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Abstract: Aim: Gastric cancer (GC) has a high incidence and poor prognosis. Senescence genes are suggested to 
participate in immune cell infiltration, thus affecting the immunotherapy of GC. In this research, we established a 
senescence-related GC model to explore and verify the role of senescence genes in the prognosis, treatment, and 
tumor microenvironment (TME) of GC. Methods: The TCGA GC (TCGA-STAD) dataset was used to screen key senes-
cence genes from differentially expressed genes (DEGs). A prognostic risk model was trained utilizing the TCGA-STAD 
dataset and validated using an external GEO dataset. The CIBERSORT algorithm was run to explore the relationship 
between senescence genes and TME. The chemotherapy drug sensitivities in GC patients were calculated utilizing 
R package pRRophetic. Results: A total of 37 senescence-related DEGs were obtained. Five key senescence-related 
genes were further screened to establish a senescence-related risk model based on Cox regression. The survival 
status of GC patients in the high-risk group was found to be worse than that in the low-risk group. According to the 
results of gene set enrichment analysis, the senescence-related risk was mainly associated with cytokine activity, 
immune mechanism, and related pathways. By analyzing the sensitivity of common chemotherapy drugs in GC pa-
tients, it was revealed that the sensitivities of high-risk patients to Dasatinib, Lapatinib, and Pazopanib were lower 
than those of low-risk patients. The CIBERSORT algorithm was executed to analyze the TME in the high-risk group, 
revealing elevated levels of CD8 T cells, Macrophages M2, and resting Mast cells. In addition, decreased levels of 
resting memory CD4 T cells , resting NK cells, activated Dendritic cells, and activated Mast cells were also observed. 
Conclusion: Senescence genes were related to the prognosis, response to chemotherapy drugs, and TME of GC. Our 
senescence-related risk model could forecast the survival of patients, their response to chemotherapy drugs, and 
the TME to a certain extent.
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Introduction

Gastric cancer (GC) is one of the most preva-
lent gastrointestinal malignancies in the world, 
with morbidity and mortality rates among the 
highest [1] and over a million new cases per 
year worldwide [2, 3]. Characteristics of GC 
include low early diagnosis rate [4], high hetero-
geneity [5], high aggressiveness [3], and poor 
prognosis [6]. The 5-year survival rate of GC is 
around 40% [7]. Surgical operations may be 
insufficient for a radical cure of GC, thus neoad-
juvant chemotherapy and individualized accu-

rate clinical decision-making for effective mea-
sures are important to improve the prognosis of 
GC [8, 9].

Anti-tumor drug therapy has gradually transi-
tioned into a “precision immunotherapy” model 
[10]. However, due to the high internal diver-
gence of GC, the overall curative effect rema- 
ins unsatisfactory. Patients commonly develop 
resistance to chemotherapy drugs, which can 
cause recurrence [11]. Therefore, further explo-
ration of the pathogenesis of GC and a search 
for ideal tumor biomarkers and therapeutic tar-
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gets could be significant for early diagnosis, 
development of personalized treatment, and 
extension of patient survival.

Senescence, the process of aging involving the 
loss and degeneration in the body, is a major 
risk factor for human cancer [12]. Some hall-
marks of senescence are similar to those of 
certain cancers [13]. As a result, the elderly 
exhibit dysregulated immune responses and 
increased susceptibility to diseases including 
cancer [14]. Recent studies have revealed that 
senescence-related genes (SRG) participate 
widely in immune cell infiltration [15], regulate 
cellular senescence, and affect cancer immune 
expression [16]. SRGs inhibit tumor progres-
sion by conditioning the aging of cancer cells, 
but also facilitate the tumor progression [17]. 
However, the analysis of SRGs in GC progres-
sion is still insufficient, and the relationship 
between GC and SRGs remains largely unknown 
[18].

Herein, we built and verified a risk model 
grounded on SRGs to explore their role in GC 
prognosis, treatment, and tumor microenviron-
ment (TME), aiming to enhance the understand-
ing of GC etiology and serve as a reference for 
prognosis, stratification, and precision treat-
ment of GC.

Methods

Data collection

We used the GC cohort dataset in Cancer 
Genome Atlas Program (TCGA-STAD, https://
www.cancer.gov/ccg/research/genome-sequ- 
encing/tcga) to analyze differentially express- 
ed genes (DEGs) and establish a prognostic 
risk model. The dataset contained gene ex- 
pression information of 412 patients and 448 
samples, including 412 tumor tissues and 36 
normal tissues. Among them, 366 patients  
had intact clinical information including progno-
sis. The model was validated using the 
GSE84437 dataset [19] from GEO (Gene 
Expression Omnibus) database, which con-
tained GC tumor gene expression information 
from 483 patients, and 433 of them had com-
plete clinical prognosis information. In addition, 
information of 502 aging related genes were 
obtained from the Chinese National Genomics 
Data Center (https://ngdc.cncb.ac.cn/aging/
index), including their symbols and functions. 

Ethical approval was waived for this research 
as all data were obtained from public 
databases.

Analysis of senescence-related DEGs 
(SRDEGs)

Gene expression data from 33 patients who 
had both cancerous and para-cancerous gene 
expression information were utilized for DEGs 
analysis using R package DESeq2 [20] (version 
1.40.2). The log2 fold change (log2FC), repre-
senting the multiple of expression value of a 
specific gene in tumor tissue compared to nor-
mal tissue, was calculated logarithmically with 
base 2. The DEGs were screened with the abso-
lute value of logFC ≥ 2 plus adjusted P < 0.05. 
DEGs were compared with SRGs, and the inter-
section was analyzed to obtain SRDEGs.

Gene function analysis: gene set enrichment 
analysis

To investigate the biological functions of 
SRDEGs, the gene ontology (GO) and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
gene set enrichment analysis (GSEA) [21] were 
performed using the R package clusterProfiler 
[22] (version 4.8.2).

Prognostic model construction and validation

Univariate and multivariate Cox regression 
models were constructed using R package sur-
vival [23] (version 3.5-7) based on data from 
366 patients in TCGA-STAD dataset who had 
complete clinical information to identify prog-
nostic SRDEGs. Multivariate Cox proportional 
hazards (Coxph) model were used in TCGA-
STAD data to perform six-fold cross-validation 
to train the prognosis model utilizing R package 
caret [24] (version 6.0-94), and the risk scores 
were generated. The predictive performance of 
the model was evaluated using the receiver 
operating characteristic (ROC) curve. The accu-
racy of the model was validated using data of 
433 patients from the GSE84437 dataset.

Survival analysis

The R survival package was employed for sur-
vival analysis. The median risk scores of each 
dataset were set as the critical value, and the 
samples were divided into a low-risk group and 
a high-risk group. The Log-rank tests were con-
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ducted to evaluate the survival difference of 
the two groups. Then, Kaplan-Meier (KM) sur-
vival curves were plotted.

Prediction of chemotherapy drug response

To evaluate the role of senescence-related 
genetic signatures in predicting GC patients’ 
sensitivity to chemotherapy, R package pRRo-
phetic [25] (version 0.5) was utilized to as- 
sess the half-maximal inhibitory concentration 
(IC50) of several major chemotherapy agents 
commonly used in the treatment of GC patients.

TME analysis

The CIBERSORT algorithm [26] was run to eval-
uate the relationship between GC prognostic 
SRGs and tumor-infiltrating immune cells (TIIC) 
in TME. CIBERSORT is a deconvolution algo-
rithm providing 22 representations of TIICs 
based on known reference datasets.

Statistical methods

R (version 4.3.1) was used for all the statistical 
analyses except for chemotherapy drug res- 
ponse prediction, and R (version 4.1.2) was 
used in order to run pRRophetic package. ROC 
curves were plotted with R package pROC [27] 
(version 1.18.4). Quantitative data were ex- 
pressed as 

_
x  ± S, and t-tests were performed 

to test the differences. Enumerated data were 
expressed as their number (n), and χ2-tests 
were used to test the differences. Log-rank 
tests were used to analyze the differences  
in survival. All the statistical tests were two-
tailed, α = 0.05. A P < 0.05 was considered 
significant.

Results

Pairwise analysis of DEGs

A total of 33 patients in TCGA-STAD cohort  
had gene expression data of both tumor tissue 
and normal tissue. DEG analysis in paired sam-
ples of tumor versus normal tissue was per-
formed in 66 paired gene expression data  
from these 33 patients. The significance test of 
difference was performed using R package 
DESeq2, and log2FC was calculated. DEGs 
were screened with an absolute value of logFC 
≥ 2 and adjusted P < 0.05. Subsequently, 650 
up-regulated genes and 740 down-regulated 

genes were identified, as depicted in the volca-
no plot in Figure 1A. After the comparsion of 
1,390 DEGs and 502 SRGs, 37 SRDEGs were 
obtained from the intersection of DEGs and 
SRGs. Figure 1B shows the expression levels of 
the 37 SRDEGs in tumor and normal samples.

GO and KEGG enrichment analysis

The function of 37 SRDEGs in GC was analyzed 
through GSEA (Figure 2). The GO enrichment 
analysis revealed that the SRDEGs were obvi-
ously enriched in receptor ligands, signaling 
receptor activator/regulator activities, and 
cytokine activity. KEGG results indicated that 
SRDEGs were enriched mainly in cytokine-cyto-
kine receptor interaction, IL-17 signaling path-
way, and rheumatoid arthritis.

Senescence gene-based survival risk model

Univariate and multivariate Cox regression 
analyses were performed in 366 GC samples 
with complete clinical information from TCGA-
STAD dataset using R package survival. Pro- 
gnosis-related DEGs were screened using P < 
0.05 as the criteria. Five key genes BUB1B, 
MMP1, IGFBP1, MMP12 and WNT2 were identi-
fied as independent variables of the survival 
model, and age was put into the model as a 
covariate.

The R package caret was used in six-fold cross-
validation for senescence-related prognostic 
risk model (SRPRM) training, and the average 
area under the curve (AUC) on the test sets  
was 0.753. The ROC curves are shown in Figure 
3A. The model with the best performance on 
TCGA-STAD data (AUC = 0.760, as shown in 
Figure 3B) was selected and then validated 
using external data from 433 patients in 
GSE84437. An AUC of 0.794 was found on the 
validation set (Figure 3C). Figure 3D, 3E show 
the performance of the predictive model and a 
better prognosis in low-risk group. The risk 
score was calculated as follows: Risk score = 
exp (0.0223 × Age - 0.249 × BUB1B expression 
- 0.642 × MMP1 expression - 0.441 × IGFBP1 
expression + 0.593 × MMP12 expression + 
0.485 × WNT2 expression).

The TCGA-STAD and GSE84437 cohorts were 
respectively divided into two groups according 
to the calculated risk score. Significance tests 
of difference were conducted in both cohorts, 
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Figure 1. DEG analysis of paired samples. A. Volcano plot of DEGs. B. Heat map of 37 SRDEGs. DEG: Differentially expressed gene; SRDEG: senescence-related 
differentially expressed gene.
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Figure 2. Gene set enrichment analysis. (A) GO enrichment analysis and (B) KEGG enrichment analysis of SRDEGs. SRDEG: senescence-related differentially ex-
pressed gene; GO: gene ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes.
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Figure 3. Survival risk model performance in TCGA-STAD (A, B, D) and GSE84437 (C, E) cohort. (A) ROC curves of 
six-fold cross-validation. (B) ROC curve of the SRPRM in TCGA-STAD data. (C) ROC curve of the SRPRM in GSE84437 
data. (D) Analysis of the predictive value of the model in TCGA-STAD cohort and (E) GSE84437 cohort. ROC: receiver 
operating characteristic; SRPRM: senescence-related prognostic survival risk model.
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and the KM survival curves were plotted, as 
shown in Figure 4A, 4B. Survival differences 
were found to be significant in both datasets, χ2 
(TCGA) = 19.1, P < 0.001, χ2 (GEO) = 130, P < 
0.001. Then, we further studied the relation-
ship between patient prognosis and the five  
key SRGs. Only IGFP1 in GSE84437 dataset 
showed significant predictive effect (χ2 (IGFP1 
in GEO) = 10.5, P = 0.001, as shown in Figure 
4C⑧). The KM survival curves are presented in 
Figure 4.

Chemotherapy drug response prediction

R package pRRophetic was used to calculate 
the IC50 of four main chemotherapy drugs, 
Dasatinib, Lapatinib, Pazopanib, and Gefitinib. 
The results are shown in Figure 5. In TCGA-
STAD cohort, the SRPRM predicted significant 
drug responses for Dasatinib (P = 0.006) and 
Pazopanib (P < 0.001), but the risk scores  
were not correlated with drug responses for 
Lapatinib (P = 0.297) or Gefitinib (P = 0.531). In 
GSE84437 cohort, the SRPRM predicted drug 
responses for Lapatinib (P = 0.010). The rela-
tionships between survival risk and response 
to Dasatinib (P = 0.060), Pazopanib (P =  
0.055), and Gefitinib (P = 0.052) were margin-
ally significant (P ≈ 0.05) in the GSE84437 
cohort. This suggests that higher risk scores of 
SRPRM have a tendency to associate with 
lower sensitivities to Dasatinib, Pazopanib, and 
Lapatinib, and higher sensitivities to Gefitinib.

TME analysis

The CIBERSORT algorithm in R language was 
applied to conduct TME analysis using the 
expression matrices of 366 TCGA-STAD sam-
ples and 433 GSE84437 samples cohort. The 
results were sorted and plotted according to 
the risk score. The upper half and the lower  
half are the high-risk group and the low-risk 
group, respectively, as shown in Figure 6. Then, 
the difference in TIIC between the two gro- 
ups was evaluated. Compared to the low-risk 
group, three types of TIICs were increased in 
the high-risk group in TCGA cohort: macro-
phages M2 (t = 3.131, P = 0.002), T cells CD8  
(t = 2.854, P = 0.005), and mast cells resting (t 
= 2.292, P = 0.023). On the other hand, acti-
vated dendritic cells (t = 2.680, P = 0.008), 
memory resting CD4 T cells (t = 3.312, P = 
0.001), resting NK cells (t = 3.315, P = 0.001) 
and activated mast cells (t = 4.226, P < 0.001) 
were decreased in the high-risk group in TCGA 

cohort. Results of GSE84437 showed a differ-
ence in naive B cells (t = 2.384, P = 0.018), 
plasma cells (t = 1.980, P = 0.048), and macro-
phages M1 (t = 2.139, P = 0.033) between the 
two risk groups.

Discussion

Senescence, or aging, is a complex biological 
process, and the senescence-associated 
secretory phenotype can lead to cancer pro-
gression and apoptosis [28]. Oncogene activa-
tion, in turn, can induce aging [29]. In this  
study, we found that SRGs were associated 
with the treatment, prognosis, and TME of  
GC. We screened SRDEGs in GC tissues from 
TCGA database and analyzed the biologic func-
tions of these genes, expanding on the previ-
ous studies on the relationship between  
SRGs and GC. Five key genes BUB1B, MMP1, 
IGFBP1, MMP12 and WNT2 were utilized to 
construct the SRPRM. It was found that the 
model could predict the survival status, the 
response to chemotherapy drugs, and the TME 
of GC patients to a certain extent. These results 
suggest that the anti-aging treatment of GC has 
a potential to improve the chemotherapy drug 
response and microenvironment of immuno-
suppression, which may provide a new treat-
ment window for GC [30].

A total of 37 SRDEGs in GC were screened out. 
The results of GO GSEA indicate that SRDEGs 
had molecular functions strongly associated 
with immune processes, including receptor 
ligand activity and cytokine receptor activity. 
The KEGG enrichment analysis revealed that 
SRDEGs were mainly concentrated in signaling 
molecular interactions and immune-related 
pathways. Therefore, SRDEGs may be involved 
in the regulation of cytokine production, 
immune response regulation, receptors and 
related signaling pathways in the pathogenesis 
and development of GC, and thus affect the 
progression of GC. Previous study found that 
receptors and related signaling pathways were 
prognostic biologic markers and therapeutic 
targets for GC [31]. Therefore, the GSEA results 
revealed the possible biologic function of SRG 
in GC.

The five key SRGs used to construct the prog-
nostic risk model are regulators of cellular 
senescence in various human cancers and play 
a key part in tumor development. BUB1B is a 
mitotic checkpoint that controls chromosome 
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Figure 4. KM survival curves of TCGA cohort (A), GEO cohort (B), and the 5 key genes in the 2 cohorts (C). ①-⑤ correspond to KM survival curves of BUB1B, MMP1, 
IGFBP1, MMP12, and WNT2 in TCGA-STAD cohort and ⑥-⑩ in GSE84437 cohort, respectively.

Figure 5. Boxplots of IC50 of Dasatinib, Lapatinib, Pazopanib, and Gefitinib between high-risk and low risk groups in (A) TCGA-STAD cohort and (B) GSE84437 cohort. 
IC50: half-maximal inhibitory concentration.
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Figure 6. Results of CIBERSORT algorithm. A. TME of TCGA-STAD cohort. B. TME of GSE84437 cohort. Samples were sorted according to the risk scores. The top half 
and the bottom half were the high-risk group and the low-risk group, respectively. TME: tumor microenvironment.



Senescence genes in gastric cancer

6936 Am J Transl Res 2023;15(12):6926-6938

segregation and maintains genetic stability. 
Damage to it can lead to aneuploidy and chro-
mosomal instability, potentially leading to an 
increased incidence of cancer [32]. As the 
downstream protein of Jagged1, IGFBP1 is 
related to the severity of coronary atherosclero-
sis in elderly patients. The circulating IGFBP1 
level also increases with age [33]. MMP1 is 
involved in the IL-17 signaling pathway, and its 
expression level in skin fibroblasts changes 
during aging, slowing down cell growth [34]. 
MMP12 may be related to tissue damage and 
remodeling [35]. As for WNT2, it functions in 
the canonical WNT signaling pathway and in 
embryonic development [36]. These results  
are consistent with those of existing studies on 
biological markers for the prognosis of GC. For 
example, the overexpression of MMP7 [37, 38], 
MMP21, and MMP28 [39] in the matrix metal-
loproteinase family can be used as biologic 
markers for the prognosis of GC.

Analysis of responses to chemotherapy drugs 
showed a higher probability for low-risk GC 
patients to benefit from chemotherapy, includ-
ing better responding to Dasatinib, Lapatinib, 
and Pazopanib. Existing research has shown 
that cell senescence can increase drug resis-
tance and side effects of chemotherapy [16], 
which implies the potential correlation between 
high senescence scores and the deterioration 
of the expected effect of chemotherapy.

Senescence-related risk scores were signifi-
cantly related to the TME of GC. High-risk 
patients in TCGA cohort had increased macro-
phages M2, T cells CD8, mast cells resting, and 
fewer activated dendritic cells, T cells CD4 
memory resting, NK cells resting, and activated 
mast cells. This may indicate that the high-risk 
group has severer immune system damage 
[40] and a higher risk of tumor metastasis [41]. 
Identifying SRGs that influence tumor immune 
response and further studying their regulatory 
mechanisms may help stratify and provide 
promising targets for improving the response to 
immunotherapy in GC patients.

In conclusion, this study established a GC risk 
score model based on the expression profile of 
SRGs plus clinical information and verified the 
predictive effect of it, providing a reference for 
mining potential GC biologic markers and dis-
covering new therapeutic targets for predicting 
treatment outcome. These findings maycontrib-

ute to personalized immunotherapy for GC 
patients in the future and offer novel insight 
into extending survival time of GC patients.
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