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Abstract: This study investigated the pathogenesis of major depressive disorder (MDD) and acute myocardial infarc-
tion (AMI) using bioinformatics. We analyzed MDD and AMI (MDD-AMI) datasets provided by the Gene Expression 
Omnibus (GEO) database for genes common to MDD and AMI using GEO2R and weighted gene co-expression net-
work analysis (WGCNA). We also performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses, and we used Disease Ontology (DO) analysis to identify a) the pathways through 
which genes function and b) comorbidities. We also created a protein-protein interaction (PPI) network using the 
STRING database to identify the hub genes and biomarkers. NetworkAnalyst 3.0 was used to construct a transcrip-
tion factor (TF) gene regulatory network. We also identified relevant complications and potential drug candidates. 
The 27 genes common to MDD and AMI were enriched in the pathways regulating TFs and mediating immunity and 
inflammation. The hub genes in the PPI network included TLR2, HP, ICAM1, LCN2, LTF, VCAN, S100A9 and NFKBIA. 
Key TFs were KLF9, KLF11, ZNF24, and ZNF580. Cardiovascular, pancreatic, and skeletal diseases were common 
complications. Hydrocortisone, simvastatin, and estradiol were candidate treatment drugs. Identification of these 
genes and their pathways may provide new targets for further research on the pathogenesis, biomarkers, and treat-
ment of MDD-AMI. Together our results suggested that TLR2 and VCAN might be the key genes associated with MDD 
complicated by AMI. 
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Introduction

Major depressive disorder (MDD) is a serious 
psychiatric health complication and a leading 
cause of suicide. The World Health Organization 
indicates that by 2030 depression will com-
prise the major worldwide disease burden [1]. 
Acute myocardial infarction (AMI) has declined 
significantly with the use of evidence-based 
medicine; however, AMI is still a major contribu-
tor to global morbidity and mortality, affecting 

approximately seven million people worldwide 
anually [2]. MDD and AMI are closely related, 
and MDD increases the morbidity and mortality 
of individuals with cardiovascular disease, es- 
pecially AMI [3]. For individuals with depres-
sion, after AMI, the all-cause mortality increas-
es 2.25-fold, the risk of cardiac death increases 
by 2.71-fold, and the new cardiac risk increases 
by 1.59-fold [4]. Additionally, the incidence of 
one-year MDD was 13.8% higher in patients 
with AMI than in the healthy population [5, 6]. 
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Therefore, early diagnosis of MDD in AMI 
patients is critical for reducing morbidity and 
mortality. 

MDD and AMI interacts via the neuroendocrine 
system that regulates the electrical activity of 
the heart. Patients with depression have a dys-
functional autonomic nervous system, which is 
manifested by an increased sympathetic tone 
and decreased vagal tone, thereby affecting 
cardiac function [7]. Also, patients with MDD 
have abnormal serotonin levels in the central 
nervous system, and the receptors for sero-
tonin on platelets are similar to those in the 
central nervous system. Therefore, increased 
platelet activation and aggregation are poten-
tial mechanisms for the interaction between 
MDD and AMI [8]. Moreover, the onset and pro-
gression of MDD are associated with the acti-
vation of the immune system [9], with increas- 
ed expression of inflammatory factors such as 
interleukin 6 (IL-6), tumor necrosis factor (TNF), 
and C-reactive protein (CRP) [10]. Increased 
TNF has been shown to be associated with 
depression after myocardial infarction [11]. Al- 
though the exact pathogenic mechanisms are 
unknown, genetic factors contribute to the 
onset and progression of depression [12]; 
GPR18, PDK4, NRG1, and EPHB2 are diag- 
nostic markers for depression [13]. Similarly, 
IL1R2, IRAK3, and THBD are diagnostic mark-
ers for AMI [14]. However, no genetic studies 
yet explain the mechanisms underlying MDD- 
AMI. 

We used high-throughput microarrays, an im- 
portant tool for large-scale gene expression 
analysis [15], to screen for potential diagnostic 
markers of MDD-AMI. We used GEO2R and 
weighted gene co-expression network analysis 
(WGCNA) with the GSE98793 and GSE66360 
datasets from the Gene Expression Omnibus 
(GEO) database to screen for genes commonly 
associated with both MDD and AMI. We also 
performed gene enrichment analysis to identify 
the gene regulatory mechanisms underlying 
MDD-AMI. Further, we created a protein-protein 
interaction (PPI) network to identify hub genes 
with a role in MDD-AMI. We also constructed a 
transcription factor (TF)-gene regulatory net-
work and screened for drugs targeting the net-
work. This study is the first to use a bioinformat-
ics approach to explore the pathogenesis and 
biological markers characteristic of MDD-AMI. 

Material and methods

Dataset acquisition and data preprocessing

We screened humans in the GEO database [16] 
and obtained two datasets, GSE98793 [17] 
and GSE66360 [18], corresponding to MDD 
and AMI, respectively (> 30 samples in each 
gene set). The dataset GSE98793 contains the 
whole blood data for 128 patients with MDD 
and 64 healthy controls, contributed by Kelly et 
al. [17] on platform GPL570, and GSE66360 
contains the whole blood data for 49 patients 
with AMI and 50 healthy controls uploaded by 
Kramer ER et al. [18] using the GPL570 
platform. 

Screening for hub biomarkers

GEO2R is an online GEO tool to identify differ-
entially expressed genes (DEGs) for two or more 
sets of samples. GEO2R includes the limma 
and GEOquery packages for data reading, ID 
conversion, forced normalization, and DEG ac- 
quisition. Our screening thresholds for DEGs 
between GSE98793 and GSE66360 were set 
to the absolute value of Log2 Fold Change ≥ 
0.5 and P < 0.05. 

The systems biology algorithm WGCNA identi-
fies co-expression network modules to deter-
mine the relationship between these networks 
and phenotypic traits, generates gene regula-
tory networks, and identifies hub network mod-
ule genes [19]. The gene co-expression net-
work and adjacency matrix were constructed  
by removing outlier samples through dynamic 
shear tree clustering and filtering appropriate 
soft thresholds using the ickSoftThreshold 
function (package WGCNA), which was convert-
ed into a network topology matrix using appro-
priate β values [20]. Then, we set the minimum 
value of the network module to 80, obtained 
the gene regulatory network module, and deter-
mined the correlation between network mod-
ules and diseases using a Pearson correlation 
analysis. Genes within the network were ana-
lyzed to identify hub genes. We use the Venn 
package (version R 4.1.0) with the set of the 
DEGs obtained using GEO2R and the set of hub 
module genes analyzed by WGCNA to identify 
genes common to both sets for subsequent 
bioinformatics analysis.
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Functional enrichment analysis

We analyzed molecular pathways associated 
with MDD-AMI using Gene Ontology (GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), 
and Disease Ontology (DO) enrichment analy-
ses, and we screened the genes common to 
MDD and AMI for functional enrichment analy-
sis and disease prediction [21]. GO enrichment 
analysis identifies the pathways related to cel-
lular components (CCs), molecular functions 
(MFs), and biological processes (BPs) in the 
gene set [22]. The specific actions and meta-
bolic pathways of genes common to MDD and 
AMI were identified by KEGG analysis [23]. We 
used the R package org.Hs.eg.db to transform 
the gene names to gene IDs and carried out the 
GO, KEGG, and DO enrichment analyses using 
the R packages ClusterProfiler [24] and Disease 
Ontology Semantic and Enrichment analysis 
(DOSE) [25]. We considered P < 0.05 as indicat-
ing a significant enrichment and the enrich-
ment results were visualized using ggplot2 (ver-
sion R 4.1.0). 

PPI network construction

PPI networks are involved in biological signal-
ing, energy, and material metabolism, as well 
as gene expression and cell cycle regulation. 
We constructed and analyzed a PPI network to 
search for hub regulatory genes [26-28]. The 
STRING 11.0 (Version 11.0) [28] database was 
used to identify genes common to MDD and 
AMI and construct a PPI network, which was 
imported into Cytoscape for visualization. The 
Molecular Complex Detection algorithm (MCO- 
DE) plug-in in Cytoscape was used to analyze 
the identified genes to acquire gene modules 
with the following reference thresholds: setting 
parameters as degree cutoff = 2, node score = 
0.2, k-core = 2, and maximum depth = 100 
[29]. Cytoscape’s cytohubba plug-in was used 
to screen the hub genes using eight algorith- 
ms, including Degree, EcCentricity, BottleNeck, 
Density of Maximum Neighborhood Compo- 
nent (DMNC), Maximal Clique Centrality (MCC), 
Closeness, and Betweenness, which were dis-
played using an UpSet plot (a type of Venn 
diagram). 

Construction of a TF-gene regulatory network

TFs are DNA-binding proteins that interact with 
specific genes to activate or inhibit transcrip-

tion. A TF-gene regulatory network can identify 
the pathways by which TFs affect gene expres-
sion [30]. We applied the Encyclopedia of DNA 
Elements (ENCODE) database [31] from the 
web-based tool NetworkAnalyst 3.0 for analyz-
ing gene expression to develop the TF-gene 
regulatory network. 

Identification of drug candidates

Because there are no drugs to treat MDD-AMI 
and alleviate the psychological and physical 
burden on patients, we used bioinformatics to 
identify potential new drugs for clinical use in a 
shorter time and with less cost than typical 
drug development. The Drug Signature Data- 
base (DSigDB), which is hosted on the Enrichr 
web platform, associates drugs with their tar-
get genes [32]. We entered genes common to 
MDD and AMI into the Enrichr platform (https://
amp. pharm.mssm.edu/enrichr/) to screen for 
drug candidates associated with these com-
mon genes in the DSigDB database. 

Verify hub gene

To verify the validity of a hub gene, we analyzed 
the differences between the hub gene expres-
sion in the MDD dataset GSE38206 and the 
AMI dataset GSE60993. The GSE38206 data-
set was obtained from the study by Belzeaux  
et al. [33] based on the GPL13607 platform, 
which analyzed peripheral blood samples from 
18 healthy and 18 MDD groups. The GSE60993 
dataset comprises data on blood samples 
uploaded by Park et al. [34] based on the 
GPL6884 platform for assessing and diagnos-
ing biomarkers of ST-segment elevation myo-
cardial infarction. We analyzed the difference 
between seven ST-segment elevation myocar-
dial infarction samples, 10 non-ST-segment 
elevation myocardial infarction samples, and 
seven healthy controls. For the GSE60993 and 
the GSE38206 datasets, we used the limma R 
package to identify DEGs (|log2 FC| ≥ 0.5, P < 
0.05), the limma package of R software for dif-
ference analysis, the normalizeBetweenArrays 
function for mandatory normalization of the 
data, and the ggplot2 package for hierarchical 
clustering analysis of DEGs. The Venn package 
was used to identify the intersection of DEGs 
between the validation data sets GSE38206 
and GSE60993. 
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Figure 1. Identification of differentially expressed genes (DEGs) between GSE66360 and GSE98793. A. Heatmap 
of DEGs in GSE66360 (n = 99, adj. P < 0.05, |log2 fold change (FC)| > 0.5). B. Volcano plot of DEGs in GSE66360. 
C. Heatmap of DEGs in GSE98793 (n = 186, adj. P < 0.05, |log2 fold change (FC)| > 0.5). D. Volcano plot of DEGs 
in GSE98793.

Statistical analysis

Differential analysis, WGCNA, and enrichment 
analysis between the two groups were per-
formed using the R software (v.4.1.0). We did 
the enrichment analysis with hypergeometric 
tests, and paired data comparisons were ma- 
de using the Wilcoxon test. Detailed statistical 
strategies used in processing the transcriptom-
ic data are presented in the Materials and 
Methodology section. P < 0.05 indicated a sig-
nificant difference. 

Results

Screening of DEGs

The GSE66360 and GSE98793 datasets were 
analyzed using the limma and GEOquery pack-

ages of the GEO2R web tool. We identified 986 
DEGs from the GSE66360 dataset, including 
662 upregulated and 324 downregulated ge- 
nes. The heat map of GSE66360 (Figure 1A) 
and gradient volcano map (Figure 1B) show the 
expression levels and distribution sites of these 
DEGs. In addition, we identified 496 DEGs from 
the GSE98793 dataset, including 250 upregu-
lated genes and 246 downregulated genes. 
The heat map of GSE98793 (Figure 1C) and 
gradient volcano map (Figure 1D) show the 
expression levels and distribution sites of these 
DEGs.

WGCNA

We used WGCNA to identify the links between 
relevant phenotypes and hub genes. Initially, 
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Figure 2. Weighted gene co-expression network analysis (WGCNA) of GSE66360 and GSE98793. A. Determination 
of soft thresholding power for GSE66360. B. Determination of soft-thresholding power for GSE98793. C. Heatmap 
of the correlation between module eigengenes and the occurrence of acute myocardial infarction (AMI). D. Heatmap 
of the correlation between module eigengenes and the occurrence of major depressive disorder (MDD). E. Module 
membership in green module vs. gene significance for AMI. F. Module membership in light cyan module vs. Gene 
significance for MDD.

we applied the dynamic shear tree method to 
eliminate one outlier sample in GSE98793 
when the shear line was 130, and there were 
no outlier samples in GSE66360. Then, the two 
datasets were analyzed separately by WGCNA. 
The optimal soft threshold for GSE66360 was 

β = 12 (Figure 2A), yielding 11 network mod-
ules (Figure 2C), and for GSE98793, it was β = 
9 (Figure 2B), yielding 11 network modules 
(Figure 2D). Then, we determined the link 
between network modules and clinical fea-
tures. In the GSE66360 database, the green 
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Figure 3. Venn diagram of MDD and AMI common genes. There were 27 
genes common to MDD and AMI. Among them, 13 DEGs were obtained by 
differential analysis and 14 typical modular genes were obtained by WGC-
NA. Acute Myocardial Infarction (AMI), Major Depressive Disorder (MDD), 
Weighted Gene Co-expression Network Analysis (WGCNA).

module had the strongest positive link with AMI 
(r = 0.67, P < 0.05), and module membership 
and gene significance were closely correlated 
(cor = 0.63, P = 2.1e-73) (Figure 2E). In the 
GSE98793 dataset, light cyan modules were 
statistically significant (r = 0.17, P < 0.05), 
where module membership and gene signifi-
cance were closely correlated (cor = 0.32, P = 
0.011) (Figure 2F). 

We determined the intersection of the genes 
from the GEO2R differential analysis and 
WGCNA separately using the R package 
ggVennDiagram [35]. We identified 13 DEG 
intersections between GSE66360 and GSE- 
98793 and 14 intersections for WGCNA, re- 
sulting in 27 genes common to MDD and AMI 
(Figure 3). 

Enrichment analyses

The analysis results for the top 10 GO terms 
indicated that the genes common to MDD and 
AMI were primarily enriched in the regulation of 
TFs and responses to bacteria and fungi. CC 
was primarily related to cellular granules and 
their release. BF was primarily related to carbo-
hydrates, toll-like receptors, and other mutual 
interactions (Figure 4; Table 1). The analysis 
results for the top 10 KEGG terms revealed  
that genes common to MDD and AMI were pri-
marily related to immunity and inflammation 
(Figure 5A; Table 2). In addition, MDD-AMI  

was significantly associated 
with cardiovascular, pancreat-
ic, and skeletal diseases (Fi- 
gure 5B). 

PPI network analysis

The interactions between pro-
teins identified the pathways 
of interaction between genes 
common to MDD and AMI. A 
total of 26 hub targets (96 
edges, an average number of 
nodes of 7.38, and an average 
clustering coefficient of 0.56) 
were obtained from the PPI 
network analysis with a confi-
dence coefficient set to 0.15 
(Figure 6A). Then, the PPI net-
work was imported into Cy- 

toscape and visualized by the MCODE and  
cytohubba plug-ins. In addition, eight of the 
plug-ins were selected for hub gene screening 
to obtain eight hub genes, including toll-like 
receptor (TLR2), haptoglobin (HP), intercellu- 
lar adhesion molecule 1 (ICAM1), lipocalin 2 
(LCN2), lactotransferrin (LTF), versican (VCAN), 
S100 calcium-binding protein A9 (S100A9), 
and nuclear factor of kappa light polypep- 
tide gene enhancer in B-cells inhibitor, alpha 
(NFKBIA) (Figure 6B). 

Construction of the TF-mRNA regulatory net-
work

We used the ENCODE database of Network- 
Analyst 3.0 to construct the TF-gene regulatory 
network. The interaction between TFs and hub 
genes is illustrated in Figure 7. The network 
contained seven hub targets, 161 nodes, and 
220 edges. ICAM1 was regulated by up to 71 
TFs, whereas the TF Krüppel-like factor 9 
(KLF9) regulated four core genes simulta- 
neously. 

Identification of drug candidates

The hub genes were entered into the DSigDB 
database of the Enrichr platform to screen for 
drugs targeting these genes (Table 3). The top 
10 drug candidates were glycoprotein, pota- 
ssium persulphate, maltotriose, iron, trime-
thoprim, isoguanine, hydrocortisone, sodium 
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Figure 4. Gene Ontology (GO) enrichment analysis results for common genes.

dodecyl sulfate, simvastatin, and estradiol 
(Table 4). 

Verification of hub genes

The MDD dataset GSE38206 and the AMI  
dataset GSE60993 were selected to verify hub 
genes. Figure 8A and 8B shows the forced nor-
malization of the two datasets, and Figure 8C 
and 8D shows the hierarchical clustering heat 
maps of the DEGs in the two datasets. Figure 
8E shows the common intersection of the  
DEGs between the two validation datasets, 
where hub genes TLR2 and VCAN were sc- 
reened as genes common to MDD and AMI.

Discussion

In the past ten years, our understanding of the 
biology of mood disorders and cardiovascular 

diseases has advanced significantly. Several 
pathophysiological aspects of depressive disor-
ders may contribute to susceptibility to coro-
nary heart disease. A systems biology approa- 
ch has been used to develop a map of the pro-
cesses that link depression with cardiovascular 
diseases [36]. In addition, mathematical mod-
els have identified a link between the symp-
toms of depression and 12-month mortality 
after myocardial infarction [37]. Platelet coagu-
lation cascade, the autonomic nervous system, 
heart rate variability, inflammation, endothelial 
progenitor cell accessibility, hypothalamic-pitu-
itary-adrenal and hypothalamic-pituitary-thy-
roid axis function, along with changes in vascu-
lar calcification, ventricular instability, oxidative 
stress, myocardial ischemia, and genetic fac-
tors may enhance the risk of coronary heart 
disease in depressed individuals. However, the 
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Table 1. Gene ontology (GO) category, GO ID, GO description, and their corresponding P-value
Category ID Description P-value
BP GO:0051092 positive regulation of NF-kappaB transcription factor activity 5.22E-08
BP GO:0032496 response to lipopolysaccharide 3.18E-07
BP GO:0002237 response to molecule of bacterial origin 4.65E-07
BP GO:0051091 positive regulation of DNA-binding transcription factor activity 1.23E-06
BP GO:0009620 response to fungus 1.35E-06
BP GO:0051090 regulation of DNA-binding transcription factor activity 1.69E-06
BP GO:0042742 defense response to bacterium 6.86E-06
BP GO:0071222 cellular response to lipopolysaccharide 8.98E-06
BP GO:0071219 cellular response to molecule of bacterial origin 1.18E-05
BP GO:0071216 cellular response to biotic stimulus 1.97E-05
CC GO:0035580 specific granule lumen 1.43E-12
CC GO:0034774 secretory granule lumen 5.38E-12
CC GO:0060205 cytoplasmic vesicle lumen 5.89E-12
CC GO:0031983 vesicle lumen 6.26E-12
CC GO:1904724 tertiary granule lumen 8.25E-11
CC GO:0042581 specific granule 1.24E-09
CC GO:0070820 tertiary granule 1.48E-09
CC GO:0071682 endocytic vesicle lumen 0.000423
CC GO:0030867 rough endoplasmic reticulum membrane 0.000501
CC GO:0005791 rough endoplasmic reticulum 0.005291
MF GO:0030246 carbohydrate binding 1.75E-06
MF GO:0043177 organic acid binding 3.68E-05
MF GO:0005506 iron ion binding 5.7E-05
MF GO:0050786 RAGE receptor binding 8.61E-05
MF GO:0031406 carboxylic acid binding 0.000103
MF GO:0035325 Toll-like receptor binding 0.000126
MF GO:0048029 monosaccharide binding 0.000135
MF GO:0031418 L-ascorbic acid binding 0.00036
MF GO:0001530 lipopolysaccharide binding 0.00099
MF GO:0019842 vitamin binding 0.001163

mechanisms that associate MDD with AMI are 
unknown. This research intends to explore  
the mechanisms underlying MDD-AMI using 
bioinformatics.

We analyzed the gene sets GSE98793 and 
GSE66360 using WGCNA and GEO2R to identi-
fy genes common to MDD and AMI and per-
formed enrichment analyses on these genes to 
identify the pathways in which the genes func-
tion. Then, STRING was applied to the genes 
common to MDD and AMI to construct the PPI 
network. Finally, eight hub genes (TLR2, HP, 
ICAM1, LCN2, LTF, VCAN, S100A9, and NFKBIA) 
were screened. After dataset verification, we 
found that TLR2 and VCAN were common to 
MDD and AMI. Although there is no information 

on the genetic mechanisms that underlie MDD-
AMI, the genes HP, LCN2, NFKBIA, TLR2, and 
VCAN that were associated with both diseases 
may play a role in the occurrence and progres-
sion of MDD-AMI. SI00A9 has been studied in 
AMI; however, there are no studies on SI00A9 
related to MDD. Neither LCAM1 nor LTF has 
been studied in the context of MDD-AMI, which 
needs further investigation.

Haptoglobin, encoded by HP, binds to free 
hemoglobin to reduce tissue damage from oxi-
dative stress [38]. HP exists in three variant 
protein phenotypes, HP1-1, HP1-2, and HP2-2. 
HP2-2 was reportedlt to have lower antioxidant 
activity than the other variants, and myocardial 
infarction patients with HP2-2 have a poorer 
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Figure 5. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and complication analysis of common genes. A. KEGG enrichment analysis results 
for 27 genes screened by WGCNA. B. Complications of myocardial infarction major depression derived from analysis of 27 genes screened by WGCNA. Weighted 
Gene Co-expression Network Analysis (WGCNA).
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Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways ID and description and their 
corresponding P-value
ID Description P-value
hsa05140 Leishmaniasis 0.000274
hsa05235 PD-L1 expression and PD-1 checkpoint pathway in cancer 0.000421
hsa04657 IL-17 signaling pathway 0.000494
hsa05142 Chagas disease 0.000628
hsa05145 Toxoplasmosis 0.000825
hsa04380 Osteoclast differentiation 0.001215
hsa05164 Influenza A 0.00279
hsa05144 Malaria 0.003206
hsa05134 Legionellosis 0.004148
hsa05169 Epstein-Barr virus infection 0.004468

Figure 6. Protein-protein interaction network. A. Protein-protein interaction (PPI) network. Based on the STRING 
database, protein-protein interaction networks of the common genes in the AMI and MDD. B. Upset Venn showed 
the number of core genes screened for overlap with each other for the eight models in the PPI network. Acute Myo-
cardial Infarction (AMI), Major Depressive Disorder (MDD).

prognosis [39]. HP plasma levels were consid-
erably higher in individuals with MDD vs. he- 
althy controls or mildly depressed individuals 
[40]. Therefore, oxidative stress may be a criti-
cal pathway for MDD-AMI, and HP may be an 
important mechanism through which MDD and 
AMI mutually increase the risk of morbidity. 
However, the impact of different HP gene vari-
ants on the prognosis of patients with MDD 
needs further exploration.

LCN2, also called neutrophil gelatinase-asso- 
ciated lipocalin (NGAL), encodes a cytokine 
secreted primarily by adipocytes. LCN2 overex-
pression has anti-inflammatory and antioxidant 

cytoprotective effects that reduce cardiomyo-
cyte death and remodeling [41, 42]. Low 
expression of LCN2 in hippocampal neurons 
contributes to the onset of depression. In addi-
tion, LCN2 may lead to the comorbidity bet- 
ween myocardial infarction and depression 
through inflammation [43].

The NFKBIA-encoded protein mediates the ex- 
pression of pro-inflammatory genes that are 
critically involved in atherosclerosis-like diseas-
es [44]. Expression of NFKBIA, a stress-related 
gene, is elevated in the hippocampal and amyg-
dala regions of mice with posttraumatic stress 
disorder [45]. High expression of NFKBIA may 
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Table 3. Acute myocardial infarction (AMI) and Major depressive disorder (MDD) gene-targeted drugs

Term P-value Combined 
Score Genes

GLYCOPROTEIN BOSS 3.91E-09 3473.479 HP; LCN2; TLR2; ICAM1; LTF
POTASSIUM PERSULFATE CTD 00000451 6.45E-08 10443.16 LCN2; S100A9; LTF
maltotriose BOSS 4.51E-07 1626.416 HP; TLR2; ICAM1; LTF
IRON BOSS 4.82E-07 1592.053 HP; LCN2; ICAM1; LTF
trimethoprim BOSS 5.48E-07 1526.976 LCN2; TLR2; ICAM1; LTF
Isoguanine BOSS 5.59E-07 1516.576 HP; TLR2; ICAM1; LTF
hydrocortisone BOSS 6.32E-07 1456.666 HP; TLR2; ICAM1; LTF
Sodium dodecyl sulfate CTD 00006753 2.47E-06 2236.6 S100A9; TLR2; ICAM1
simvastatin CTD 00007319 3.49E-06 824.7797 NFKBIA; S100A9; TLR2; ICAM1
estradiol CTD 00005920 4.86E-06 1533239 NFKBIA; VCAN; HP; LCN2; S100A9; TLR2; ICAM1; LTF

Figure 7. Transcription Factor (TF)-common gene regulatory network. The interrelationship between transcription 
factors and critical genes, dark green octagon represents critical genes, other color octagons represent TFs that 
can only regulate the corresponding core genes, sky blue quadrilateral represents TFs regulating two critical genes, 
the lavender triangle represents TFs regulating three critical genes, red quadrilateral represents TFs regulating four 
critical genes.

contribute to suicidal behavior in depressed 
patients through the pathways of apoptosis, 
cell death, and inflammation [46]; thus, this 
gene may be involved in the mechanism by 
which AMI causing depression.

S100A9 is a potential genetic marker for AMI 
[47]. In AMI-related reperfusion injury, S100A9 
damages cardiomyocytes by inhibiting mito-
chondrial function, and S100A9-neutralizing 
antibodies significantly attenuate myocardial 
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Table 4. Detailed information on eight critical genes
Gene Full name Gene-related function
TLR2 Toll Like Receptor 2 Toll-like receptors (TLRs) are single transmembrane cell surface receptors that 

play a key role in the innate immune system. 
HP Haptoglobin Hp, also known as haptoglobin, reduces tissue damage caused by oxidative 

stress by binding to free hemoglobin. 
ICAM1 Intercellular Adhesion 

Molecule 1
ICAM1 is a cell-surface glycoprotein that is involved in the binding of a cell to 
another cell or extracellular matrix. ICAM1 is commonly expressed on endo-
thelial and immune system cells and plays a role in cell proliferation, differen-
tiation, locomotion, transportation, apoptosis and tissue construction. 

LCN2 Lipocalin 2 LCN2, also known as neutrophil gelatinase-associated calcitonin (NGAL), is 
a cytokine mainly secreted by adipocytes. Overexpression of LCN2 can exert 
cellular protective mechanisms through anti-inflammatory and antioxidant 
activities and reduce cardiac myocyte death and remodeling. 

LTF Lactotransferrin LTF, a member of the transferrin gene family, has antimicrobial activity and is 
an important component of the non-specific immune system. 

VCAN Versican VCAN is a large chondroitin sulfate proteoglycan that plays a role in intercel-
lular signaling and in connecting cells to the extracellular matrix. It also plays a 
role in diseases such as wound healing and tissue remodeling. 

S100A9 S100 Calcium Binding 
Protein A9

S100A9 leads to myocardial cell damage by inhibiting mitochondrial function.

NFKBIA NFKB Inhibitor Alpha NFKBIA plays an important role in atherosclerotic diseases by regulating the 
expression of pro-inflammatory genes. 

infarction-related reperfusion injury [48]. Addi- 
tionally, higher S100A9 levels during a myocar-
dial infarction exacerbate the risk of heart fail-
ure [49]. The unexplored relationship between 
S100A9 and MDD could be a new research 
direction.

Toll-like receptors (TLRs), a family of transmem-
brane proteins that bind primarily to microbial 
products, play a central role in innate immunity 
by recognizing pathogens and damage-related 
molecular patterns and are associated with a 
range of inflammatory and autoimmune dise- 
ases [50]. Damage to cardiomyocytes in mice 
with myocardial infarction is attenuated by the 
inhibition of TLR2 [51]. A TLR profile can pre- 
dict the response to antidepressant treatment. 
Elevated TLR2 levels may contribute to suicide 
in patients with MDD [46], and the TLR2 levels 
decrease in depressed patients after treat-
ment [52]. Our GO analysis suggested that toll-
like receptors are essential for the hub genes  
to function. KEGG analysis also revealed that 
immunity and inflammation are important path-
ways for MDD-AMI. Therefore, TLR2 may be a 
key mechanism underlying MDD-AMI.

VCAN, encoding a large chondroitin sulfate pro-
teoglycan, is involved in intercellular signaling 

and connecting cells to the extracellular matrix 
[53], as well as in wound healing and tissue 
remodeling. Elevated VCAN expression was ob- 
served in patients with AMI [54]. VCAN gene 
variants may contribute to the onset of depres-
sion through alterations in the microstructural 
integrity of brain white matter [55]. Here, we 
found that orthopedic disorders are a common 
complication of MDD-AMI; therefore, this gene 
may contribute to this complication. 

LTF belongs to the family of transferrin genes, 
and the protein it encodes has anti-microbial 
activity, making it an essential component of 
the non-specific immune system. This transfer-
rin regulates iron homeostasis, acts as a host 
defense against several microbial infections, 
has anti-inflammatory activity, regulates cell 
growth and differentiation, and protects ag- 
ainst cancer progression and metastasis. LTF 
and its peptides have anti-microbial, anti-viral, 
anti-fungal, and anti-parasitic activities [56]. 
However, as it has not been associated with 
MDD-AMI, this could provide a new area for 
research.

Intercellular cell adhesion molecule-1 (LCAM1), 
a cell surface glycoprotein that mediates the 
binding of cells to each other or the extracellu-
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Figure 8. Biomarker identification of AMI and MDD. 
Core gene verification (A) and (B) conducted manda-
tory normalization of GSE60993 and GSE38206 data 
sets, respectively. (C) Hierarchical cluster heat map 
of differentially expressed genes in the GSE60993 
dataset. (D) Hierarchical cluster heat map of differ-
entially expressed genes in the GSE38206 dataset. 
(E) The intersection of GSE60993 and GSE38206 
differentially expressed genes. Acute Myocardial In-
farction (AMI), Major Depressive Disorder (MDD).

lar matrix, is commonly expressed on endothe-
lial cells [57] and immune system cells [58]. It 
is critical for cell proliferation, differentiation, 
motility, transport, apoptosis, and tissue con-
struction. Because MDD is closely related to 
immunity [13], it could increase the risk of AMI 
through an immune pathway that affects the 
function of endothelial cells. Currently, there is 
no information about the relationship between 
LCAM1 and MDD-AMI.

Enrichment analyses revealed that the path-
ways of hub genes were primarily enriched in 
regulating TFs, suggesting that TFs are im- 
portant for MDD-AMI. Krüppel-like factor 11 
(KLF11) is a key regulator of MDD; the expres-
sion of KLF11 increases by 44% in the post-
mortem cerebral cortex of patients with MDD 
compared with healthy subjects [59]. KLF9,  
a direct glucocorticoid receptor target gene 
induced by stress, mediates the action of glu-
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cocorticoids on brain gene expression and neu-
ronal structure [60]. Zinc finger protein 580 
(ZNF580) regulates vascular endothelial prolif-
eration and migration [61]. Zinc finger protein 
24 (ZNF24) inhibits the platelet-derived growth 
factor receptor beta (PDGFR-β), thereby inhibit-
ing the progression of atherosclerosis.

Comorbidity analysis suggested that MDD-AMI 
may be complicated by cardiovascular diseas-
es such as preeclampsia, myocarditis, cardio-
myopathy, coronary artery diseases, orthope-
dic diseases such as osteoporosis and bone 
resorption disease, pancreatic diseases such 
as pancreatitis, and various other diseases 
such as renal failure, tuberculosis, and uveitis. 
MDD accelerates aging and increases the inci-
dence of cardiovascular diseases and osteo- 
porosis [62]. MDD is seven times more preva-
lent in patients with pancreatic cancer than in 
the general population [63]. 

No drugs are available for MDD-AMI treatment, 
and new drug development is costly and time-
consuming. Therefore, bioinformatics approa- 
ches to find drugs that target hub genes could 
greatly improve efficiency and reduce costs. We 
suggest that hydrocortisone, simvastatin, and 
estradiol might be effective in treating MDD-
AMI. The dysregulation of the hypothalamic-
pituitary-adrenal axis and abnormal levels of 
cortisol secretion leads to shorter telomeres 
and reduced stress capacity in patients with 
MDD [64]. Therefore, hydrocortisone may im- 
prove the symptoms of patients with MDD-AMI. 
Because inflammation may lead to depression, 
the anti-inflammatory drug simvastatin may ef- 
fectively treat AMI and MDD, thereby exhibiting 
anti-atherosclerotic and antidepressant roles 
[65]. Estradiol activates stress circuits in the 
bilateral amygdala, hippocampus, and hypo-
thalamus. Estradiol regulation is low in women 
with MDD resulting in improved MDD in women 
[66]. 

This study has certain limitations. GSE98793 
and GSE66360 are the largest available datas-
ets for MDD and AMI, however, their sample 
sizes are still relatively small. Therefore, further 
mining experiments will require larger sample 
sizes. Additionally, we lacked data on patients 
with MDD-AMI and relevant gene sets. Further 
validation is needed for the diagnostic markers 
identified in this study. 

Conclusions

The pathogenesis of AMI combined with MDD 
may be related to the regulation of transcrip- 
tion factors and the modulation of immunity 
and inflammation by genes common to MDD 
and AMI. Bioinformatics analysis identified 27 
genes common to MDD and AMI. Eight critical 
genes and biomarkers (TLR2, HP, ICAM1, LCN2, 
LTF, VCAN, S100A9, and NFKBIA) were identi-
fied, and a TF-gene regulatory network was con-
structed to find relevant transcription factors. 
Complications related to MDD and AMI and 
potential treatment drugs were identified, pro-
viding new information for the clinical diagnosis 
and treatment of MDD complicated with AMI. 
Through dataset validation, we identified TLR2 
and VCAN as possible biomarkers of MDD com-
plicated with AMI.
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