT axis [39]. There were signifi-
cant circSLC8A1 down regulations in bladder 
cancer tissues and cell lines that was positively 
associated with the clinical stage and grade. 
CircSLC8A1 reduced the bladder tumor pro-
gression by regulation of miR-494/PTEN axis 
[40]. There was circ-0000317 down regulation 
in non-small-cell lung cancer (NSCLC) tissues 
and cells that was correlated with poor progno-
sis. Circ-0000317 reduced NSCLC growth via 
miR-494-3p/PTEN pathway [41]. WT1-AS also 
inhibited NSCLC growth and aggressiveness 
while promoted the apoptosis via miR-494-3p/
PTEN axis [42].

Receptor tyrosine kinases (RTKs) are the im- 
portant upstream mediators for the PI3K/AKT 
cascade [43]. The classical PI3K signaling 
pathway is activated through RTKs following 
the growth factors binding [44]. Insulin like 

growth factor 1 receptor (IGF1R) is a RTK that 
has key roles in tumor progression [45, 46]. 
CircVAPA promoted the progression of small 
cell lung cancer (SCLC) via miR-494-3p/IGF1R 
axis and PI3K/AKT pathway activation [47]. 
IGF1R is involved in the EGFR-TKIs resistance 
of NSCLC cells [48]. MiR-494 down regulation 
has been found in gastric cancer (GC) tissues 
and cell lines. MiR-494 suppressed GC cell  
proliferation and migration by IGF1R targeting 
[48]. HER2 up regulation has been observed in 
more than 15% of GC patients that was corre-
lated with poor prognosis [49-54]. Lapatinib is 
a potent ATP-competitive inhibitor that inhibits 
the tyrosine kinases, including HER2 and 
EGFR1 [55]. Fibroblast growth factor receptor 2 
(FGFR2) is a RTK that is activated in various 
cancers through gene amplification, translo- 
cations, and point mutations [56]. FGFR2 is 
directly correlated with poor prognosis in GC 
patients [57, 58]. There were significant FGFR2 
up-regulations in GC tumor tissues. FGFR2 
increased the p-MET, p-HER3, and p-Stat3 
expression in the HER2-positive GC cells. MiR-
494 decreased lapatinib resistance GC cells 
via FGFR2 targeting [59]. MiR-494 inhibited the 
OC cell proliferation and apoptosis by FGFR2 
targeting [60]. There was SBF2-AS1 up regula- 
tion in diffuse large B-cell lymphoma (DLBCL) 
tissues. SBF2-AS1 triggered DLBCL tumorigen-
esis and cell growth by regulating the miR-494-
3p/FGFR2 axis [61]. KIT is also an oncogenic 
RTK that takes part in the PI3K/AKT, MAPK, 
and JAK-STAT signaling pathways [62-64]. It 
has been demonstrated that miR-494 modu-
lated the p-AKT and p-STAT3 expressions via 
mutant KIT down regulation. Additionally, miR-
494 suppressed proliferation of gastrointesti-
nal stromal tumor (GIST) cells through KIT tar-
geting [65].

Epithelial-mesenchymal transition (EMT) induc-
es self-renewal features and tumor cell inva-
sion in several cancers [66, 67]. Chemokine 
receptors (CXCR) have pivotal roles in tumor 
biology and progression [68-76]. Stromal cell-
derived factor 1 (SDF-1) promotes metastasis 
and angiogenesis in breast cancer by establish-
ing an immunosuppressive tumor microenvi-
ronment through CXCR4 activation [77]. MAPK 
and PI3K/AKT signaling pathways can be trig-
gered by SDF-1/CXCR4 axis during tumor pro-
gression. MiR-494-3p inhibited the prostate 
tumor cell proliferation and invasion by CXCR4 
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Table 1. Molecular targets of miR-494 during tumor progressions
Study Year Type Target gene Samples Function Clinical application
PI3K/AKT signaling pathway
Yuan [26] 2016 Epithelial Ovarian Cancer C-MYC 15TN* tissues

SKOV3 and HO8910 cell lines
Tumor suppressor Diagnosis

Zhao [27] 2016 Gastric cancer IGF1R 25TN tissues
BGC823 and SGC7901 cell lines

Tumor suppressor Diagnosis

Li [30] 2015 Glioblastoma PTEN 72 patients 8 controls
U87MG and U251MG cell lines

Oncogene Diagnosis

Zhu [31] 2019 Endometrial cancer PTEN 43TN tissues
HHUA and JEC cell lines

Oncogene Diagnosis

Lin [32] 2018 Hepatocellular carcinoma PTEN 271TN tissues
SMMC-7721, Huh7, HCC-LM3, HepG2, Hep3B 
and THLE-3 cell lines

Oncogene Diagnosis and Prognosis

Sun [33] 2014 Colorectal cancer PTEN 247TN tissues
SW620, SW480, HCT116 cell lines

Oncogene Diagnosis and Prognosis

Yang [34] 2015 Cervical cancer PTEN 89TN tissues
HeLa, C33A, Caski and SiHa cell lines

Oncogene Diagnosis and Prognosis

Han [35] 2019 Glioma cancer PTEN 58T 28N blood
U251 cell line

Oncogene Diagnosis

Dai [39] 2018 Hemangiomas PTEN 30T 15N tissues
HDEC and CRL-2586 EOMA cell lines

Oncogene Diagnosis

Lu [40] 2019 Bladder cancer PTEN 70TN tissues
5637, T24, J82, EJ, UMUC, and RT4 cell lines

Oncogene Diagnosis and Prognosis

Xia [41] 2022 Non-small cell lung cancer PTEN 67TN tissues
A549, H460, PC9, H1299, and SPC-A1 cell 
lines

Oncogene Diagnosis and Prognosis

Wu [42] 2021 Non-Small Cell Lung Cancer PTEN A549, NCI-H1975, SK-MES-1 cell lines Oncogene Diagnosis
Hua [47] 2022 Small cell lung cancer IGF1R 6TN tissues

36T 118N serum
H69, DMS79, H82, DMS273, H446, H526, 
HCC827, and PC9 cell lines

Tumor suppressor Diagnosis

Yu [59] 2018 Gastric cancer FGFR2 6TN tissues
YCC1 and YCC1-F cell lines

Tumor suppressor Diagnosis

Zhao [60] 2016 Ovarian cancer FGFR2 25TN tissues
ES2, HO8910, OVCAR3, A2780, SKOV3, and 
HeLa cell lines

Tumor suppressor Diagnosis

Fu [61] 2021 Diffuse large B-cell lymphoma FGFR2 50TN tissues
OCI-LY-3, OCI-LY-7, OCI-LY-10, SU-DHL-4 and 
SU-DHL-6 cell lines

Tumor suppressor Diagnosis

Kim [65] 2011 Gastrointestinal Stromal Tumor KIT 31TN tissues
GIST882, SNU216, SNU638, SNU1, NCI-N87, 
DLD-1, and HeLa cell lines

Tumor suppressor Diagnosis
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Song [78] 2015 Breast cancer CXCR4 MDA-MB-231, MCF-7, MDA-MB-468, MDA-
MB-435, T47D, BT-474, SK-BR-3, ZR-75-30 
cell lines

Tumor suppressor Diagnosis

MAPK signaling pathway
Ou-Yang [84] 2018 Glioblastoma SOCS6 U87MG and U118MG cell lines Tumor suppressor Diagnosis
Cheng [85] 2018 Cervical cancer SOCS6 40TN tissues

HeLa cell line
Tumor suppressor Diagnosis and Prognosis

Yang [87] 2022 Acute lymphoblastic leukemia NET1 30T 30N tissues
Kasumi-1 and KG-1 cell lines

Tumor suppressor Diagnosis

WNT signaling pathway
Li [92] 2014 Pancreatic Ductal Adenocarci-

noma
FOXM1 10TN tissues

AsPC-1 and PANC-1 cell lines
Tumor suppressor Diagnosis and Prognosis

JAK/STAT and TGF-β signaling pathways
Jiang [99] 2021 Prostate cancer STAT3 22TN tissues

VCaP, LNCaP, 22RV1, PC3, and DU145 cell 
lines
THP-1 cells

Tumor suppressor Diagnosis

Yang [108] 2022 Esophageal squamous cell 
carcinoma

TGIF1 79TN tissues
EC9706, Eca109, TE-1, and KYSE-150 cell 
lines

Tumor suppressor Diagnosis and Prognosis

Transcription factors
Libório-Kimura [128] 2015 Oral cancer HOXA10 17T 3N tissues

SCC-25, CAL 27, and FaDu cell lines
Tumor suppressor Diagnosis

Liu [132] 2015 Pancreatic cancer SIRT1, C-MYC 86T 41N tissues
AsPC-1, BXPC-3, SW1990, MIAPaCa-2, PANC-1

Tumor suppressor Diagnosis and Prognosis

He [133] 2014 Gastric carcinoma C-MYC 56TN tissues 
SGC7901, MKN45 and AGS cell lines

Tumor suppressor Diagnosis

He [135] 2018 Nasopharyngeal carcinoma SOX7 30T 13N tissues
S18, S26, CNE-1, CNE-2, HONE-1, and 5-8F 
cell lines

Oncogene Diagnosis 

Li [136] 2015 Chondrosarcoma SOX9 71T 71 corresponding benign chondroma
SW1353, JJ012 cell lines

Tumor suppressor Diagnosis and Prognosis

Apoptosis and drug response
Xu [153] 2018 Gastric Cancer SURVIVIN 30TN tissues

BGC-823 and MGC-803 cell lines
Tumor suppressor Diagnosis

Gao [156] 2020 Osteosarcoma ASK1 87T 100N blood
MG-63 cell line

Tumor suppressor Diagnosis and Prognosis

Zhang [165] 2019 Non-small cell lung cancer CASP2 A549 and H460 cell lines Oncogene Diagnosis
Zhang [175] 2015 Esophageal Squamous Cell 

Carcinoma
CLPTM1L 37TN tissues

EC9706 and KYSE30 cell lines
Tumor suppressor Diagnosis
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Chang [180] 2022 Esophageal Squamous cell 
carcinoma

LASP1 60T tissues
KYSE150, ECA109, TE1, and KYSE410 cell 
lines

Tumor suppressor Diagnosis

Chai [182] 2015 Colon cancer DPYD HCT116, HCT15, HCT8, HT-29, LOVO, SW480 
and SW620 cell lines 

Tumor suppressor Diagnosis

Wei [189] 2021 Osteosarcoma TGM2 63TN tissues
U2OS and HOS cell lines

Tumor suppressor Diagnosis

Structural factors
Nie [193] 2016 Nasopharyngeal carcinoma GALNT7 CNE2, 6-10B, and 9-4E cell lines Tumor suppressor Diagnosis
Yang [209] 2018 Pancreatic cancer SDC1 42T 42N

ASPC-1, SW1990, BXPC-3, CFPAC-1 and PANC-
1 cell lines

Tumor suppressor Diagnosis

Liu [213] 2019 Cholangiocarcinoma WDHD1 135T 34N tissues
QBC939 and RBE cell lines

Tumor suppressor Diagnosis

* T: tumor tissues; N: normal margins.
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Figure 1. Role of miR-494 during tumor progression by regulation of PI3K/AKT and MAPK signaling pathway (Cre-
ated with BioRender.com).

targeting [20]. MiR-494 inhibited the EMT by 
cadherin 1 (CDH1) up regulation, while CDH2, 
VIM, and α-SMA down regulations in breast 
tumor cells. It reduced breast tumor progres-
sion by CXCR4 targeting [78].

MAPK signaling pathway

Mitogen-activated protein kinase (MAPK) sin-
gling pathway can also be one of the miR-494 
targets during tumor progression (Figure 1). 
Stimulation of neurotensin receptor 1 (NTSR1) 
activates extracellular signal-regulated kinase 
(ERK1/2), Rho GTPases, and focal adhesion 
kinase, which triggers tumor development [79, 
80]. Activation of NTSR1 signaling regulates 
cell proliferation, apoptosis, and self-renewal of 
glioma cells [81-83]. It has been shown that 
inhibition of NTSR1 suppressed glioblastoma 
invasion. NTSR1 induced miR-494 expression 

via Jun transcription factor. MiR-494 was a vital 
regulator of the tumor cell invasion in glioblas-
toma cells through NTSR1 targeting. NTSR1 
down regulated the suppressor of cytokine sig-
naling 6 (SOCS6) by up regulating miR-494. 
SOCS6 was shown to be involved in the inva-
sion of glioblastoma cells through NTSR1 tar-
geting [84]. There was miR-494 down regula-
tion in cervical cancer tissue that was correlat- 
ed with prognosis in patients. MiR-494 reduc- 
ed growth and invasion in cervical cancer cells 
via SOCS6 targeting [85]. Neuroepithelial cell 
transforming 1 (NET1) belongs to the Ras ho- 
molog family member A (RhoA) that regulates 
the ERK1/2 and PI3K/Akt1 pathways [86]. 
There were circ-0000745 up regulations in 
acute lymphoblastic leukemia (ALL) patients 
and cell lines. Circ_0000745 promoted cell 
cycle while suppressing apoptosis in ALL cells 
via miR-494-3p/NET1 targeting [87].
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Figure 2. Role of miR-494 during tumor progression by regulation of WNT, TGF-β, and JAK/STAT signaling pathways 
(Created with BioRender.com).

WNT signaling pathway

Wnt/β-catenin is a key signaling pathway dur-
ing tumorigenesis [88]. Wnt signaling includes 
a series of cascades initiating from Wnt ligands 
binding to the cell surface receptors that leads 
to cytoplasmic β-catenin stabilization. Subse- 
quently, β-catenin enters the nucleus to regu-
late the WNT target genes such as cyclin D1 
(CCND1) and c-MYC by interaction with T-cell 
factor/lymphoid enhancer factor (TCF/LEF) tr- 
anscriptional complex [89, 90]. MiR-494 has 
pivotal roles in tumor progression by regulation 
of WNT signaling pathway (Figure 2). Forkhead 
box M1 (FOXM1) regulates stabilization and 
activation of β-catenin and has a critical role in 
tumor biology [91]. It has been shown that miR-
494 was negatively associated with FOXM1/β-
catenin in pancreatic ductal adenocarcinoma 
(PDAC) cells. MiR-494 was down regulated by 
the Smad4 knockdown. Therefore, the Smad4/

miR-494/FOXM1/β-catenin axis had an impor-
tant impact on pathogenesis of PDAC. MiR-494 
inhibited stemness, metastasis, and progres-
sion of PDAC cells and increased gemcitabine 
sensitivity in PDAC cells. Knockdown of Smad4 
down regulated the miR-494, suggesting that 
TGF-β/Smad signaling is a modulator of the 
miR-494 expression and FOXM1/β-catenin pa- 
thway. MiR-494 negatively regulated β-catenin 
signaling pathway via FOXM1 down regulation 
that reduced PDAC cell growth and invasion 
[92]. The significant up-regulation of miR-494-
3p and down-regulation of circTET1 have been 
reported in retinoblastoma (RB) cells. CircTET1 
improved the malignant potential of RB by tar-
geting miR-494-3p and Wnt/β-catenin pathway 
[93].

JAK/STAT and TGF-β signaling pathways

The canonical JAK/STAT signaling pathway can 
be activated following the interaction between 
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the JAK tyrosine kinases and cytokine recep-
tors [94]. Trans-phosphorylation of JAKs is cru-
cial for the recruitment of phosphorylated sig-
nal transducer and activator of transcription 
(STATs) that finally enter the nucleus and regu-
late the expression of several genes involved in 
apoptosis, cell proliferation, and metastasis. 
MiR-494 plays an important role in tumor pro-
gression by regulation of JAK/STAT signaling 
pathway (Figure 2). Tumor-associated macro-
phages (TAMs) are one of the most common 
immune cells in solid tumors that are associat-
ed with tumor progression, drug resistance, 
and poor prognosis [95]. Macrophages are 
classified into two phenotypes, M1 (pro-inflam-
matory) and M2 (anti-inflammatory). TAMs as 
M2-like macrophages are highly associated 
with cancer progression [96-98]. There were 
LINC00467 up regulations in PC tissues and 
cell lines. The M2-like macrophages had higher 
LINC00467 expression levels than M1-like or 
unpolarized macrophages. Silencing of LINC- 
00467 significantly reduced the expression of 
M2-like macrophage markers. Down regulation 
of LINC00467 inhibited the STAT3 pathway. 
LINC00467 induced PCa progression through 
miR-494-3p/STAT3 axis and M2 macrophage 
polarization [99]. Cyclin dependent kinase 6 
(CDK6) is involved in G1/S transition [100]. 
There were X-inactive specific transcript (XIST) 
up regulations in esophageal carcinoma (EC) 
tissues and cells. XIST inhibition significantly 
suppressed EC cell proliferation, while stimu-
lated apoptosis. XIST sponged miR-494 that 
subsequently decreased the invasion of EC 
cells via CDK6 targeting. CDK6 knockdown al- 
so suppressed the JAK2/STAT3 pathway. MiR-
494 inhibition increased the level of p-JAK2 
and p-STAT3 expression. The p-JAK2 and p- 
STAT3 expressions were reduced by the sup-
pression of miR-494 and CDK6 co-transfec- 
tion. Therefore, miR-494/CDK6 enhanced EC 
progression through JAK2/STAT3 activating 
[101]. Histone deacetylases (HDACs) are the 
key proteins in chromatin remodeling that 
remove the acetyl groups in histone and non-
histone proteins [102]. HDAC inhibitors have 
been reported as epigenetic therapeutic tar-
gets for treating various cancers [103-105]. 
TG-interacting factor 1 (TGIF1) belongs to the 
TALE superfamily that acts as a component of  
a ubiquitin ligase complex [106]. It plays a vital 
role in promoting the degradation of Smad2 in 
a ubiquitin-dependent manner [107]. Inhibition 

of HDAC3 up regulated miR-494 and down reg-
ulated the TGIF1 to activate the TGF signaling 
pathway, which reduced the malignant charac-
teristics of ESCC cells [108].

Endothelial to mesenchymal transition (EndMT) 
is a crucial process that plays a critical role in 
metastasis and tumor growth. This process 
increases tumor cell invasion and migration by 
up regulation of mesenchymal markers while 
reducing the expression of epithelial markers 
[109-116]. It involves the loss of endothelial 
phenotypes and the acquisition of mesenchy-
mal characteristics. In addition, EndMT induces 
the expression of mesenchymal cell markers 
(Smad3, α-SMA, and FSP-1) and reduces the 
endothelial markers (CD31 and VE-cadherin) 
and cell-cell junctions [117-119]. TGF-β signal-
ing is activated through the interaction of TGF-β 
to its ser/thr kinase receptors that results in 
Smad2/3/4 interaction. Subsequently, Smad 
complex transport into the nucleus to modu- 
late transcription of the TGF-β target genes 
[120]. MiR-494 is a key regulator of TGF-β  
signaling pathway during tumor progression 
(Figure 2). Sirtuin3 (SIRT3) is a histone deacet-
ylase that is essential for tumor progression 
[121]. There was miR-494 up-regulation in he- 
patocellular carcinoma (HCC) compared with 
the normal tissues. MiR-494 induced cell prolif-
eration and migration by up regulation of mes-
enchymal markers, including α-smooth muscle 
actin (α-SMA), SMAD3, and p-SMAD3 in HCC 
cells. Suppression of miR-494 also significantly 
up regulated the SIRT3 and TGF-β, while inhib-
ited mesenchymal cell markers in the animal 
model. Therefore, miR-494 has a crucial role in 
regulating EndMT and the progression of HCC 
cells via SIRT3/TGF-β/SMAD axis [122].

Transcription factors

Homeobox (HOX) is an evolutionarily conserved 
transcription factor family that has a critical 
role in progression of normal cells to neoplastic 
state via regulation of the cellular pathways 
and apoptosis [123-126]. They have been also 
implicated in DNA and histone methylation th- 
at can be associated with the epigenetic modu-
lation of several cancer-related genes [127]. 
There were HOXA10 up-regulation and miR-
494 down-regulation in oral squamous cell car-
cinoma (OSCC) cells which were associated 
with advanced tumor stages. HOXA10 expres-
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sion was also associated with tumor size, TNM 
stage, and aggressiveness of OSCC. MiR-494 
significantly inhibited the OSCC cell prolifera-
tion by HOXA10 targeting [128]. C-Myc is a tran-
scription factor that is involved in cell prolife- 
ration, differentiation, EMT, and angiogenesis 
[129-131]. There was significant down-regula-
tion of miR-494 in pancreatic cancer (PC) tis-
sues that was correlated with tumor size, age, 
TNM stage, distant metastasis, and lymphatic 
invasion. The expression of miR-494 was asso-
ciated with decreased CCND1 and increased 
p21, which remarkably induced G1 phase 
arrest. MiR-494 suppressed migration and 
invasiveness of pancreatic cancer cells via 
down regulation of matrix metalloproteinase-2 
(MMP-2) and MMP-9. It also inhibited the prolif-
eration and chemo resistance of PC cells by 
c-Myc and SIRT1 targeting [132]. MiR-494 re- 
duced ovarian tumor cell proliferation by c-Myc 
targeting [26]. There was also miR-494 down 
regulation in GC, and miR-494 reduced the GC 
cell proliferation via c-Myc targeting [133]. SRY-
box transcription factor 7 (SOX7) is a transcrip-
tion factor involved in hematopoiesis and an- 
giogenesis [134]. MiR-494-3p has been found 
to increase cell proliferation and migration  
in nasopharyngeal carcinoma (NPC) cells via 
SOX7 targeting [135]. There were miR-494 
down regulations in chondrosarcoma tissues 
that was correlated with poor survival and  
prognosis. MiR-494 suppressed the progres-
sion and invasion of chondrosarcoma cells by 
SOX9 targeting [136]. The ubiquitination prote-
asome system is the crucial process responsi-
ble for intracellular protein breakdown [137]. 
Y-box binding protein 1 (YBX1) is a transcription 
factor that is involved in regulation of drug 
resistance and cell proliferation [138]. It has 
been shown as a crucial regulator of EMT via 
Snail1 and hypoxia-inducible-factor 1A (HIF1A) 
up regulations [139]. Activating transcription 
factor 3 (ATF3) is a negative modulator of cel-
lular antiviral signaling, inflammatory respons-
es, and autophagy in mammalian cells [140]. 
There was Linc01612 down regulation in HCC 
tissues in comparison with normal controls th- 
at contributed to poor prognosis. Linc01612 
sponged the miR-494 to up regulate ATF3 that 
results in inhibition of p53 ubiquitination by 
ATF3. Linc01612 also interacted with YBX1  
and promoted its ubiquitin-mediated degrada-
tion in p53-deficient HCC cells. Moreover, the 

YBX1 mediated pathway was suppressed in 
HCC cells expressing p53 [141].

Apoptosis and drug response

Surgery is the most beneficial therapy in the 
early stages of GC; however, advanced GC 
patients have fewer therapeutic alternatives. 
Since the advanced gastric tumors are unre-
sectable, systemic therapy is the only thera-
peutic choice [142-145]. Tumor cells usually 
acquire resistance against anti-tumor drugs 
[146, 147]. TNF-related apoptosis-inducing li- 
gand (TRAIL) interacts with death receptors to 
activate procaspase-8 to establish the death-
inducing signaling complex (DISC). Subse- 
quently, mitochondrial apoptosis occurs as a 
result of caspase-8 activation [147-149]. Sur- 
vivin belongs to the inhibitor of apoptosis pro-
tein (IAP) family that suppresses the release of 
mitochondrial cytochrome c and the activation 
of CASP9 and CASP3 [150-152]. MiR-494 sen-
sitized the GC cells to TRAIL treatment via 
Survivin targeting [153]. Apoptosis signal-regu-
lating kinase 1 (ASK-1) phosphorylation is a 
crucial part of TNF-α-induced apoptosis path-
way. The interaction of STRAP and 14-3-3 pro-
teins with ASK1 impairs the correlation of 
TRAF2 and ASK-1 that leads in suppression  
of TNF-α-induced apoptosis [154, 155]. There 
were miR-494 down regulations in osteosarco-
ma (OS) tissues and serums that were inversely 
associated with TNM stage. MiR-494 triggered 
the TNF-α/ASK1 mediated apoptosis and inhib-
ited the OS cell proliferation by suppressing the 
ASK-1/STRAP/14-3-3 axis. A significant higher 
mortality was also observed in OS patients with 
miR-494 under expression in both tissues and 
serum [156]. Protein arginine methyltransfer-
ase 1 (PRMT1) is an arginine methyl transfer-
ase that is essential for the methylation of Arg3 
on H4 tail peptides. It catalyzes the ASK1 meth-
ylation that leads to chemo resistance. PRMT1 
functions as oncogenes in several cancers 
[157]. PRMT1 was also known as a suppressive 
marker for regulating TNFα/NF-κB response 
through the RelA methylation [158]. In addition, 
PRMT1 mediates methylation of enhancer of 
zeste homolog 2 (EZH2) to trigger its stability 
that stimulates tumor cell metastasis [159]. It 
has been determined that there was NNT-AS1 
up regulation in glioma tissues that was corre-
lated with early tumor stage. The suppression 
of NNT-AS1 significantly reduced proliferation 
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and invasion of glioma cells via miR-494-3p/
PRMT1 axis [160]. CASP2 belongs to the cyste-
ine protease family that functions as a tumor 
suppressor [161, 162]. It mediates apoptosis 
through oxidative stress, cytoskeleton degrada-
tion, and heat shock [163]. CASP2 is a negative 
regulator of autophagy through the modulation 
of reactive oxygen species (ROS). Down regula-
tion of CASP2 regulates the FOXO3 to down 
regulate the superoxide dismutase-2 (SOD2) 
[164]. It has been shown that miR-494 in- 
creased the NSCLC cell proliferation while 
decreased their sensitivity to CDDP-induced 
apoptosis through CASP2 inhibition [165]. 

Cisplatin (CDDP) is a first-line medication used 
to treat several human malignancies [166]. On 
the other hand, the CDDP resistance signifi-
cantly affects the therapeutic efficacy of ESCC 
patients [167]. Cleft lip and palate transmem-
brane protein 1-like (CLPTM1L) is an inhibitor of 
mitochondrial related apoptosis via Bcl-xL stim-
ulation. It has also a key role in chemothera-
peutic resistance and tumorigenesis via Bcl-xL 
up regulation [168, 169]. CLPTM1L stimulates 
apoptosis in DDP-sensitive cells and is contrib-
uted with an increased risk of tumor progres-
sion in different cancers [170-172]. CLPTM1L 
conferred resistance to chemotherapeutic me- 
diated apoptosis by Bcl-xL up regulation [173, 
174]. MiR-494 reduced the ESCC cell aggres-
siveness while increased apoptosis through 
CLPTM1L targeting [175]. LIM and SH3 protein 
1 (LASP1) is an actin-binding protein that is 
deregulated in various cancers [176, 177]. The 
association between LASP1 and CDDP resis-
tance has also been reported in several hu- 
man cancers [178, 179]. Circ-0007142 inhibi-
tion promoted CDDP sensitivity by miR-494-
3p/LASP1 in ESCC cells [180]. Dihydropyrimi- 
dine dehydrogenase (DPYD) is a regulatory en- 
zyme in the 5-Fu catabolic pathway. The con-
ventional 5-Fu dosage has a higher risk of fatal 
effects in patients with poor DPYD function 
[181]. MiR-494 increased the 5-Fu sensitivity 
by DPYD targeting in CRC cells [182]. Trans- 
glutaminase 2 (TGM2) is involved in the tumor 
cell growth, apoptosis, metastasis, and che- 
mo resistance [183-186]. It inhibits tumor cell 
apoptosis through the Bax regulation and cyto-
chrome C release following the hypoxia [187]. 
Silencing of TGM2 could promote chemo sensi-
tivity in cancer cells by the inhibition of Akt and 
MAPK pathways [188]. There was circ-0081001 

up regulation in osteosarcoma (OS) tissues 
that was correlated with methotrexate (MTX) 
resistance. Inhibition of circ-0081001 enhan- 
ced MTX sensitivity in MTX-resistant OS cells 
through modulating miR-494-3p and TGM2 
expression [189].

Structural factors

Polypeptide-N-acetyl-galactosaminlytransfera- 
se 7 (GALNT7) is a member of the acetyl-galac-
tosaminyl-transferase family that binds through 
N-acetylgalactosamine to the serine or threo-
nine residues of its target proteins [190]. It 
catalyzes the O-GlcNAcylation of proteins as a 
crucial step in many biological processes [191]. 
Aberrant glycosylation is closely associated 
with cell growth, division, adhesion, and tumori-
genesis [192]. It was also reported that miR-
494 suppressed the NPC cell in-vivo growth via 
GALNT7 targeting [193].

EMT is a cellular process in which epithelial 
cells obtain mesenchymal characteristics [194-
198]. Syndecan-1 (SDC1) is a crucial protein 
involved in the maintenance of cell morphology 
and tumor progression [199, 200]. It regulates 
the intercellular adhesion and activation of 
growth factor receptors via its heparan sulfate 
side chains [201]. SDC1 also increases tumor 
cell invasion via MMP-9 regulation by nuclear 
factor kappa B (NF-κb) [202]. Down regulation 
of SDC1 induces the tumor cell proliferation 
and EMT [203]. Deregulation of SDC1 has been 
reported in various types of cancer [204-208]. 
MiR-494 inhibited EMT and pancreatic tumor 
cell invasion via SDC1 targeting [209].

WD repeat and HMG-box DNA binding protein 1 
(WDHD1) is a nuclear ubiquitin ligase that inter-
acts with DNA via the HMG domain [210]. It has 
a critical role in both pre-replicative complexes 
assembly and initiation of DNA replication. It 
also mediates the cellular response to DNA 
damage and functions as a G1 checkpoint con-
trol protein [211]. WDHD1 promotes cisplatin 
resistance in cancer cells upon inducing the 
MAPRE2 ubiquitination [212]. It has been dem-
onstrated that miR-494 inhibited cholangio- 
carcinoma (CCA) progression via EMT process 
through WDHD1 targeting. MiR-494 up regu-
lated the CDH1, while down regulated WDHD1, 
CDH2, Vimentin, and MMP-9 [213]. 
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Conclusions

Considering the importance of miRNAs as the 
non-invasive diagnostic markers in various dis-
eases and cancers, in the present review, we 
discussed the role of miR-494 during tumor 
progression. It has been shown that miR-494 
mainly exerts its tumor suppressor role by regu-
lation of transcription factors, structural pro-
teins, and signaling pathways including TGF-β, 
WNT, and JAK/STAT. PTEN/PI3K axis has also 
been reported as the main target of miR-494 
as an oncogene in different cancers. These 
findings suggest that miR-494 is a non-invasive 
diagnostic marker and a probable therapeutic 
target in cancer patients.
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