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Abstract: The incidence of ulcerative colitis (UC) is increasing worldwide, but its pathogenesis remains largely un-
clear. The intestinal mucosa is a barrier that maintains the stability of the body’s internal environment, and dys-
function of this barrier leads to the occurrence and aggravation of UC. A high-fat diet (HFD) contains more animal 
fat and low fiber, and accumulating evidence has shown that long-term intake of an HFD is associated with UC. 
The mechanism linking an HFD with intestinal mucosal barrier disruption is multifactorial, and it typically involves 
microbiota dysbiosis and altered metabolism of fatty acids, bile acids, and tryptophan. Dysbiosis-induced metabolic 
changes can enhance intestinal permeability through multiple pathways. These changes modulate the programmed 
death of intestinal epithelial cells, inhibit the secretion of goblet cells and Paneth cells, and impair intercellular in-
teractions. Gut metabolites can also induce intestinal immune imbalance by stimulating multiple proinflammatory 
signaling pathways and decreasing the effect of anti-inflammatory immune cells. In this review, we critically analyze 
the molecular mechanisms by which an HFD disrupts the intestinal mucosal barrier (IMB) and contributes to the 
development of UC. We also discuss the application and future direction of dietary intervention in the treatment of 
the IMB and prevention of UC. 
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Introduction 

Ulcerative colitis (UC) is an inflammatory bowel 
disease (IBD) characterized by intestinal muco-
sal barrier dysfunction [1]. UC has become a 
global disease. In western countries, the preva-
lence rate of UC is stable but exceeds 0.3%, 
while in regions with lower prevalence rates, 
such as Eastern Europe and Asia, the preva-
lence is increasing [2]. This may be related to 
environmental factors such as westernization 
and modernization of lifestyle. Although the 
pathogenesis of UC remains to be fully clarifi- 
ed, it is considered to result from the interac-
tion of environmental factors, genetic suscepti-
bility, intestinal barrier dysfunction, symbiotic 
microbiota disorder, and immune imbalance. 
The intestinal mucosal barrier (IMB) maintains 
the stability of the intestinal environment by 

blocking the invasion of pathogenic antigens 
and eliciting modest immune response, while 
IMB dysfunction leads to intestinal inflamma-
tion [3]. As an environmental factor, food comes 
in direct contact with the IMB after entering the 
colon, which is very important for the function-
ing of the IMB [4]. The effect of diet on UC has 
been the focus of many studies.

In the past few decades, a high-fat diet (HFD) 
has become more prominent, particularly in 
Asia, largely due to globalization and its conve-
nience [5]. An HFD includes processed food 
based on animal fats and contains low fiber [6]. 
Studies have shown that the intake of HFD can 
aggravate inflammatory infiltration in the colon 
and even induce UC phenotype in healthy mice 
[7, 8]. A systematic review of 12 randomized 
controlled trials found that a high intake of 
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meat and margarine was associated with an 
increased prevalence and recurrence of UC [9]. 
It is generally believed that obesity-related 
chronic illnesses caused by HFD intake is a 
critical factor associated with intestinal inflam-
mation. Hildebrand et al., however, found that 
changes in intestinal microbiota composition  
in HFD-fed mice were independent of obesity 
[10]. Additionally, a recent study showed that 
after transferring the gut microbiota of HFD-fed 
mice to germ-free mice, the nuclear factor-κB 
(NF-κB) inflammatory pathway was activated, 
and this proinflammatory process occurs be- 
fore weight gain and obesity [11]. These studies 
suggested that HFD-induced microbiota dysbi-
osis might also play a significant role in the 
development of UC. However, the molecular 
mechanisms underlying these processes have 
not yet been fully elucidated.

Accumulating evidence suggests that dys- 
function of the IMB is the central player in UC 
caused by dysregulated gut microbiota and 
their metabolites in an HFD environment. An 
HFD can lead to alterations in the intestinal 
microbiota; a 6-month randomized controlled 
feeding trial found that an HFD reduced the 
diversity of the intestinal microbiota and the 
abundance of beneficial bacteria [12]. Another 
study showed that in the absence of dietary 
fiber, the intestinal microbiota will rely on muco-
sal glycoproteins secreted by the host as a 
nutrient source, thereby resulting in mucus 
layer erosion [13]. Microbiota dysbiosis secon- 
dary to an HFD induces dysregulation of the 
metabolism of fatty acids (FAs), bile acids (BAs), 
and tryptophan (TRP). Dysregulated microbiota 
and their metabolites caused by a HFD can 
lead to IMB dysfunction by affecting the pro-
grammed death of intestinal epithelial cells 
(IECs), reducing the secretion of goblet cells 
(GCs) and Paneth cells, impairing intercellular 
connections, and disrupting the immune bal-
ance. Food additives such as sweeteners and 
emulsifiers contained in an HFD as well as 
Maillard reaction products (MRPs) such as 
advanced glycation end products (AGEs) pro-
duced during food processing can also dama- 
ge the function of the IMB [14-17], thus leading 
to the occurrence and aggravation of UC.

Considering that the dysfunction of the IMB is 
an early event in UC pathogenesis [18], the 
knowledge of HFD-induced IMB dysfunction 

may be valuable to prevent and treat UC. 
Therefore, in the present review, we focused on 
the destructive effect of an HFD on the IMB and 
the related molecular mechanisms leading to 
the occurrence and aggravation of UC. We fol-
low Hippocrates’ principle, “Let food be thy 
medicine and medicine be thy food”, taking the 
molecular mechanism as the target, and the 
importance and future development of dietary 
intervention for restoring IMB function were 
discussed.

Physiological function of the IMB

The IMB mainly comprises the epithelial and 
mucus layers between the lumen and lamina 
propria (Figure 1). The epithelial layer is com-
posed of a monolayer of IECs and intercellular 
connections. IECs are composed of five differ-
ent types of cells differentiated from intestinal 
stem cells (ISCs) in the crypt, including absorp-
tive (columnar epithelium) or secretory cells 
(Paneth, goblet, intestinal endocrine, and tuft 
cells) [19]. The intercellular connections are 
composed of tight junctions (TJs), adhesion 
junctions (AJs), and desmosomes. TJs are the 
apical intercellular junctions containing trans-
membrane proteins, including occludin, clau-
din, junctional adhesion molecule (JAM), and 
cytoplasmic scaffold proteins Zonula occlu- 
dens-1, Zonula occludens-2, and Zonula oc- 
cludens-3 (ZO-1, ZO-2, and ZO-3, respectively). 
AJs consist of the transmembrane protein 
E-cadherin and intracellular components α- 
catenin and β-catenin [20]. Desmosomes link 
cells through desmosomal cadherins and con-
nect these cell contacts to the intermediate  
filament cytoskeleton [21]. In the colon, the 
mucus layer is divided into the outer layer and 
the inner layer. The outer layer is the habitat of 
intestinal microbiota, while the inner layer is 
mainly composed of mucin 2 (MUC2) and anti-
microbial peptides (AMPs) secreted by GCs and 
Paneth cells, respectively. The mucus layer pre-
vents the content of the lumen from coming in 
direct contact with the epithelial layer [22]. 
Thus, the IMB forms a physical and chemical 
barrier to maintain intestinal health.

On the one hand, the IMB separates the lumi-
nal antigens from the host immune system, 
spatially blocks the direct contact between the 
luminal antigens (including microbiota and th- 
eir metabolites) and immune cells, and avoids 
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Figure 1. Physiologic structure of the colonic mucosal barrier. The intestinal mucosal barrier is mainly composed 
of the mucus layer and epithelial layer, and it is affected by intestinal microbiota, its metabolites, and the immune 
system of lamina propria. The epithelial layer is mainly composed of intestinal epithelial cells (IECs) and intercellular 
junctions such as tight junctions (TJ), adhesive junctions (AJ), and desmosomes. TJs are the apical intercellular junc-
tions composed of the transmembrane proteins occludin and claudin and cytoplasmic scaffold proteins Zonula oc-
cludens-1 (ZO-1), Zonula occludens-2 (ZO-2), Zonula occludens-3 (ZO-3). AJs consist of the transmembrane protein 
E-cadherin and intracellular components α-catenin and β-catenin. The mucus layer is divided into the outer layer 
and the inner layer; the outer layer is the habitat of intestinal microbiota, while the inner layer is mainly composed 
of mucin 2 (MUC2) secreted by goblet cells and antimicrobial peptides (AMPs) secreted by Paneth cells. The IMB 
forms a physical and chemical barrier between the intestinal lumen and lamina propria, which can “separate” and 
“regulate” intestinal microbiota and immune cells to maintain intestinal health. MLCK, Myosin Light Chain Kinase.

unnecessary immune reactions and inflamma-
tion [23]. A defect in the IMB can weaken this 
barrier effect. For example, MUC2-deficient 
mice develop mucous membrane defects, lead-
ing to an increase in intestinal mucosal perme-
ability [24]. Similarly, mice lacking AMPs show 
thinning of the mucus layer and the occurrence 
of UC [25]. Specific gene knockout in IECs leads 
to their excessive apoptosis and pyroptosis, 
and abnormal programmed death of IECs is 
associated with IMB dysfunction [26, 27]. 
Mutant mice with a deletion of TJs can develop 
a UC phenotype [28].

On the other hand, the IMB can sense the sig-
nals of microbiota and the immune system so 
as to regulate microbiota and immune homeo-
stasis. For example, the intestinal bacterial 
metabolite short-chain fatty acids (SCFAs) can 
bind to G protein-coupled receptors (GPR41, 
GPR43, and GPR109A) of IECs, resulting in the 

activation of the NLRP3 inflammasome in IECs, 
which in turn release IL-18, regulate innate and 
acquired immune responses, and thus antago-
nize the anti-inflammatory reaction [29]. Mice 
deficient in GPR41 and GPR43 show an ab- 
normally low neutrophil response, resulting in 
weakened pathogen clearance and subse-
quently increased intestinal permeability and 
inflammation [30]. The immune regulation of 
the IMB mainly depends on humoral immunity 
dominated by secretory immunoglobulin (sIgA) 
and cellular immunity dominated by intraepi-
thelial lymphocytes and lamina propria lym- 
phocytes. For example, IECs can transport sIgA 
through their basolateral membrane by using 
the polymeric immunoglobulin receptor (pIgR). 
When plasma cells in the lamina propria pro-
duce the dimer IgA complex, this complex com-
bines with pIgR to form sIgA in the intestinal 
lumen [31]. SIgA can preferentially identify in- 
testinal pathogens to prevent or even reverse 
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colitis [32]. When pIgR was knocked out in 
mice, the stability of symbiotic microbiota was 
disrupted, and the susceptibility to colitis was 
increased [33]. In cellular immunity, IECs pro-
duce thymic stromal lymphopoietin, transform-
ing growth factor-β (TGF-β), and retinoic acid to 
promote the differentiation of tolerant dendritic 
cells, thus enhancing the development of ad- 
aptive Foxp3+Treg cells [34]. The expression of 
semaphorin-7A on the basolateral side of IECs 
can induce macrophages to produce IL-10 and 
increase the number of Treg cells, while 
Sema7a-deficient mice show aggravation of 
colitis [35].

Dysfunction of the IMB is characterized by the 
weakening of its function of “separation” and 
“regulation” [36, 37], which mainly depends on 
the abnormal changes in intestinal content and 
host immunity. As an environmental pathogenic 
factor of UC, an HFD can disrupt the IMB and 
lead to the occurrence and development of  
UC by affecting intestinal content and host 
immunity.

An HFD induces gut microbiota dysbiosis and 
metabolic changes

Gut microbiota

The symbiotic relationship between intestinal 
microbiota and host helps to maintain the 
intestinal barrier, regulate intestinal secretion 
and immune response, and maintain intestinal 
health [38-40]. The disruption of intestinal 
microbiota can lead to intestinal diseases, 
including UC [41]. Intestinal bacteria have dif-
ferent effects on the digestion and metabolism 
of diet according to different enzymes, and the 
structure of intestinal microbiota can change 
according to the change in the diet [42]. A study 
in humans found that an HFD increased the 
number of bile-tolerant microorganisms (Ali- 
stipes, Bilophila, and Bacteroides) and de- 
creased the number of Firmicutes (Roseburia, 
Eubacterium rectale, and Ruminococcus bro-
mii) that metabolize dietary plant polysaccha-
rides [43]. An HFD promoted the colonization of 
an IBD-associated pathogen called adherent 
invasive Escherichia coli [44]. An HFD also led 
to the explosive growth of pathogenic bacteria 
such as Bilophila wadsworthia [45]. An HFD 
increased the number of lipopolysaccharide 
(LPS)-producing bacteria in the intestine [12]. 
LPS is mainly produced by gram-negative bacilli 

and can destroy the intestinal epithelial barrier 
[46]. Moreover, an HFD reduced the phyloge-
netic diversity and abundance of beneficial 
bacteria such as Akkermansia muciniphila, 
Lactobacillus, and Bifidobacterium [47]. A de- 
crease in beneficial bacteria such as Faecali- 
bacterium prausnitzii and Roseburia hominis is 
related to the pathogenesis of UC [48]. How- 
ever, the description of changes in intestinal 
microbiota in the HFD environment in the litera-
ture is not completely consistent. For example, 
Wang et al. found that a refined HFD increas- 
ed the diversity of bacteria [49]; this result 
seemed to reverse the damage of an HFD. They 
further analyzed and discovered that other 
nutrients contained in a refined HFD interfered 
with the experimental results. Some scholars 
believe that the differences between individu-
als led to this inconsistency [50]. We believe 
that the different types of fats used in various 
studies are also the reason for this inconsis-
tency. In general, an HFD reduces the abun-
dance of beneficial bacteria, while augmenting 
barrier-disrupting microorganisms, which un- 
doubtedly worsens intestinal health (Figure 2).

Fatty acids

The production of SCFAs is closely related to 
intestinal microbiota. SCFAs are mainly derived 
from undigested carbohydrates such as dietary 
fiber; however, dietary fiber itself is not digest-
ed or absorbed by host cells because mamma-
lian cells lack the enzymes needed to degrade 
them and therefore require fermentation by 
intestinal bacteria. Different bacteria produce 
different SCFAs based on fermentation throu- 
gh their enzyme activities. For example, acetic 
acid is mainly produced by Blautia hydrogeno-
trophica [51]. Propionic acid is mainly produced 
by Akkermansia muciniphila [52]. Butyric acid 
is mainly produced by Faecalibacterium praus-
nitzii and Roseburia hominis [48]. Acetic acid, 
propionic acid, and butyric acid are the most 
important SCFAs in the colon. SCFAs have the 
function of protecting the IMB; in particular, 
SCFAs can promote the expression of MUC2 
secreted by GCs and improve the defense func-
tion of the mucus layer [53]. They can also pro-
vide energy for IECs to maintain intestinal epi-
thelial function [54]. SCFAs can combine with 
GPR41, GPR43, and GPR109A of IECs, result-
ing in the activation of the NLRP3 inflamma-
some to release interleukin-18 (IL-18) for regu-
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Figure 2. A high-fat diet impairs the metabolic homeostasis of intestinal microbiota, fatty acids, bile acids, and 
tryptophan in the intestinal lumen. High-fat diet (HFD) contains more animal fat and less fiber, which can disrupt 
intestinal microbiota and its metabolism. The specific manifestations are as follows: (1) Metabolic disorder of bile 
acids (BAs), that is, increased production and inhibition of reabsorption of BAs. Abnormal levels of BAs can promote 
the differentiation of T cells into T helper cells 17 (Th17), resulting in increased interleukin-17 (IL-17) production. (2) 
The production of short-chain fatty acids (SCFAs) is decreased. SCFAs can bind to G protein-coupled receptors 41 
(GPR41), G protein-coupled receptors 43 (GPR43), and G protein-coupled receptors 109A (GPR109A) of intestinal 
epithelial cells (IECs) and then activate the NLRP3 inflammasome to release interleukin-18 (IL-18). SCFAs also 
induce T cells to differentiate into regulatory T cells (Treg) and release interleukin-10 (IL-10). Low levels of SCFAs 
in the colon weaken these pathways. (3) Tryptophan (TRP) metabolism disorder, that is, inhibition of the indole 
pathway and enhancement of the kynurenine and serotonin pathways, leading to the decrease in interleukin-22 
(IL-22) production and the increase in kynurenine and serotonin production. Dysregulated intestinal substances can 
further disrupt the lamina propria immune system and impair Th17/Treg balance, leading to an increase in proin-
flammatory cytokines and the decrease in anti-inflammatory cytokines and promoting the occurrence of intestinal 
inflammation. TGF-β, Transforming Growth Factor-β; DC, Dendritic Cell; Th0, T Helper cell 0; Mφ, Macrophages; 5-HT, 
serotonin; IDO, Indoleamine 2,3-Dioxygenase.

lating the immune function of the IMB [29]. 
SCFAs can also activate GPR109A receptors  
on macrophages and dendritic cells, thereby 
inducing the differentiation of Treg cells and 
IL-10-producing T cells [55]. 

An HFD reduces the concentration of colonic 
SCFAs [12]. On the one hand, HFD contains 
less dietary fiber. On the other hand, an HFD 
reduces the abundance of bacteria that metab-
olize dietary plant polysaccharides, resulting in 
a decrease in the content of colonic SCFAs. In 
addition to SCFAs, the colonic content of other 
types of fatty acids (FAs) is mainly related to the 

content of dietary fat in an HFD. A western HFD 
is mainly composed of animal fat, which con-
tains more saturated fatty acids (SFAs), includ-
ing long-chain fatty acids (LCFAs), and me- 
dium-chain fatty acids (MCFAs) as well as more 
ω-6 unsaturated fatty acids (PUFAs) [6, 12]. 
Monounsaturated fatty acids (MUFAs) are 
mainly found in olive oil; thus, they are less 
abundant in an HFD [56]. As mentioned earlier, 
an HFD induces an increase in LPS, which can 
reduce the absorption of LCFAs and aggravate 
the colonic accumulation of LCFAs [57]. The 
accumulation of LCFAs in the colon can lead to 
an increase in reactive oxygen species (ROS), 
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which is closely related to the dysfunction of 
the intestinal epithelial barrier [58]. The ω-3/ω-
6 imbalance of PUFAs in the western HFD can 
also induce intestinal inflammation [59]. How- 
ever, scientific research has often underesti-
mated the impact of FAs on the colon, based  
on the fact that the degradation and absorption 
of dietary fat mainly occur in the small intes-
tine; consequently, it rarely reaches the colon. 
Tanaka et al., however, found that free FAs 
induced by an HFD can cause colonic injury at 
very small doses, which is called “intestinal 
lipotoxicity” [60]. This implies that even if only a 
small part of the fat intake reaches the colon, it 
can have a large impact on the colon (Figure 2).

Bile acids

An HFD also affects the metabolism of BAs. 
Cholesterol is catalyzed by cholesterol 7α- 
hydroxylase in hepatocytes to produce primary 
bile acids (PBAs) and stored in the gallbladder; 
they are then released to the small intestine to 
participate in the digestion and absorption of 
lipids. Some BAs may escape to the colon, and 
under the action of intestinal bacteria (such as 
Clostridium scindens), 7α-dehydroxylation pro-
duces secondary bile acids (SBAs). The incre- 
ase in the level of SBAs is related to the patho-
genesis of UC [61]. It was found that an HFD 
resulted in increased concentrations of total 
bile acids (TBAs) in the colon as compared to a 
low-fat or normal-fat diet [62]. Among the TBAs, 
SBAs such as deoxycholic acid (DCA), tauro- 
deoxycholic acid (TDCA), 12-ketocholic acid 
(12keto LCA), 3β-DCA, and taurocholate (TLCA) 
are increased significantly [62]. Several expla-
nations have been suggested for the increase 
of SBAs in the colon. On the one hand, an HFD 
itself contains a high level of cholesterol, result-
ing in a significant increase in PBAs synthesized 
by the liver, which increases the content of BAs 
escaping into the colon. On the other hand, an 
HFD decreases the expression of apical sodi-
um-dependent bile acid transporter (ASBT)  
and organic solute transporter-α (OST-α), thus 
inhibiting the reabsorption of BAs by the ileum; 
this weakens the enterohepatic circulation of 
BAs and leads to the excretion of a large 
amount of BAs into the colon [63]. An HFD also 
reduces the expression of the colonic BA trans-
porters OST-β and ASBT, which inhibits the 
reabsorption of BAs in the colon [64] and  
leads to further accumulation of colonic BAs. 

Abnormally high levels of BAs in the colon, 
especially DCA, can have several harmful 
effects on the intestinal mucosa, such as DNA 
oxidative damage and inflammation, and even 
lead to the occurrence of colon cancer [65]. An 
HFD can increase the binding of BAs to taurine 
to form taurocholic acid [66]. Bilophila wad-
sworthia can metabolize taurocholic acid and 
promote the production of hydrogen sulfide 
(H2S) [67]. H2S can cause DNA damage in 
colonic mucosa [68]. BAs and intestinal bacte-
ria interact with each other, and a high concen-
tration of BAs can alter the structure of intesti-
nal microbiota. A study found that the intestinal 
pool of BAs in HFD-fed mice increased rapidly 
and significantly within 12 h, and that the 
microbial composition changed after 24 h [69]. 
Another study revealed that feeding mice cholic 
acid (CA) caused changes in the intestinal 
microbiota similar to those after HFD feeding 
[70]. A disturbance of intestinal microbiota also 
affects the metabolism of BAs, with the produc-
tion of more SBAs and so on as mentioned 
above, which can aggravate the destruction of 
the IMB.

Tryptophan

Tryptophan (TRP) is mainly derived from poul-
try, fish, oats, and dairy products (such as milk 
and cheese). TRP metabolism in the intestine 
occurs through three pathways. The kynurenine 
pathway is the main pathway of TRP metabo-
lism, and it is mediated by indoleamine 2,3- 
dioxygenase 1 (IDO1); the kynurenine pathway 
is mainly related to intestinal immunity [71]. 
The indole pathway can metabolize TRP into 
indole derivatives, which are the endogen- 
ous ligands of aromatic hydrocarbon receptor 
(AHR). AHR can mediate ILC3 to produce IL-22. 
Both indole derivatives and IL-22 have a pro- 
tective effect on the intestinal epithelial barrier 
[72-74]. The serotonin pathway is mainly relat-
ed to intestinal motility and secretion [75]. 
Patients with UC have abnormal TRP metabo-
lism. A study of 535 patients with IBD (includ- 
ing 211 patients with UC) found that the expres-
sion of IDO1 and the activation of the kynuren-
ine pathway were increased in patients with UC 
[76]. A decrease in AHR expression was also 
observed in patients with IBD [77]. An HFD can 
directly or indirectly regulate these three meta-
bolic pathways through the intestinal microbio-
ta, thereby disrupting the IMB [78]. An HFD 
reduced the levels of indole derivatives such as 
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indole-3-acetic acid (IAA) and indole-3-propion-
ic acid (IPA) [79, 80], which may be related to 
Clostridium sporogenes and Peptostreptoco- 
ccus russellii [81, 82]. Intestinal bacteria such 
as Lactobacillus spp., Pseudomonas aerugino-
sa, and Pseudomonas fluorescens have aspar-
tate aminotransferase, which produces kyn-
urenine through the transamination of kynu- 
renine [83]. An HFD can increase IDO1 activity 
in the kynurenine pathway and shift TRP metab-
olism from the indole pathway to the kynuren-
ine pathway [84]. This leads to a decrease in 
indole derivatives and IL-22, thereby causing 
damage of the intestinal epithelial barrier and 
inducing intestinal inflammation. In addition, in 
the serotonin pathway, an HFD can induce 
Clostridium ramosum in the colon to promote 
the secretion of serotonin (5-HT) by intestinal 
chromaffin cells [85]. The increase in 5-HT level 
can aggravate the barrier damage observed in 
UC [81] (Figure 2).

An HFD affects the programmed death of IECs

Apoptosis

The programmed death of IECs is under strict 
regulation and maintains the normal renewal of 
cells, while an abnormal increase in the mortal-
ity of IECs is the basis for the destruction of the 
intestinal epithelial barrier and the key to the 
development of UC. It was found that an HFD 
could increase the apoptotic rate of IECs [86]. 
The increased DCA, LCFAs, and LPS in the colon 
after HFD intake seems to be the culprit of HFD 
induced cell death, and ROS are involved in this 
process. DCA can increase ROS production by 
activating plasma membrane enzymes such as 
Nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase, and to a lesser extent by acti-
vating phospholipase A2, leading to the occur-
rence of oxidative stress (OS) in colonic IECs, 
promoting the loss of mitochondrial membrane 
potential, and inducing the release of proapop-
totic factors (caspase-9 and caspase-3) into 
the cytoplasm. This initial apoptotic step pro-
motes the division of Bcl-2, activates Bax, and 
forms additional pores on the mitochondrial 
membrane. Thus, the apoptosis signal is ampli-
fied [87]. LPS can activate TLR4 and increase 
the expression of p53 [88], and p53 increases 
the expression of Bax and the ROS level, thus 
inducing apoptosis through mitochondrial sig-
naling pathways [89, 90]. An HFD also pro-

motes apoptosis mediated by the endoplasmic 
reticulum (ER) apoptosis pathway. The expres-
sion of ER stress-associated proteins p-IRE1α 
and BIP in the colon were found to be increased 
after a HFD intake [91]. This occurs through the 
activation of the IRE1α-TRAF2-ASK1 complex 
by ROS followed by phosphorylation of JNK [92, 
93]. JNK can induce apoptosis by controlling 
the activity of Bcl-2 family members. The acti-
vated IRE1α can increase the cytoplasmic Ca2+ 
concentration in the ER, act on mitochondria 
through the IRE1α-InsP3R pathway, and affect 
the permeability of mitochondria, leading to a 
change in mitochondrial membrane potential 
and promoting the production of ROS [94]. 
Death receptor pathway-related IEC apoptosis 
is also involved in the development of UC [95]. 
DCA can activate the death receptor CD95 and 
then lead to the cleavage of procaspase-8, acti-
vation of promoters of caspase-2 and cas-
pase-8, and induction of cleavage of full-length 
BH3 interacting-domain death agonist (Bid) 
[96]. Apoptosis mediated through extrinsic sig-
naling pathways can also be activated by LPS, 
and this process is largely due to the signal 
crosstalk between TLR4 and Fas [97]. LPS acti-
vates TLR4 and leads to the release of TNF, 
which can bind to TNFR1 on IECs and induce 
apoptosis through NFκB2 signaling [98]. A pre-
vious study found that the total antioxidant 
capacity of the colon was lower than that of 
other intestinal organs [99], and considering 
the significant role of OS caused by HFD in the 
process of apoptosis, the increased apoptosis 
of IECs may have a tremendous impact on IMB 
dysfunction (Figure 3).

Autophagy

The maintenance of IMB function depends on 
the balance between IEC apoptosis and autoph-
agy. HFD can destroy this balance [100], and 
this imbalance in turn disrupts the mechanical 
barrier and induces UC. Recent studies have 
shown that HFD-fed mice have an accumula-
tion of the colonic autophagy substrate p62 as 
compared to normal control diet mice [101]. 
The autophagy substrate p62 accumulates 
when autophagy is defective, which inactivates 
the Hippo signal, resulting in the excessive pro-
liferation of ISCs, thus affecting the homeosta-
sis of intestinal epithelium [102]. ISCs with  
deficiency in autophagy can also lead to mito-
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Figure 3. A high-fat diet affects programmed death of intestinal epithelial cells. A high-fat diet (HFD) can change the 
content of normal intestinal microbiota, fatty acids, and bile acids in the intestine, thus affecting the apoptosis, au-
tophagy, pyroptosis, and ferroptosis of intestinal epithelial cells (IECs). (1) Apoptosis: High levels of deoxycholic acid 
(DCA), long-chain fatty acids (LCFAs), and lipopolysaccharide (LPS) in the colon can activate the caspase cascade 
through the mitochondrial pathway, endoplasmic reticulum pathway, and death receptor pathway and then induce 
apoptosis of IECs. (2) Autophagy: Following mitochondrial autophagy dysfunction and the increase in intracellular 
lipid autophagy, mitochondria with autophagy disorder can produce more reactive oxygen species (ROS), which 
will further promote the apoptosis of IECs. (3) Ferroptosis: Fatty acids (FAs) contained in an HFD can inhibit the ex-
pression of glutathione peroxidase 4 (GPX4) and increase the expression of acyl-CoA synthetase long-chain family 
member 4 (ACSL4) in the mitochondrial plasma membrane, resulting in lipid peroxidation (LPO) and ferroptosis. (4) 
Pyroptosis: An HFD can activate the caspase-1-dependent classical pathway and the caspase-4/5/11-dependent 
nonclassical pathway. TNF, Tumor Necrosis Factor; TNFR, Tumor Necrosis Factor Receptor; Cyt C, Cytochrome c; 
Apaf-1, apoptotic protease activating factor-1; NLPR3, NLR family pyrin domain containing 3; ACS, apoptosis-asso-
ciated speck-like protein containing a CARD; IRE1α, inositol-requiring transmembrane kinase endoribonuclease-
1α; ASK1, apoptosis signal-regulating kinase 1; TRAF2, TNF receptor-associated factor 2; JNK, c-Jun N-terminal 
kinase; CHOP, C/EBP homologous protein.

chondrial dysfunction and increased ROS lev-
els [103]. Increased ROS, in turn, can lead to a 
mitochondrial autophagy disorder [104], which 
promotes the occurrence of apoptosis. mTOR-
dependent autophagy can be promoted throu- 
gh the upstream TLR4-MyD88-MAPK signaling 
pathway and the downstream NF-κB pathway, 
thereby inhibiting intestinal inflammation and 
epithelial damage caused by increased ROS 
[105]. Intracellular lipids normally stored in the 
form of lipid droplets can be degraded and 
metabolized by autophagy and lysosomal deg-
radation [106]. In the HFD environment, mito-
chondrial dysfunction can reduce the consump-

tion of FAs [107], and this can also lead to the 
increase in lipid autophagy in IECs of mice with 
UC, promote the ability of inflammatory cells to 
use FAs, and increase the severity of intestinal 
barrier damage [108]. In conclusion, an HFD 
may lead to autophagy disorder in IECs, in- 
cluding dysfunction of mitochondrial autopha-
gy, increased intracellular autophagy, and au- 
tophagy disorder promoting the occurrence of 
apoptosis. This suggests that in the HFD envi-
ronment, restoring the balance between apop-
tosis and autophagy is very important for main-
taining the function of the intestinal epithelial 
barrier (Figure 3).
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Pyroptosis

NLRP3-mediated cell death has been found to 
destroy the intestinal epithelial barrier and lead 
to intestinal inflammation [109]. HFD intake 
increases the level of ROS in the colon. ROS 
can activate the NLRP3/ASC/Caspase-1 signal-
ing pathway, activate the classic pyroptosis 
pathway of IECs, and lead to the production of 
the proinflammatory cytokine IL-1β and IL-18 
[110, 111]. IL-1β can destroy intercellular junc-
tions and increase the permeability of the in- 
testinal epithelial barrier [23]. IL-18 can inhibit 
the maturation and secretion of GCs, thus 
weakening the defense function of the mucus 
layer and leading to the occurrence of UC [112]. 
In the HFD environment, LPS produced by 
gram-negative bacilli is increased in the colon, 
which activates the caspase-4/5/11 nonclassi-
cal pyroptosis pathway [113]. Both caspase-1 
and caspase-4/5/11 can cleave gasdermin D 
to produce an N-terminal fragment [114]; thus, 
pores are formed on the cell membrane, result-
ing in the pyroptosis of IECs [115]. The nonclas-
sical pyroptosis pathway induced by HFD has 
also been found in colonic myenteric nitroge-
nous neurons, which is related to higher con-
tent of LCFAs and LPS in the HFD environment, 
thereby leading to colonic motility disorders 
and UC [116] (Figure 3).

Ferroptosis

Ferroptosis is a newly discovered programmed 
cell death that is characterized by ROS accu- 
mulation and lipid peroxidation (LPO). Recent 
studies have shown that ferroptosis is involved 
in the injury of the intestinal epithelial barrier in 
UC [117]. The ferroptosis of IECs in UC is relat-
ed to an abnormality of the nuclear factor 
E2-related factor 2 (Nrf2)/heme oxygenase-1 
(HO-1) signaling pathway and the downregula-
tion of glutathione peroxidase 4 (GPX4) [118]. 
The Nrf2/HO-1 signaling pathway plays a key 
role in the antioxidant process, and the activity 
of GPX4 is the cornerstone of antiperoxide 
defense [119]. Dietary fat in an HFD, especially 
PUFAs such as arachidonic acid (AA), can in- 
duce impaired GPX4 activity in colonic epitheli-
al cells and increase LPO, thus promoting fer-
roptosis in IECs [120]. Linoleic acid (c18:2n-6) 
and α-linoleic acid (ALA; c18:3n-3) can synthe-
size PUFAs such as AA and adrenic acid (AdA). 
The intake of AA and AdA could increase the 

expression of plasma membrane acyl-CoA syn-
thetase long-chain family member 4 (ACSL4). 
ACSL4 promoted the activation of AA and AdA, 
followed by iron-dependent lipid peroxidation 
through the Fenton reaction, resulting in ferrop-
tosis, and the inhibition of ACSL4 could prevent 
the occurrence of ferroptosis [121]. The inhibi-
tion of ACSL4 may therefore be an important 
intervention to prevent excessive ferroptosis in 
IECs caused by HFD intake. Because ferropto-
sis is a newly discovered mode of cell death, 
especially in an HFD environment, the under-
standing of the relationship between ferropto-
sis and UC is only the tip of the iceberg, and 
more mechanisms and issues need to be 
addressed (Figure 3).

An HFD reduces the secretions of goblet cells 
and Paneth cells

Goblet cells

GCs are single-cell glands located in the intesti-
nal epithelial layer. They produce and secrete 
mucin and other substances to make the mu- 
cus layer, which forms a mechanical barrier and 
prevents the invasion of symbiotic bacteria and 
mucosal inflammation [122]. Microbiota dysbi-
osis-induced an increase in DCA, and LCFAs 
trigger programmed cell death of IECs as men-
tioned above. The loss of GCs further reduces 
mucin secretion. Mucin is a high-molecular-
weight epithelial protein with strong glycosyl-
ation activity. An HFD can change the oligosac-
charide chain of mouse colonic mucin and lead 
to the occurrence of UC; the change in mucin 
composition may be related to a glycosylation 
defect or tonincomplete maturation of GCs 
[123]. An HFD can also induce ER stress in GCs 
through metabolites [124], thus activating the 
unfolded protein response [128] and decreas-
ing the expression of GC differentiation mark-
ers, including Trefoil factor 3, Krüppel-like fac-
tor 4, and SAM pointed domain ETS factor 1 
[125]; this leads to a decrease in GC number 
and secretion, accompanied by the increase 
and metastasis of pathogenic bacteria, which 
aggravates the susceptibility of epithelial per-
meability and UC [18, 126]. Increased DCA in 
the intestinal lumen can also reduce the prolif-
erative function of intestinal stem cells (ISCs) 
and their ability to differentiate into GCs by trig-
gering ER stress in ISCs [127]. The natural 
emulsifier soybean phospholipid contained in 
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an HFD can over-activate the Notch pathway, 
leading to the depletion of colonic GCs [128]. In 
conclusion, an HFD can reduce the secretion of 
GCs by affecting the number and function of 
GCs, resulting in damage to the IMB.

Paneth cells

The secreted substance of Paneth cells con-
tains a large number of antimicrobial peptides 
(AMPs), including defensins, lysozyme, and  
lipopolysaccharide binding protein. AMPs are 
secreted into the mucosa and react with patho-
genic bacteria and proinflammatory cytokines 
[129]. Paneth cell dysfunction is related to UC 
[130]. A reduction of AMPs may occur due to 
the decreased number and impaired function 
of Paneth cells. An HFD may decrease the num-
ber of Paneth cells through programmed death 
mechanisms as described above. A previous 
study found that the number of Paneth cells in 
HFD-fed mice decreased significantly, and the 
bactericidal activity of the supernatant of 
Paneth cells also decreased, which was partly 
caused by lipid-induced cell death [131]. The 
decrease in the number of Paneth cells is also 
related to an impaired differentiation of ISCs 
into Paneth cells. A study showed that an HFD 
increased the number of Lgr5+ intestinal stem 
cells by 50%, but decreased the number of 
Paneth cells by 23%, thus suggesting that an 
HFD may impair the differentiation of Paneth 
cells [132]. In addition, the secretory function 
of Paneth cells may be impaired by metabo-
lites. For example, the expression of AMPs and 
defensins in HFD-fed mice decreased signifi-
cantly under BA toxicity [133], which may be 
related to the destruction of the Mmp7/α de- 
fensins axis in the intestine by an HFD [134]. 
Moreover, the increased production of BAs 
leads to the upregulation of TGR5 receptors in 
Paneth cells, and over-activation of TGR5 leads 
to ER stress, resulting in decreased autophagy 
and defensin secretion [133]. DCA can inhibit 
the function of Paneth cells through microbi-
ome changes and excessive signal transduc-
tion of farnesoid X receptor (FXR) and type I 
interferon (IFN) in IECs [135]. In conclusion, an 
HFD can affect the reduction in the number 
and function of Paneth cells, thereby reducing 
the secretion of AMPs and leading to the 
decline in IMB function.

An HFD induces interruption of intercellular 
junctions

In all intercellular junctions, tight junctions (TJs) 
regulate the paracellular transit of water, ions, 
and molecules and participate in maintaining 
the polarity of IECs, which is important to main-
tain the function of the intestinal epithelial bar-
rier. FAs produced by an HFD can directly regu-
late the distribution and expression level of TJs, 
thereby disrupting the intestinal epithelial bar-
rier. PUFAs such as γ-linolenic acid (GLA) or 
docosahexaenoic acid in the colon enhance 
intestinal permeability through protein kinase  
C (PKC)-mediated redistribution of the TJ pro-
tein, which can be improved by PKC inhibitors 
[136]. MCFAs such as capric acid (C10) and lau-
ric acid (C12) increase intestinal permeability 
through the phospholipase C-dependent inosi-
tol triphosphate/diacylglycerol pathways; how-
ever, capric acid rather than lauric acid leads to 
redistribution and blocking of the TJ protein 
ZO-1, thus suggesting that the two MCFAs have 
partially different mechanisms [137]. Because 
an HFD contains less fiber, this leads to a 
reduction in intestinal SCFAs [138]. SCFAs can 
protect the morphology of ZO-1 and occludin in 
Caco-2 cells [139] (Figure 4).

The dysbacteriosis caused by an HFD will also 
affect the expression of TJs and destroy the 
intestinal epithelial barrier. Some intestinal 
bacteria have been shown to promote TJ pro-
tein expression, such as Bifidobacterium and 
Lactobacillus, which can enhance the expres-
sion of TJ proteins [140]. Akkermansia muci- 
niphila-derived extracellular vesicles can also 
increase the expression of TJ proteins such as 
occludin to maintain the intestinal epithelial 
barrier function [141]. The protective effect of 
these three beneficial bacteria on TJs is, how-
ever, reduced in an HFD environment [47, 142]. 
In contrast, an HFD increased the abundance 
of Oscillibacter [143], which decreased the 
expression of TJs [144]. In addition, the in- 
creased content of bacterial LPS is considered 
to disrupt the TJ barrier. LPS binds to LBP and is 
presented to CD14, the receptor for LPS-LBP 
complexes [145]. LPS-induced TJ barrier dam-
age is related to the adaptor protein MyD88-
dependent activation and focal adhesion 
kinase (FAK) activation in the TLR-4 domain, 
and the activated FAK in turn leads to the acti-
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Figure 4. A high-fat diet (HFD) can impair intercellular connections through intestinal microbiota and its metabolites. 
(1) Intestinal bacterial lipopolysaccharide (LPS) can activate the Toll-like receptor 4 (TLR4) signal transduction path-
way, and the nuclear factor kappa B (NF-κB) pathway promotes myosin light chain kinase (MLCK) expression. (2) 
Deoxycholic acid (DCA) promotes MLCK expression by activating the epidermal growth factor receptor (EGFR) path-
way. MLCK can promote the opening of tight junction (TJ) barrier through the phosphorylation of myosin II regulatory 
light chain (MLC). (3) Fatty acids such as medium-chain fatty acids (MCFAs) and polyunsaturated fatty acids (PUFAs) 
can disrupt the TJ barrier by altering the distribution and expression of TJs. Finally, this leads to the increase in in-
testinal permeability, and the pathogenic antigens in the intestinal lumen enter the lamina propria through paracel-
lular permeation, which leads to the occurrence of intestinal inflammation. LBP, lipopolysaccharide binding protein; 
MD-2, myeloid differentiation 2; FAK, focal adhesion kinase; MyD88, myeloid differentiation primary response 88; 
TIRAP, Toll/interleukin-1 receptor domain-containing adapter protein; TRIF, TIR-domain-containing adapter-inducing 
interferon-β; TRAM, translocating chain-associating membrane protein; IRAK4, interleukin-1 receptor-associated 
kinase; TAK-1, transforming growth factor-β-activated kinase 1; NEMO, nuclear factor-κB essential modulator; IKKα, 
inhibitor of nuclear factor kappa-B kinase subunit alpha; IKKβ, inhibitor of nuclear factor kappa-B kinase subunit 
beta; ERK1/2, extracellular signal-regulated protein kinase; Elk-1, ETS like-1 protein; ROS, reactive oxygen species; 
AJ, adhesion junction; PKC, protein kinase C; MMP-2, matrix metallopeptidase 2.

vation of MyD88 and IRAK4. IRAK4 is the down-
stream target of the TLR-4/FAK/MyD88 signal-
ing axis, and IRAK4 phosphorylation is the 
signal of TJ barrier opening [146]. The TLR-4/
MyD88 signaling pathway is a key upstream 
regulator of TAK-1 and NF-κB p50/p65 activa-
tion. LPS can activate TAK-1 and the classical 
NF-κB (p50/p65) pathway via TLR-4 [147], and 
the activated NF-κB (p50/p65) heterodimer 
can transfer its destructive effects to myosin 
light chain kinase (MLCK) [148]. MLCK regu-
lates the intestinal TJ barrier function through 
phosphorylation of myosin II regulatory light 
chain (MLC) at threonine-18 and/or serine-19, 

leading to peri-junctional actomyosin ring con-
traction, mechanical retraction of the apical 
membrane, pulling apart of the TJ complex, and 
opening of the intestinal TJ barrier [149] (Figure 
4).

Deoxycholic acid (DCA) produced by an HFD 
can also activate the MLCK pathway and 
destroy the TJ barrier. DCA can activate epider-
mal growth factor receptor (EGFR) and activate 
the downstream ERK1/2 signaling pathway. 
ERK1/2 and the transcription factor NF-κB reg-
ulate MLCK together [150]. Especially in an 
HFD environment, the significantly increased 



High-fat diet in ulcerative colitis

664 Am J Transl Res 2023;15(2):653-677

ROS in cells can promote the activation of the 
MLCK pathway [151], which further leads to the 
opening of the TJ barrier. DCA can also destroy 
the epithelial barrier by affecting the expres-
sion of intercellular connexin. DCA can reduce 
the mRNA levels of 23 genes related to intercel-
lular junction in Caco-2 cells, resulting in dam-
age to the intestinal epithelial barrier [152]. The 
decreased expression of the TJ protein ZO-1 
and occludin induced by DCA may be related to 
the degradation of TJ protein by MMP-2 [150] 
(Figure 4).

In general, an HFD can directly affect the distri-
bution and expression level of TJs or regulate 
the expression of MLCK through a signaling 
cascade, destroy the intercellular connection, 
and finally lead to the dysfunction of the intesti-
nal epithelial barrier.

An HFD induces immune imbalance

Intestinal mucosal barrier (IMB) damage leads 
to the entry of pathogenic substances into the 
lamina propria, causing colitis, which is related 
to an immune imbalance in the lamina propria. 
Immune cells such as dendritic cells, macro-
phages, helper T cells, and regulatory T cells 
play a key role in the pathogenesis of UC. 
Studies have shown that an HFD can cause 
colonic immune cell imbalance, leading to an 
imbalance between proinflammatory and anti-
inflammatory cytokines and thereby promoting 
colitis [153]. The lethal accumulation of inflam-
matory cytokines further damages the IMB, 
causing a vicious cycle. HFD-induced intestinal 
nervous system disorders can also affect in- 
testinal immunity. Therefore, it is particularly 
important to pay attention to the effect of an 
HFD on colonic immune cells.

Dendritic cells 

As antigen-presenting cells, dendritic cells can 
transform the innate immune response to an 
adaptive immune response. Low levels of butyr-
ic acid and retinoic acid in the colon caused by 
an HFD can lead to the imbalance of subsets  
of colonic dendritic cells, which is mainly ma- 
nifested in that the percentage of colon 
CD103+CD11b+ DCs is 50% lower than that of 
mice fed a low-fat diet (LFD) [154]. These DC 
subsets are conducive to Treg differentiation 
and produce IL-10, which plays an important 
role in antagonizing intestinal inflammation 

[155]. However, low levels of SCFAs in the  
HFD environment weaken this anti-inflammato-
ry effect (Figure 2).

Macrophages

The M1 polarization and recruitment of macro-
phages induced by an HFD are key factors to 
promote the state of colitis. As mentioned ear-
lier, an HFD leads to increased DCA production. 
DCA is reabsorbed into the portal vein system 
by passive diffusion through the colonic muco-
sa. During its reabsorption, it can contact mac-
rophages in the lamina propria of the colonic 
mucosa [8]. DCA can induce a significant in- 
crease of muscarinic acetylcholine receptor M2 
(M2 mAChR) in macrophages and increase the 
transcriptional expression of TLR2 by target- 
ing the transcription factor AP-1 through M2 
mAChR. TLR2 and its downstream NF-κB/ERK/
JNK signaling pathway are involved in the in- 
duction of polarization of M1 macrophages by 
DCA [156]. Monocyte chemoattractant pro-
tein-1 (MCP-1) expressed in colonic epithelial 
cells plays a key role in inducing colonic recruit-
ment of proinflammatory macrophages [156]. 
DCA can induce mouse IECs to express MCP-1 
in a dose-dependent manner and induce intes-
tinal recruitment of macrophages [8]. High lev-
els of LPS in an HFD were also found to increase 
MCP-1 expression in colonic epithelial cells, 
thereby promoting macrophage recruitment 
[157]. The Gal-9/Tim-3 pathway plays an impor-
tant role in infection by regulating macrophage 
function. Long-term stimulation with LPS can 
downregulate the expression and secretion of 
Gal-9, reduce the association between Gal-9 
and Tim-3, inhibit the Gal-9/Tim-3 signaling 
pathway, and finally promote M1 polarization 
[158].

T cells

The key participant of adaptive immune re- 
sponse is T cells, and abnormal T cell differen-
tiation is an important cause of UC [159]. A pre-
vious study showed that an HFD can promote 
the increase in the secretion of BAs and lead to 
the FXR target gene (FXRα, Shp, and lbabp) 
transforming growth factor β (TGF-β)-depen- 
dent downregulation [7]. TGF-β can regulate 
T-cell differentiation in a concentration-depen-
dent manner with proinflammatory cytokines. 
When the expression of TGF-β is low, TGF-β, 
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IL-6, and IL-21 cooperate to promote the ex- 
pression of the IL-23 receptor (IL-23R) and 
reduce Foxp3-mediated RORγt inhibition to 
make the condition conducive to Th17 differen-
tiation. When the expression of TGF-β is high,  
it can inhibit the expression of IL-23R and con-
tribute to Treg differentiation [160]. An HFD 
leads to the differentiation of T cells into Th17 
by downregulating the expression of TGF-β, 
thus impairing the Th17/Treg balance. A Th17/
Treg imbalance increases the susceptibility to 
colitis [161]. In addition, because an HFD con-
tains more LCFAs and fewer SCFAs, this study 
found that LCFAs can promote the differentia-
tion and proliferation of Th1 and/or Th17 cells 
through the p38 MAPK pathway, while SCFAs 
can inhibit the JNK1 and p38 pathway, thereby 
increasing the expression of intestinal Treg 
cells [162]. When the ratio of ω-6/ω-3 PUFAs is 
2:1 or 4:1, it can promote a Th17/Treg balance 
in patients with colitis and reduce the produc-
tion of inflammatory mediators. The ratio of 
ω-6/ω-3 PUFAs as 2:1 is more effective in re- 
ducing colitis [163]. However, humans evolved 
on a diet with a ratio of ω-6/ω-3 essential fatty 
acids of approximately 1, whereas in western 
diets, the ratio is 15/1 to 16.7/1 [164]. This 
severe proportion imbalance in an HFD is not 
conducive to the maintenance of Th17/Treg 
balance, which leads to immune disorder and 
inflammation and disrupts the IMB (Figure 2).

Intestinal neurotransmitters

The role of the intestinal nervous system and 
intestinal immunity has always been a hot topic 
in the pathogenesis of UC. An HFD can indirect-
ly lead to immune imbalance by affecting in- 
testinal neurotransmitters. Studies have found 
that an HFD can weaken colonic acetylcholine 
(ACh) synthesis [165]. ACh promotes IL-10 
secretion of monocytic myeloid-derived sup-
pressor cells (M-MDSCs) and inhibits intestinal 
inflammation by activating the nAChR/ERK pa- 
thway [166]; however, low levels of ACh in the 
HFD environment weakened this protective 
effect. An HFD induces over-activation of colon-
ic glial cells (EGCs), resulting in the increase in 
substance P [167]. The concentration of sub-
stance P was found to be strongly positively 
correlated with the concentration of mucosal 
neutrophils and eosinophils [168]. An HFD 
reduced the content of vasoactive intestinal 
peptide (VIP) [169]. VIP is a major immunomod-

ulatory neuropeptide that plays an important 
role in inflammatory diseases. VIP is consid-
ered to be a natural anti-inflammatory agent 
that can stabilize intestinal immune homeosta-
sis by maintaining the expression of IL-10 in 
regulatory B cells [170]. An HFD increased the 
concentration of serotonin (5-hydroxytrypta-
mine, 5-HT) secreted by colonic chromaffin 
cells (ECs) [85]. Immune cells carry many 5-HT 
receptors. High levels of 5-HT under an HFD 
lead to the abnormal activation of immune 
cells. For example, 5-HT can pass NF-κB and 
promote the production of proinflammatory 
cytokines by dendritic cells [171]. 5-HT can  
also activate macrophages and increase the 
expression of NADPH oxidase (NOX) [172], and 
an increase in NOX activity in macrophages is a 
significant feature of UC [172]. 

Seeking dietary intervention strategies for 
strengthening the gut barrier in UC

Beneficial dietary nutrients

As mentioned earlier, because of its unhealthy 
dietary ingredients, an HFD can lead to IMB 
dysfunction by disturbing intestinal microbio- 
ta, inducing metabolic changes, affecting pro-
grammed death of IECs, reducing intestinal 
secretion, disrupting intercellular connections, 
and impairing intestinal immunity. In contrast, 
some beneficial dietary nutrients can protect 
IMB function in the HFD environment from  
the above-mentioned effects. According to the 
time sequence of dietary nutrients and HFD 
use, we elaborated its protective effect on IMB 
based on three dimensions: prevention, inhibi-
tion, and recovery. A research study investigat-
ed the preventive effect of a blueberry extract 
called pterostilbene on the susceptibility to 
HFD-induced colitis. The results showed that 
pterostilbene could significantly inhibit colitis-
associated factors IL-6 and IL-1β and COX-2 
expression, reduce the expression of ER stress-
associated protein CHOP, maintain the secre-
tion of MUC2, reduce the loss of intercellular 
connexin E-cadherin, and reduce the expres-
sion of colorectal cancer biomarker ACF, there-
by reducing the risk of colitis and even colorec-
tal cancer [173]. Another study used apple 
polysaccharide as an example to explore the 
effect of dietary nutrients combined with an 
HFD on the IMB. The results showed that  
apple polysaccharide supplementation could 
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increase the abundance of beneficial bacteria 
such as Bacteroidetes and Lactobacillus, sig-
nificantly increase the level of total SCFAs  
produced by acetic acid and isobutyric acid, 
upregulate the expression of occludin, and 
downregulate the expression of TNF-α, MCP-1, 
chemokine ligand-1 (CXCL-1), and IL-1β, which 
significantly inhibited HFD-induced damage to 
the IMB [174]. The effect of supplementation of 
anthocyanins (ACs) from Lycium ruthenicum to 
the colon after 12 weeks of HFD feeding was 
investigated. The results showed that ACs  
could increase the content of SCFA-producing 
bacteria, reduce the level of LPS-producing 
bacteria, increase the expression level of intes-
tinal tight junction mRNA and protein, and 
reduce intestinal inflammation through the 
LPS/NF-κB/TLR4 pathway [175]. The promo-
tion of intestinal health in the HFD environment 
by changing nutrients has also been well veri-
fied in humans. In a 2-week food exchange trial, 
African Americans accepted a high-fat and low-
fat African diet and rural Africans accepted a 
high-fat and low-fiber western diet. The results 
showed that changes in food led to significant 
interactive changes in intestinal microbiota and 
metabolomics. For example, after eating low-
fat and high fiber, intestinal butyric acid produc-
tion in African Americans increased, while SBA 
synthesis decreased [176]. Thus, dietary nutri-
ents can prevent, inhibit, and restore IMB func-
tion in an HFD environment to a certain extent.

Beneficial dietary patterns

However, simply increasing dietary nutrient 
content and reducing fat content does not 
seem to be a universal formula to protect the 
IMB. For example, single flaxseed has a protec-
tive effect on the IMB [177]; surprisingly, the 
addition of ground flaxseed to a low-fat diet can 
exacerbate colitis, which may be due to dietary 
interactions [178]. The actual dietary interven-
tion pays more attention to the overall dietary 
patterns than to a single isolated nutrient; 
hence, it is more important to investigate the 
role of dietary patterns in the prevention and 
treatment of UC. A Mediterranean diet (MD) 
refers to the dietary style of southern European 
countries along the Mediterranean coast; this 
diet is dominated by vegetables and fruits, fish, 
cereals, beans, and olive oil, and it contains 
less animal fat than a western HFD [179]. A  
prospective cohort study of 80,000 people 

showed that adherence to a MD was associat-
ed with a lower risk of intestinal inflammation 
[180]. Recently, three large cohort studies 
reported that MD compliance is associated 
with reduced mortality after IBD diagnosis 
[181]. However, a survey of dietary attitudes 
found that patients with UC had low compliance 
with MD [182], which may greatly reduce the 
therapeutic potential of a MD. Low FODMAP 
(fermentable oligosaccharides, disaccharides, 
monosaccharides, and polyols) diet can im- 
prove functional gastrointestinal responses 
such as abdominal distension and abdominal 
pain; therefore, it is suitable in the treatment  
of irritable bowel syndrome [183]. However, 
there are few studies on the treatment of IBD 
with a low FODMAP diet. A recent randomized, 
placebo-controlled trial demonstrated that a 
low FODMAP diet improved intestinal symp-
toms in patients with resting IBD, but had no 
effect on inflammatory markers [184]. More- 
over, diets with different FODMAP contents  
had significant effects on the composition of 
intestinal microbiota [185]. Therefore, more 
studies are required to clarify the effect of low 
FODMAP intake on UC. A ketogenic diet (KD) is 
a high-fat, low carbohydrate diet. This diet  
could increase the abundance of Akkermansia 
and Roseburia and could reduce the produc-
tion of innate lymphocyte-related proinflamma-
tory cytokines in the colon of group 3, thereby 
reducing colitis [186]. It is worth noting that 
although a KD has a high-fat content, it is dif-
ferent from a western HFD; KD is generally 
dominated by ω3 PUFA and MUFA, while a west-
ern HFD is mainly dominated by SFAs and ω6 
PUFA. Thus, the type of fat in the diet should 
also be the focus of dietary intervention. 
Currently, there is no clinical trial of KD inter-
vention in UC. Because of the physiological dif-
ferences between animals and humans, clini-
cal research on the effect of KD on UC needs to 
be conducted urgently.

Beneficial feeding methods

In addition to the changes in dietary patterns, 
some studies have shown that limited feeding 
can improve liver metabolism and nutritional 
utilization of HFD mice without reducing calorie 
intake [187]. Intermittent fasting was found to 
improve the metabolism of short-term HFD-fed 
mice [188]. A research study investigated the 
effects of alternate-day fasting, time-restricted 
fasting, and intermittent energy restriction on 
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intestinal inflammation in mice with UC. The 
results showed that time-restricted fasting  
and intermittent energy restriction, rather than 
alternate-day fasting, could improve colonic 
microbiota diversity and SCFA production by 
inhibiting colonic OS and inflammatory res- 
ponse, which improved colonic IMB function 
and reduced intestinal inflammation [189]. This 
will be an interesting direction to study whether 
the limited-time diet combined with a healthy 
diet model will have a more beneficial effect on 
the IMB.

There are considerable individual differences  
in the effects of dietary intervention on intesti-
nal microbiota [190], and the overall structure 
of intestinal microbiota is mainly affected by 
long-term dietary intake [191]. Short-term ef- 
fects are mainly reported in small sample stud-
ies [43], which are characterized by extreme 
and unrealistic dietary intake. Most important-
ly, there is no universal method. To design the 
most effective dietary intervention strategy for 
patients with UC, dietary suggestions must be 
formulated separately for each patient accord-
ing to their own disease parameters, so as to 
achieve the purpose of precise intervention 
and personalized nutrition. Machine learning 
seems to be a good approach for this purpose, 
for example, making dietary plans through 
machine learning to regulate postprandial bl- 
ood glucose response has been well received 
in patients with diabetes [192]. In this regard, 
we have reason to believe that through appro-
priate research and sufficient clinical trials, 
accurate dietary intervention and personalized 
nutrition will play a very key role in the treat-
ment of UC in the future, which is an attractive 
prospect.

Conclusion and future perspectives 

An HFD damages the IMB in several ways and 
leads to the occurrence and aggravation of UC. 
An HFD can affect the structure of intestinal 
microbiota and the metabolism of FAs, BAs, 
and TRP, leading to changes in the content of 
normal substances in the intestinal lumen and 
damaging the IMB by affecting the programmed 
death of IECs, inhibiting the secretion of GCs 
and Paneth cells, damaging intercellular con-
nections, and aggravating the inflammatory 
response. It is worth noting that because of the 
various types and additives in an HFD and indi-
vidual differences between subjects, the me- 

tabolic effects of an HFD on the structure of 
intestinal microbiota and the metabolism of 
BAs, FAs, and TRP vary; however, in general, an 
HFD certainly causes a damaging effect on the 
IMB. In terms of dietary intervention, paying 
attention to the overall dietary patterns and 
adjusting the content of dietary nutrients play a 
positive role in promoting the recovery of barri-
er function in UC. To achieve precise dietary 
intervention and personalized nutrition for dif-
ferent UC patients, more research and clinical 
trials are needed.
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