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Abstract: Inflammatory bowel disease (IBD), which includes Crohn’s disease (CD) and ulcerative colitis (UC), is a 
complex condition without a definite cause. During IBD, immune cells such as macrophages release proinflamma-
tory cytokines and chemokines, contributing to intestinal barrier integrity dysfunction. IBD is largely influenced by 
macrophages, which are classified into subtypes M1 and M2. M1 macrophages have been found to contribute to 
the development of IBD, whereas M2 macrophages alleviate IBD. Hence, agents that cause increased polariza-
tion of the M2 phenotype could help repair IBD. Exosomes, as ubiquitous conveyors of intercellular messages, are 
involved in immune responses and immune-mediated disease processes. Exosomes and their microRNA (miRNA) 
from healthy cells have been found to polarize macrophages to M2 to repair IBD due to their anti-inflammatory 
properties; however, those from inflammatory-driven cells and disease cells promote M1 macrophages to perpetu-
ate IBD. Here, we review the biogenesis, biochemical composition, and sources of exosomes, as well as the roles of 
exosomes as extracellular vesicles in regulation of macrophages to repair IBD.
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Introduction

IBDs are chronic inflammatory gut diseases 
that include Crohn’s disease (CD) and ulcer-
ative colitis (UC) [1], resulting from the inter- 
play of microbial, environmental, immunologi-
cal, and genetic variables [2]. IBD is becoming 
more common in Western nations, as its fre-
quency is rising quickly in recently industrial-
ized nations [3]. In the IBD microenvironment, 
there is the secretion of several proinflamma-
tory cytokines from immune cells, including 
interferon-gamma (IFN-γ), interleukin-17F (IL- 
17F), IL-1α, and IL-25 [4].

Macrophages play essential roles in IBD and 
are the main gatekeeper of intestinal immuno-
logical homeostasis [5]; nonetheless, IBD is 
linked to improper macrophage activation [6, 
7]. There is growing evidence that M1 macro-

phages, which are traditionally activated, pre-
dominate M2 macrophages, which are alter-
nately activated and play a part in the develo- 
pment of IBD [8]. Therapeutic substances that 
have the ability to convert M1 macrophages 
that promote inflammation into M2 macro-
phages that inhibit it could, therefore, be help-
ful for IBD mitigation [8]. Consequently, con- 
trolling macrophage polarization is a viable 
treatment option for IBD [9].

Extracellular vesicles (EVs) are protein and 
phospholipid structures in which cells constant-
ly discharge, and appear in the form of smaller 
(30-200 nanometers (nm)) and bigger (micron 
size) particulates [10]. Although these vesicles 
are referred to as EVs, the smaller ones are fre-
quently dubbed exosomes [10]. Most live cells 
produce exosomes, which are lipid bilayer 
membrane vesicles measuring 30-150 nm with 
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significant biological roles [11]. Thus, interest  
in exosomes’ potential to stop the onset of 
autoimmune disorders, including IBD, is grow-
ing [11]. Exosomes are abundant in the milieu 
of inflammation and are released from immune 
cells (macrophages, neutrophils, and dendritic 
cells, etc.), mesenchymal stem cells (MSCs), 
and platelets as intercellular messengers, whi- 
ch contribute to the control of inflammation 
through the control of gene expression and the 
release of anti-inflammatory substances [12]. 
Additionally, MSC-derived exosomes have been 
found to exhibit therapeutic benefits for IBD by 
polarizing M1 macrophages into M2 macro-
phages, reducing inflammatory reactions, and 
preserving the integrity of the intestinal barrier 
[13].

In this review, we summarize the biogenesis, 
biochemical components, sources of exo-
somes, and the role of exosomes in regulating 
macrophages to repair IBD. This review will also 
cover other compounds regulating macro-
phages and the role of EVs/nanovesicles in 
modulating macrophages toward IBD mitiga- 
tion.

Materials and methods

PubMed and Google Scholar databases were 
utilized to look for journals mostly concerned 
with exosomes and exosome-like nanovesicles, 
macrophages, and IBD. Articles were retrieved 
up to 2023 using keywords, including “exo-
some, macrophage, and IBD”. After entering 
these keywords into PubMed and Google 
Scholar, a review process was conducted to 
ensure the relevance and eligibility of the jour-
nals selected.

Exosome and its sources

Exosomes are microscopic, extracellular vesi-
cles that contain proteins, lipids, nucleic acids, 
and other bioactive materials that are involved 
in both normal and pathological activities with-
in the body [14] and are present in different 
bodily fluids, including amniotic fluid [15], blood 
plasma [16], saliva [17], breast milk [18], serum 
[17, 19, 20], ascites [21], urine [15], nasal 
secretions [22], and cerebrospinal fluid [23]. 
Exosome-like vesicles (ELVs) are crucial for 
intercellular communication by serving as cel-
lular transfer vehicles for biomolecules, and 
this distinctive quality justifies their use as bio-

inspired medication delivery devices [24]. 
Exosomes have the ability to change the bio-
logical activity of recipient cells by transferring 
their cargo inside these cells [25].

Exosomes are secreted by a variety of cells, 
including bone marrow MSCs [26, 27], umbili-
cal cord MSCs [28-33], adipose tissue-derived 
MSCs [34-37], neutrophils [38], dendritic cells 
(DCs) [39], amniotic fluid stem cells [40], ginger 
[41], tumors [42], mast cells [43], plasma plate-
lets [44], T lymphocytes [45], mantle cell lym-
phoma [46], macrophage (M1) [47, 48], M2 
macrophage [49], and bovine colostrum [50]. 
Exosomes are appealing in biotechnology and 
biomedical research. After all, they can serve 
as both therapeutic agents and disease bio-
markers because they share components with 
their parent cells [51]. Therefore, it is neces-
sary to understand the exosome’s biogenesis 
and biochemical makeup to determine the 
characteristics that cause it to operate as it 
does.

Biogenesis of exosome

Most mammalian cell types manufacture exo-
somes and extracellular vesicles encased in 
membranes that originate in the endosomal 
space before release [52]. The final content of 
exosomes is produced as a result of interac-
tions between endosomes, where they first 
develop, and then transfer into other intracel-
lular vesicles and organelles [53]. Exosomes 
originate in multivesicular compartments with-
in eukaryotic cells and are released during the 
fusion of these compartments with the plasma 
membrane [54]. Through the process of exocy-
tosis, cells produce exosomes, which are then 
absorbed by target cells and have the ability to 
transmit biological information across nearby 
or distant cells [55]. The intraluminal vesicles 
of multivesicular endosomes (MVEs) are re- 
leased as exosomes into the extracellular 
milieu or segregated into lysosomes for cargo 
destruction [56] (Figure 1).

Exosome biogenesis, secretion, and release 
have generally been demonstrated to be influ-
enced by a number of processes. Insights into 
the generation and operation of extracellular 
vesicles may, therefore, be gained from re- 
search on the endosomal sorting complex 
required for transport (ESCRT) machinery [57]; 
hence, MVB production depends heavily on the 
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elements of the ESCRT pathway [58]. None- 
theless, it has been demonstrated that gene 
silencing for two ESCRT-0 elements (HRS, 
STAM1), one of ESCRT-I (TSG101), as well as a 
late-acting component (VPS4B), causes regular 
variations in the secretion of exosomes [59]. 
The ESCRT machinery is essential for the syn-
thesis of MVEs, allowing cargo choice and intra-
luminal vesicle (ILV) budding [60]. Additionally, 
it has been discovered that heparanase modu-
lates the syndecan-syntenin-ALIX pathway, pro-
moting the budding of endosomal membranes 
and the exosomes’ biogenesis by cutting the 
syndecans’ heparan sulfate chains [61]. This 
mechanism regulates the choice of a particular 
exosome cargo [61]. Although research has 
demonstrated that the exosomal protein syn-
tenin promotes the formation of exosomes, 
uncovered information indicates that the GTP- 
ase ADP ribosylation factor 6 (ARF6) and its 
effector phospholipase D2 (PLD2) also influ-
ence exosomes by regulating the budding of 
ILVs into MVBs [62]. Besides, caveolin-1 (Cav1), 

which controls the amount of cholesterol in the 
endosomal compartment/MVBs, controls exo-
some biogenesis and exosomal protein cargo 
sorting [63]. Similarly, curcumin activates ce- 
ramide synthesis, which increases intracellular 
ceramide-dihydroceramide concentration, le- 
ading to excessive ceramide and a tenfold 
increase in exosome/microvesicle secretion 
[64]. Moreover, the mechanistic target of ra- 
pamycin complex 1 (mTORC1) has been dem-
onstrated to be a negative regulator of exo-
some release, which results in a net loss of  
cellular membrane and protein content [65]. 
However, ISGylation is a new ubiquitin-like mod-
ification that regulates the generation of exo-
somes [66]. ISGylation of the MVB protein 
TSG101 causes it to aggregate and degrade, 
which is enough to prevent exosome secretion 
[66].

Biochemical components of exosome

Exosomes’ molecular makeup reflects the fact 
that they originated in endosomes as ILVs [67]. 

Figure 1. Biogenesis of exosome. Intraluminal vesicles from MVBs release exosomes into the extracellular space. 
Exosomes move to the target cells via endocytosis, direct fusion, or binding to receptors. Abbreviation: MVBs, mul-
tivesicular bodies.
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Figure 2. The chemical makeup of exosomes. An exosome (zoomed) is released from a source cell, showing the 
various biochemical components that are being transferred to the target cell. Abbreviations: ARF, ADP ribosylation 
factor 6; ESCRT, endosomal sorting complex needed for transport; LAMP, lysosomal associated membrane protein; 
MHC, major histocompatibility complex; mRNA, messenger RNA; miRNA, microRNA.

Their varied components, which can represent 
their cell of origin, include nucleic acids, pro-
teins, lipids, amino acids, and metabolites [53]. 
Moreover, exosomes contain proteins, miRNAs, 
and messenger RNAs (mRNAs) (exosome shut-
tle RNA, or esRNA), which may provide a new 
platform for diagnostics [68]. In general, sever-
al of these biochemical components of exo-
somes have been recognized as indicators for 
therapeutic and diagnostic approaches to 
some diseases. This may be because of where 
they came from biologically and what was in 
their cargo, which explains why they are help- 
ful as biomarkers for diseases, including IBD. 
Generally, irrespective of where the exosome is 
being produced and secreted, it has been 
shown that exosomes may carry nucleic acids, 
proteins, and lipids (Figure 2). Each element is 
detailed below.

Proteins

The identification of exosomal marker proteins 
such as CD24, CD9, annexin-1, and heat shock 
protein (HSP) 70 has been made, and these 
proteins also showed the proper buoyant den-
sity and antigen orientation [68]. Meanwhile, 
recent investigations have discovered that MSC 
exosomal surface marker proteins obtained 
from the human umbilical cord include CD9, 
CD63, CD81, HSP 70, Alix, and tumor suscepti-
bility gene 101 (TSG101) without calnexin [29, 
30, 69-71]. Additional marker proteins that are 
frequently seen in the exosomes from β-cells 
include tetraspanin proteins (CD63, CD82, and 
CD81), lysosomal associated membrane pro-
tein (LAMP)-1 and LAMP-2, intercellular adhe-
sion molecule-1 (ICAM-1), flottilin-1, G-proteins, 
Alix, TSG101, and Ras-associated binding (Rab) 
proteins [72]. Meanwhile, TSG101, CD81, and 
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syntenin have been similarly discovered to have 
a relative expression in exosome subpopula-
tions [73]. Interestingly, Zhang and colleagues 
have identified two exosome subpopulations. 
Large exosome vesicles (Exo-L) were seen  
with high amounts of proteins such as an- 
nexins, charged multivesicular body proteins 
1A/2A/4B/5, vacuolar protein-sorting 4 homo-
log B, DnaJ heat shock protein family (Hsp40) 
member A1, and myosin IC, while small exo-
some vesicles (Exo-S) were enriched with flotil-
lin 1, flotillin 2, tweety family member 3, tet-
raspanin 14, and ESCRT-I subunit VPS37B [74]. 
These different exosome subpopulations might 
be a result of different intracellular compart-
ments engaging in exosome loading, according 
to the existence of genomic DNA (gDNA) [75].

DNA

Exosomes deliver substances with functional 
activity to aid in intercellular communication 
[76]. Although the regulatory mechanism is 
unknown, cancer cells produce exosomes that 
contain substantial quantities of DNA and can 
modify the expression of an oncogene in a 
recipient cell [76]. According to Torralba and 
team, T cells activate DCs by transferring exo-
somal DNA, demonstrating a particular func-
tion for antigen-dependent interactions in pro-
tecting DCs from pathogen infection [77]. 
Besides, nuclear DNA builds up in the cyto-
plasm when the secretion of exosomes is inhib-
ited, resulting in the cytoplasmic DNA sensing 
apparatus being activated [78]. This triggers 
the innate immune reaction, resulting in a DNA 
damage response that is dependent on reac-
tive oxygen species (ROS) and thus produces 
apoptosis, or a cell cycle arrest resembling 
senescence in normal human cells [78]. Ac- 
cording to a report from Takahashi and his 
team, chromosomal DNA fragments of different 
lengths can be found in exosomes, demon-
strating that exosome secretion keeps cells in  
a state of equilibrium by eliminating dangerous 
cytoplasmic DNA [78]. Moreover, murine colitis 
and active human CD both showed a substan-
tial rise in exosomal double-strand DNA (dsDNA) 
levels, including mitochondrial (mt) DNA and 
nuclear genomic DNA (nDNA) [79]. This further 
corroborates the idea that exosomes may con-
tain DNA.

RNA

Exosomes have a notable enrichment of cer-
tain protein and RNA cargoes [80], and exo-
somes produced by metazoan cells can deliver 
specific membrane proteins and short RNAs to 
their target cells to regulate cell migration, 
development, and metastasis [81]. In diffe- 
rent eukaryotes, exosomes have been found to 
transport RNA cargo, such as short non-coding 
RNAs and mRNAs, which can change the phe-
notype of the recipient cell [82].

As components of exosomes, RNAs are trans-
ported to exosomes by RNA-binding proteins 
(RBPs). The synaptotagmin-binding cytoplas-
mic RNA-interacting protein (Syncrip), also re- 
ferred to as the heterogeneous nuclear ribonu-
cleoprotein (hnRNP) Q, is a highly conserved 
RBP that regulates the exosomal partition of a 
group of miRNAs [83]. Additionally, the RBP 
Y-box protein I (YBX1) binds to microRNA (miR)-
223 and is crucial for the secretion of miRNAs 
in exosomes by HEK293T cells [81]. The short 
sequence motif found in miRNAs binds to the 
RBP fragile X mental retardation 1 (FMR1) and 
directs the loading of miRNA into exosomes via 
interactions with elements of the ESCRT path-
way [84]. Furthermore, hnRNPA2B1 packages 
circRNA, specifically circNEIL3, into exosomes 
in gliomas and transfers it to tumor-associated 
macrophages that have been infiltrated [85]. 
Interestingly, without CAVIN1, non-caveolar ca- 
veolin-1 (CAV1) promotes hnRPNK localization 
to MVBs, recruiting miRNAs with the AsUGnA 
motif and inducing their discharge within exo-
somes [86].

Exosome components called RNAs are increas-
ingly being used as diagnostic markers in dis-
eases. Extensive research has been done 
recently on the non-coding RNA (ncRNA) found 
in exosomes about categorization, localization, 
and possible use as biomarkers [87]. Exoso- 
mal long non-coding RNA (lncRNA) of HDAC4 
(LOC85009) reduces docetaxel (DTX) resis-
tance by controlling autophagy-related 5 
(ATG5)-induced autophagy via the ubiquitin-
specific proteinase 5 (USP5)/upstream tran-
scription factor 1 (USF1) axis, putting LOC- 
85009 forth as a possible target to overcome 
DTX resistance in lung adenocarcinoma treat-
ment [88]. Additionally, four brand new trans- 
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fer (t) RNA-derived small RNAs (tsRNAs) in plas-
ma exosomes, such as tRNA-ValTAC-3, tRNA-
GlyTCC-5, tRNA-ValAAC-5, and tRNA-GluCTC-5, 
have been discovered in individuals with liver 
cancer, establishing the potential of plasma 
exosomal tsRNA as a new diagnostic biomarker 
[89].

Generally, it has been discovered that exo-
somes contain RNA, lncRNA, miRNA/miR, and 
tsRNA, some of which may serve as illness 
diagnostic indicators.

Lipids

Exosome production and release into the exter-
nal environment depend heavily on lipids and 
their structural involvement in exosomal mem-
branes [90]. It has been discovered that exo-
some membranes contain more sphingomye- 
lin, lysophosphatidylcholine, and phosphatidic 
acid than parental cells do, and interestingly, 
exosomes have been shown to contain an 
unusual phospholipid called bis (monoacylg-
lycero) phosphate as a particular lipid indicator 
for exosomes [91]. Additionally, Llorente and 
his team found high levels of phosphatidylser-
ine, sphingomyelin, cholesterol, and glycosphin-
golipids in exosomes [92]. It is also found that 
glycerolipid, glycerophospholipid, sphingolipid, 
and glycosphingolipid are contained in the exo-
somes of prostate cancer cells, even though 
the class of lipids found in the exosomes with 
the highest abundance is glycerophospholipid 
[93]. Similarly, sphingomyelins, phosphatidy- 
linositols, and sulfatides have been found in 
exosomes of lipids and plasma, but exosome 
composition has been observed to differ in 
terms of lipids from plasma in areas of triacylg-
lycerols, diacylglycerols, phosphatidylcholines, 
and lysophosphatidylcholines [94]. Besides, 
Elmallah and colleagues found phosphatidyl-
choline, phosphatidylethanolamine, sphingo-
myelin, and hexosylceramide (HexCer) to be 
increased in the exosomes of non-metastatic 
cells and patients with cancer relative to con-
trol cells and healthy donors [95].

Exosomes and exosome-like nanovesicles in 
macrophage modulation toward IBD repair

Stem/stromal cell-derived exosomes

It is documented that exosome (from human 
umbilical cord MSCs) therapy in IBD mice 

reduces macrophage infiltration into the colon 
tissues [96]. The exosome-treated mice’s co- 
lon tissues and spleens expressed more IL-10 
but less inducible nitric oxide synthase (iNOS) 
and IL-7 [96]. Additionally, human umbilical 
cord (huc) MSC-secreted exosomes have been 
found to relieve colitis by inhibiting casp11/4-
induced macrophage pyroptosis [31]. Mecha- 
nistically, the exosomes express miR-203a-
3p.2 to inhibit casp4-induced macrophage 
pyroptosis in an inflammatory environment 
[31]. Another study revealed that hucMSC-
derived exosomes suppress the release of IL- 
1β from mouse peritoneal macrophages even 
when NOD-like receptor family, pyrin domain-
containing 3 (NLRP3) inflammasomes are acti-
vated [29]. Moreover, NLRP3, an apoptosis-
associated speck-like protein containing a 
caspase recruitment domain (ASC), caspase-1, 
IL-18, and IL-1β have substantially lower rela-
tive expressions in macrophages with hucMSC-
derived exosomes [29]. Furthermore, exosomal 
miR-216a-5p produced by hypoxia-prime adi-
pose-derived stem cells (ASCs) has shown 
more therapeutic effectiveness than those 
under normoxia (NExos) in the treatment of 
experimental colitis by enhancing the M2 mac-
rophage phenotype [97].

According to other studies, intestinal epithelial 
cells and macrophages can internalize layer-by-
layer (LbL)-exosomes from MSC to produce 
anti-inflammatory and tissue-repair effects 
[98]. Treatment with LbL-exosome can control 
inflammation by decreasing M1 macrophages 
and increasing M2 macrophages [98]. More- 
over, Xu and team revealed that tumor necrosis 
factor α- (TNF-α-) pretreated MSCs generated 
from human menstrual blood (MenSC)-derived 
small EVs (MenSCs-sEVTNF-α) reduces colonic 
inflammation, accompanied by the elevation of 
miR-24-3p in small EVs derived from MenSCs 
and the polarization of M2 macrophages in the 
colon [99]. Besides, Cao and colleagues found 
that bone marrow MSC-derived EVs (BMSC-
derived EVs) encourage M2-like macrophage 
polarization, as evidenced by a rise in the M2 
marker CD163 in DSS-induced UC [100]. Also, 
the systemic administration of exosomes from 
human bone marrow-derived mesenchymal 
stromal cells (MSC-Exos) significantly lessens 
colitis in a variety of IBD models, reduces 
inflammatory responses, maintains the gut bar-
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rier’s integrity, and polarizes M2b macrophages 
[101].

Intestinal epithelial cell (IEC)-derived exosome

The intestinal epithelium is essential for main-
taining gut homeostasis because it serves as  
a physical barrier, a center of coordination for 
immune defense, and a medium for communi-
cation between immune cells and bacteria 
[102]. IEC exosomes ameliorate IEC damage 
caused by glucose-oxygen depletion in vitro in 
addition to the severity of intestinal damage  
following an intestinal ischemia/reperfusion 
attack in vivo [103]. Moreover, exosomes from 
IECs and their cargo, including miRNAs, have 
been found to control the expression of mole-
cules that promote inflammation in inflamma-
tory gut tissues during sepsis [104]. Appiah and 
team revealed that proinflammatory cytokines 
IL-17A and TNF-α messaging are significantly 
reduced after septic-EV injection into an in- 
flamed gut [105]. Additionally, IEC-derived lumi-
nal EVs contain miRNAs that reduce proinflam-
matory reactions [105]. When an organ is in- 
fected or inflamed, macrophages first adopt  
the M1 phenotype and release TNF-α, IL-1β, 
IL-23, and IL-12 in response to the stimuli; how-
ever, tissue injury may result if the M1 phase 
lasts longer [106]. Consequently, M2 macro-
phages release large volumes of transforming 
growth factor beta (TGF-β) and IL-10 to reduce 
inflammation, support tissue repair, remodel-
ing, and vasculogenesis, and maintain homeo-
stasis [106]. Hence, M1 macrophages may be 
activated to release TNF-α; however, IEC exo-
somes or EVs may activate M2 macrophages to 
reduce TNF-α as well as damage to the gut.

Macrophage-derived exosome

It’s interesting to note that M2 macrophages 
release exosomes that inhibit IBD. For instance, 
Deng and team revealed that exosomal miR-
590-3p produced by M2 macrophages tar- 
gets large tumor suppressor homology Ser/Thr 
kinase 1 (LATS1) and activates Yes-associated 
protein (YAP)/β-catenin-regulated transcription 
suppresses cytokines that promote inflamma-
tion (including IL-6, TNF-α, and IL-1β), and 
encourages epithelial regeneration [49]. More- 
over, Yang and colleagues showed that M2b 
macrophage exosomes protect against colitis 
caused by DSS, primarily controlled by the CC 
chemokine 1 (CCL1)/CC-chemokine receptor 

(CCR) 8 pathway, presenting a fresh method  
for treating IBD [11]. While M2 macrophages 
release a variety of anti-inflammatory media-
tors, such as TGF-β, IL-10, CCL1, CCL17, CCL18, 
and CCL22, M1 macrophages discharge proin-
flammatory substances such as TNF-α, IL-1α, 
IL-1β, IL-6, C-X-C motif chemokine ligand 9 
(CXCL9), and CXCL10 [107]. Hence, these may 
imply that M2 exosomes may polarize M2 mac-
rophages to repair IBD while suppressing M1 
macrophages.

Other immune cells-derived exosome

Exosomes derived from other immune cells, 
such as dendritic cells (DCs) and granulocytic 
myeloid-derived suppressor cells (MDSCs), may 
play roles in mitigating gut inflammation. It has 
been found that exosomes generated from 
immature dendritic cells (IDCs) reduce the early 
systemic inflammatory response in sepsis by 
promoting the clearance of apoptotic cells th- 
rough milk fat globule EGF factor VIII (MFGE8) 
[108]. Additionally, the TNF-α response elicited 
by cecal ligation and puncture (CLP) is sup-
pressed by exosomes derived from IDC by 46%; 
however, in septic rats, mature DC-derived exo-
somes did not affect TNF-α levels [108]. Si- 
milarly, exosomes generated from bone mar-
row DCs (BMDCs) (containing MFG-E8) increase 
the removal of apoptotic cells, lower the proin-
flammatory response, and increase the lifes-
pan of experimental mice with sepsis [109]. 
The administration of BMDC-derived exosomes 
decreased TNF-α and IL-6 plasma levels while 
increasing survival from 44% to 81% [109]. 
Rats treated with exosomes had peritoneal 
macrophages that were 2.8 times more capa-
ble of phagocytosing apoptotic thymocytes 
[109]. Again, it has been discovered that the 
spontaneous improvement of colitis is partially 
reversed when arginase (Arg)-1 activity in gran-
ulocytic (G)-myeloid-derived suppressor cells 
(MDSC) exosome is inhibited [110]. Arg-1 activ-
ity has also been linked to the G-MDSC exo-
some’s capacity to inhibit the delayed-type 
hypersensitivity (DTH) response, reduce the 
growth of CD4+ T cells, and suppress the secre-
tion of IFN-γ in vitro [110]. Besides, G-MDSC 
exosome-treated colitis animals showed re- 
duced TNF-α and IFN-γ blood levels [110], 
implying that the G-MDSC exosome may acti-
vate M2 macrophages to reduce colitis. Sur- 
prisingly, one indicator of the M2 anti-inflam-
matory subgroup is Arg1 [111].
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Food-derived exosomes/exosome-like 
nanovesicles

It has been discovered that turmeric-derived 
nanovesicles (TNVs) encourage the conversion 
of M1 phenotype macrophages to M2 macro-
phages, regulate the gut microbiota, and repair 
the damaged intestinal epithelial barrier, thus 
exerting anti-colitis efficacy [112]. Additionally, 
Kim and colleagues found that ginseng-derived 
exosome-like nanoparticles (GENs) have the 
potential to both prevent and reduce inflam- 
matory responses by downregulating proinflam-
matory cytokines in proinflammatory macro-
phages and promoting the production of anti-
inflammatory macrophages [113]. Spermine, 
spermidine, and putrescine are polyamines 
with antioxidant properties, playing a crucial 
role in biological processes like cell prolifera-
tion and differentiation; hence, dietary poly-
amines have a substantial effect on human 
health, especially on the development and dif-
ferentiation of the immune system and intesti-
nal maturation [114]. Interestingly, in the 
inflammatory colon, spermidine has been 
shown to downregulate M1 markers while 
upregulating M2 macrophage markers, as well 
as decrease the colon’s activation of T cells  
and F4/80 macrophages, mitogen-activated 
protein kinase (MAPK) and nuclear factor-κB 
(NF-κB) phosphorylation, and the production of 
proinflammatory cytokines [115].

Additionally, Han and his team investigated 
colostrum-derived exosomes (Col-exo) in DSS-
induced colitis and found that Col-exo stimu-
lates macrophages and intestinal epithelial 
cells and produces an environment that redu- 
ces inflammation by successfully eliminating 
reactive oxygen species and regulating immune 
cytokine expression [50]. Milk-derived extracel-
lular vesicles (mEVs) enhanced with immuno-
modulatory proteins and miRNAs prevent the 
generation of cytokines and the polarization of 
macrophages toward a proinflammatory pheno-
type [116]. According to these results, milk and 
other dairy products include edible nanovesi-
cles (EVs) that have inherent immunomodula-
tory properties that are good for the gastroin-
testinal tract [116].

Other exosomes/EVs

It has been found that Trichinella spiralis-EVs 
(Ts-EVs) promote the infiltration of alternatively 

activated (M2) macrophages into the colon and 
prevent M1 macrophage polarization as a re- 
sult of their immunomodulatory capabilities 
[117]. Moreover, the murine counterpart of cir-
cRNA SCAR (steatohepatitis-associated cir-
cRNA ATP5B regulator), referred to as circRNA 
mSCAR, declines in septic mice’s macrophages, 
and this is consistent with the M1 polarization 
being overly intense [118]. However, it has 
been demonstrated that the exosome-based 
method of delivering circRNA mSCAR into mito-
chondria preferentially targets macrophage 
mitochondria, promoting the M2 subtype of 
macrophage polarization, reducing systemic 
inflammation, and reducing septic mouse mor-
tality [118].

Generally, irrespective of the source from which 
the exosome is being produced, exosomes can 
activate M2 subtype macrophages, which ca- 
uses an anti-inflammatory impact that pro-
motes IBD repair (Figure 3).

Role of other compounds regulating macro-
phages towards IBD repair

Wu and colleagues have shown heme supple-
mentation to have a protective impact on the 
colon tissue microenvironment in mice with 
DSS-induced colitis via controlling the polariza-
tion of macrophages in a heme oxygenase-1 
(HO)-dependent and HO-1-independent man-
ner [119]. Moreover, baicalin has been demon-
strated to reduce the manifestations of DSS-
induced colitis by modifying the polarization of 
macrophages toward the M2 phenotype [120]. 
Additionally, lentivirus-mediated short hairpin 
RNA (shRNA) interference with interferon regu-
latory factor 5 (IRF5) expression causes a tran-
sition in the phenotype of rat peritoneal macro-
phages from M1 to M2 and decreases IL-1β 
and TNF-α expression more in depressed coli-
tis rats than in nondepressed colitis rats [121]. 
Besides, Lu and colleagues found that thalido-
mide might boost epithelial cells’ potential for 
self-renewal and alter M1/M2 polarization by 
reducing M1 protein signatures CD86 and 
CC-chemokine receptor 7 (CCR7) and raising 
M2 protein signatures CD206 and Arg-1, de- 
creasing the occurrence and development of 
carcinogenesis linked to colitis compared to 
mice used as negative controls [122]. Again, 
lupeol reduces the symptoms of experimental 
IBD by, at least partially, suppressing M1 and 
encouraging M2 macrophages [8].
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Figure 3. Exosome, exosomal miRNA, and macrophage pathways in IBD repair. Exosomes, including their miRNA, 
polarize macrophages to M2/activate M2 macrophages. This leads to the production of anti-inflammatory cytokines 
to repair IBD. Abbreviations: MΦ, inactive macrophage; miRNA, microRNA.

Furthermore, Qingchang Wenzhong decoction 
(QCWZD) has been found by Lu and team to 
reduce colonic shortening and mucosal dam-
age by suppressing M1 macrophage polariza-
tion and the production of accompanying cyto-
kines, such as IL-6 and TNF-α, in vivo and in 
vitro [123]. Similarly, it has been discovered 
that M1 macrophage-induced Caco-2 cell 
death was reduced by toxoROP16I/III-induced 
M2 macrophages [124]. Importantly, the sEVs 
of tyrosine-protein phosphatase non-receptor 
type 1 (Ptpn1)-knockdown macrophages have 
been reported to be significantly enriched in 
lactadherin, and recombinant lactadherin ther-
apy reduces intestinal inflammatory response 
and barrier failure by promoting macrophage 
M2 polarization [125]. In another study, Song 
and the team found that both high and low 
electroacupuncture increased M2 macrophage 
percentages and lowered M1 macrophages in 
DSS mice [126]. Liu and the team discovered 
that berberine regulates the M1 polarization of 
macrophages in DSS-induced colitis through 

the AKT serine/threonine kinase 1 (AKT1)/sup-
pressors of cytokine signaling (SOCS) 1/NF-κB 
signaling pathway [127]. It dramatically lowers 
the proportion of M1 macrophages [127]. It has 
also been discovered that phosphatidylmanno-
side (PtdMan) reduces the levels of proinflam-
matory cytokines in the colons of RAW264.7 
cells and DSS-colitis mice, and it also regulates 
M1/M2 polarization via activating peroxisome 
proliferator-activated receptor delta (PPARγ) 
[128].

The dual role of exosomes in macrophage 
modulation in IBD

Exosomes produced by healthy cells have 
favorable benefits; nevertheless, exosomes 
produced by pathogenic cells, such as cancer 
cells or infected cells, may have adverse 
impacts on health [129]. Thus, exosomes play 
a double role in the regulation of macropha- 
ges in IBD. Generally, exosomes derived from 
healthy stem and stromal cells, food, immune 
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Table 1. Sources of exosomes or exosome-like nanovesicles modulating macrophages toward IBD 
repair
Exosomes/exosome-like 
nanovesicles source Condition Mechanism Reference

Stem/stromal cell

    Hypoxia-prime adipose-
derived stem cells

DSS-induced colitis Control the HMGB1/TLR4/NF-κB signaling pathway to cause macrophage M2 
polarization.

[97]

    Human umbilical cord 
MSCs

DSS-induced colitis Prevent macrophage pyroptosis brought on by casp4 in an inflammatory set-
ting.

[31]

    Human bone marrow-
derived MSCs

DSS/TNBS induced 
colitis

Reduce inflammatory reactions, protects intestinal barrier integrity, polarizes 
M2b macrophages, and stimulates the production of IL-10. Primarily affects 
colonic macrophages.

[101]

    Human umbilical cord 
MSCs

DSS-induced colitis Enhance the expression of the IL-10 gene and decreases the infiltration of 
macrophages, TNF-α, IL-1β, IL-6, iNOS, and IL-7 genes.

[96]

    Human umbilical cord 
MSCs

DSS-induced colitis Suppress the release of IL-1β from mouse peritoneal macrophages and con-
siderably lowers the relative expression of NLRP3, ASC, caspase-1, IL-18, and 
IL-1β in macrophages.

[29]

    LbL-MSCs UC Increase M2 macrophages to control inflammation while decreasing M1 
macrophages.

[98]

    Human menstrual blood DSS-induced colitis Reduce colonic inflammation and polarize M2 macrophages in the colon. [99]

    Bone marrow MSC DSS-induced UC Encourage the polarization of M2-like macrophages, which is indicated by a 
rise in the M2 marker CD163. Upregulate TGF-β and IL-10 and downregulate 
TNF-α, CCL-24, TNF-α, VEGF-A, and IFN-γ levels.

[100]

Macrophage

    M2 DSS-induced colitis MiR-590-3p, highly concentrated in M2 exosomes, suppresses the production 
of proinflammatory cytokines such as IL-1β, IL-6, and tumor necrosis factor-α.

[49]

    M2 DSS-induced colitis Inhibit IL-1β, IL-6, and IL-17A. Offer protection against colitis produced by DSS, 
mostly through the CC chemokine 1 (CCL1)/CCR8 axis.

[11]

Food

    Turmeric Colitis It increase the M1 phenotype’s transition to M2 macrophages and restores the 
impaired gut epithelial barrier.

[112]

    Ginseng DSS-induced colitis Stimulate the synthesis of anti-inflammatory macrophages while downregulat-
ing proinflammatory cytokines in proinflammatory macrophages.

[113]

    Spermidine DSS-induced colitis Increase the markers for M2 macrophages while decreasing the markers for 
M1 macrophages in the inflammatory colons.

[115]

    Colostrum DSS-induced UC Stimulate the growth of macrophages and colonic epithelial cells, reduce 
inflammation by efficiently eliminating ROS, and control the release of immune 
cytokines.

[50]

    Milk DSS-induced UC Reduce the inflammatory response by blocking the activation of the NLRP3 
inflammasome and the TLR4-NF-κB signaling pathway. Stop the release of 
cytokines and macrophage polarization toward a proinflammatory phenotype.

[116]

Other exosomes/EVs

    Trichinella spiralis DSS-induced colitis Activate M2 macrophages in the colon and prevent M1 macrophage polariza-
tion.

[117]

    HEK293T cells Sepsis-induced 
intestinal damage

Minimize systemic inflammation and mortality while promoting M2 polarization 
by reducing mitochondrial reactive oxygen species (mtROS).

[118]

Other immune cells

    G-MDSC DSS-induced colitis The G-MDSC exosome (containing Arg-1) inhibits the delayed-type hypersensi-
tivity response, reduces the growth of CD4+ T cells, and decreases IFN-γ and 
TNF-α levels.

[110]

Abbreviations: ASC, apoptosis-associated speck-like protein containing a caspase recruitment domain; DSS, dextran sulfate sodium; G, granulocytic; HMGB1, high 
mobility group box 1; IFN-γ, interferon-gamma; IL, interleukin; ILVs, intraluminal vesicles; iNOS, inducible nitric oxide synthase; M, macrophage; MDSC, myeloid-derived 
suppressor cells; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; NLRP3, NOD-like receptor family, pyrin domain-containing 3; ROS, reactive oxygen 
species; TGF-β, transforming growth factor beta; TLR4, Toll-like receptor 4; TNBS, 2,4,6-trinitrobenzenesulfonic acid solution; TNF, tumor necrosis factor; VEGF, vascular 
endothelial growth factor.

cells, and other systems or pathogens regulate 
macrophages toward IBD repair (Table 1); how-
ever, those derived from inflammatory-driven 
cells and unhealthy cells aggravate IBD and its 
progression.

Exosomes and their microRNA, driven by in- 
flammatory stimuli, immune cells, and disease 
cells, regulate macrophages to support IBD  
and its progression. For instance, exosomal 
miR-93-5p secreted by granulocytic myeloid-
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