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Abstract: Objective: Immunogenic cell death (ICD) of tumor cells is characterized by the induction of adaptive and 
innate immune responses, which in turn activates the immune surveillance and improves the efficacy of immu-
notherapy. In this study, we aimed to investigate the effect of ICD on the prognosis and the efficacy of immuno-
therapy in patients with triple-negative breast cancer (TNBC). Methods: TNBC samples from The Cancer Genome 
Atlas-Breast Cancer (TCGA-BRCA) dataset were divided into two subtypes (ICD-high and ICD-low) based on the ICD 
status by using the consensus clustering method, and their genomic landscape and immune landscape were de-
lineated. Furthermore, we established an ICD-related prognostic model to predict the efficacy of immunotherapy 
and the survival of TNBC. Results: Our study showed that a poor prognosis of TNBC was associated with ICD-high 
subtype, while a favorable outcome was associated with ICD-low subtype. The immune landscape profiling results 
revealed that ICD-high subtype presented an immune-hot phenotype, whereas ICD-low subtype was associated with 
an immune-cold phenotype. Furthermore, our prognostic model predicted that the high-risk score group had a poor 
overall survival (OS), which was consistent with the actual data in the Gene Expression Omnibus (GEO) dataset. We 
also used tumor immune dysfunction and exclusion (TIDE) to determine the predictive significance of our ICD risk 
signature in immunotherapy efficacy, and found that ICD high-risk group had the highest response rate to immuno-
therapy in the immunotherapy response group. Conclusion: Our results reveal a correlation between ICD status and 
alterations in the tumor immune microenvironment in patients with TNBC. This finding might help guide clinicians in 
immunotherapy application for TNBC patients.
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Introduction

Immunogenic cell death (ICD) is a type of can-
cer cell death that can trigger the host immune 
response and reshape the immunosuppressive 
tumor microenvironment (TME) by attracting 
innate and adaptive immune cells [1, 2]. ICD ini-
tiates adaptive immune responses by releasing 
damage-related molecular patterns (DAMPs) 
and the subsequent interaction of DAMPs with 
pattern recognition receptors (PRRs) expressed 
by innate immune cells [3, 4], which induces a 
cascade of cellular responses and triggers an 
adaptive immune response to kill tumor cells 
[3, 5-7]. In support of this notion, emerging pre-

clinical evidence has shown that ICD can be 
used to reinforce the therapeutic effects [8-10]. 
However, the application of ICD in clinical prac-
tice remains to be fully determined, and further 
clinical studies should consider patients’ clini-
cal background to evaluate the efficacy of ICD 
[11, 12]. Therefore, identifying biomarkers that 
stratify patients who will benefit from ICD is 
important for precision immunotherapy.

Triple-negative breast cancer (TNBC) is the 
most malignant subtype of breast cancer (BC) 
with high recurrence rate and the worst progno-
sis [13]. The immune system is usually consid-
ered to be an important component of BC, with 
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TNBC being the most immunogenic subtype 
[14]. Since the TNBC lacks a specific therapeu-
tic targets, chemotherapy has been the stan-
dard treatment for TNBC during the past 
decades, whereas immunotherapy, including 
immune checkpoint inhibitors (ICIs), antibody-
drug conjugates, and adopted T-cell treatment 
is showing great potential in recent years [15, 
16]. Likewise, recent studies have also shown 
that neoadjuvant therapy against breast can-
cer, including TNBC, might lead to antitumor 
immune memory acquisition and thus inhibit 
tumor recurrence [17, 18]. In addition to the 
development of cancer immunotherapy, inves- 
tigating the effectiveness of the therapeutic 
strategy is another focus on the clinical applica-
tion of immunotherapy. Accordingly, identifying 
biomarkers that can predict the efficacy of 
immunotherapy in TNBC is urgently needed.

In this study, we aimed to establish an ICD-
associated prognostic model that predicts the 
prognosis of TNBC and to construct a new clas-
sification model for TNBC patients according to 
their ICD characteristics. Our findings may be 
helpful in guiding precision immunotherapy for 
TNBC.

Materials and methods

Data source and collection

The RNA-seq transcriptome and the corre-
sponding clinical information of 116 TNBC 
patients and 114 normal samples were collect-
ed in the TCGA-BRCA database (https://can-
cergenome.nih.gov/) through the Xena platform 
(http://xena.ucsc.edu/) for the training cohort. 
Furthermore, we downloaded the expression 
profile, along with the clinical information of 
patients from GSE65194 (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE651- 
94) for the validation cohort.

Consensus clustering

The ConcensusClusterPlus (v1.60.0) R pack-
age was used to determine the reliable and 
stable clusters related to ICD. Subsequently, 
we assessed the number of rationalized clus-
ters from k = 2 to 9 and replicated the above 
steps 1000 times to obtain realistic results. 
The above results were visualized by the heat-
map (v1.0.12) R package.

Identification of differentially expressed genes

We used the Wilcoxon rank sum test algorithm 
to identify genes that were significantly differ-
entially expressed between ICD-high and ICD-
low groups. The differential expressed mRNAs 
was extracted when P < 0.05 and |log2 (fold 
change)| > 0.5.

Pathway enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis was con-
ducted to identify the differentially enriched 
biological pathways between the ICD-low and 
ICD-high subtypes by using the cluster profile 
(v4.4.4) R package. Radar plots were used to 
display the results of GO and KEGG functional 
enrichment analysis.

Immune cell infiltration analysis between the 
ICD-high and ICD-low subtypes

To explore the immune cell composition in 
TNBC patients, we utilized TIMER v2.0 to esti-
mate the fraction of 22 immune cell types in 
these samples, and the resulting TIMER values 
were defined as the immune cell infiltration 
composition of each sample. Furthermore, we 
compared the immune cell filtration of 22 
immune cell types between the ICD-high and 
ICD-low groups.

Somatic mutation analysis

Somatic mutation data of the TNBC patients 
were acquired from TCGA Genomic Data 
Commons (GDC) Data Portal in “maf” format. 
We screened the top 30 frequently mutated 
genes in these samples, and waterfall plots 
were then conducted using the map tools 
(v2.12.0) R package.

Survival analysis

Kaplan-Meier (KM) analysis was performed to 
compare the overall survival (OS) between the 
ICD-high and ICD-low subtypes using the 
survminer (v 0.4.9) and survival (v3.2.7) R 
packages. The univariate Cox regression analy-
sis was conducted to identify the prognostic 
values of the ICD-associated genes, while the 
multivariate Cox regression analysis was used 
to verify that the risk score as prognostic bio-
marker for OS in TNBC.
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Development of the ICD-associated risk signa-
ture

The genes significantly associated with ICD 
that were identified by the univariate Cox 
regression analysis were then subjected to  
a (Least Absolute Shrinkage and Selection 
Operator) LASSO Cox regression analysis to 
construct an ICD-related risk signature. LASSO 
is a commonly used regression algorithm that 
can combine variable selection and regulariza-
tion which improves the performance in the 
resulting statistical model.

Prediction of immunotherapy outcomes

Tumor immune dysfunction and exclusion 
(TIDE, http://tide.dfci.harvard.edu) analysis 
was employed to predict the different ICD-
related risk scores between immunotherapeu-
tic response and non-response groups.

Results

ICD-associated subtypes are related to clinical 
outcome

To determine the list of ICD-associated genes 
that will be used in our study, we extensively 
reviewed the literature and mostly referred to 
the study by Abhishek et al. Then, the expres-
sion of these ICD-associated genes was exam-
ined in TNBC and normal samples in the TCGA-
BRCA cohort (Figure 1A). We found that most  
of the ICD-associated genes were abnormally 
expressed in TNBC samples, including FOXP3, 
CD4, IFNG, PRF1, CXCR3, CD8A, HMGB1, 
HSP90AA1, ATG5, IFNB1, BAX, PDIA3, CALR, 
MYD88, and TNF (Figure 1B). Furthermore, we 
used the consensus clustering analysis to  
identify clusters associated with ICD in these 
TNBC samples. Based on the distinct ICD gene 
expression pattern, we classified the TCGA 
cohort into two clusters after k-means cluster-
ing (Figure 1C-E). Specifically, the cluster C1 
had high expression of ICD-related genes, re- 
presenting a subtype of ICD-high, while the 
cluster C2 showed lower expression of ICD-
related genes, representing a subtype of ICD-
low (Figure 1F, 1G). Moreover, overall survival 
analysis suggested that these two ICD-as- 
sociated subtypes had different clinical out-
comes, as a poor prognosis was associated 
with the ICD-high subtype, whereas a favorable 
outcome was associated with ICD-low subtype 
(Figure 1G).

Analysis of differentially expressed genes 
(DEGs) and key signaling pathways in each ICD 
subtype

Since these two ICD-associated subtypes 
exhibited differential prognosis, we sought to 
elucidate the mechanisms involved in the prog-
nosis by examining the DEGs and the different 
key signaling pathways between these two sub-
types. We identified 362 dysregulated genes in 
the ICD-high subtype (Figure 2A, 2B), and the 
upregulated genes were enriched in pathways 
related to immune activity, including the cyto-
kine-mediated signaling pathway, cellular res- 
ponse to interferon-gamma, chemokine-medi-
ated signaling pathway, cytokine-cytokine re- 
ceptor interaction, natural killer cell-mediated 
cytotoxicity, and chemokine signaling pathway 
(Figure 2C). This suggested that the ICD-high 
subtype was associated with an immune active 
microenvironment.

Differential genomic landscape between the 
ICD-low and ICD-high subtypes

We compared the genomic landscape between 
these two ICD subtypes and evaluated the 
tumor-intrinsic genomic changes in the ICD-
high and ICD-low subtypes of the TCGA-TNBC 
cohort. The data indicated that the ICD-high 
subtype exhibited a significantly higher muta-
tion rate of FLG, PDILT, and AHCTF1 than in the 
ICD-low subtype (Figure 3A, 3B). In the TCGA-
cohort, the ICD ssGSEA (gene set enrichment 
analysis) score was higher in the CLIP2, KIF5C, 
SEMA4F, SGIP1, and SMAP1 mutant groups 
than in the wild-type groups, while the ICD ssG-
SEA score was lower in AIRD1B, DUSO27, 
OR5I1, and OBSCN mutated groups than in wild 
type groups (P < 0.05, Figure 3C). Furthermore, 
the ICD-low subtype had higher tumor mutation 
burden (TMB) levels compared to the ICD-high 
subtype (Figure 3D).

Notably, we assessed the co-occurrence and 
mutual exclusion mutations among the mutant 
genes with high-frequency and discovered that 
SMG1 mutations tended to be concurrent with 
PIK3CA mutations in the ICD-high subtype, 
whereas PCDH15 mutations were often con-
current with CHRNB2 mutations (Figure 3E). In 
contrast, in the ICD-low subtype, TP53 muta-
tions were generally mutually exclusive with 
mutations in KIF26B. For the ICD-low tumors, 
ARID1B mutations were inclined to concur with 
TTN mutations, while SPTA1 gene mutations 
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Figure 1. ICD-associated subtypes by consensus clustering. A. Heatmap plot shows the expression of 33 ICD-as-
sociated genes between TNBC and normal samples; B. Boxplots show 12 tumor-specific ICD-associated gene ex-
pression profiles among normal and TNBC samples in TCGA database; C. Heatmap depicts consensus clustering 
solution (k = 2) for 33 genes in TCGA TNBC samples; D, E. Delta area curve of consensus clustering indicates the 
relative change in area under the CDF curve for k = 2 to 9; F. Heatmap of 33 ICD-related gene expressions in differ-
ent subtypes. Red represents high expression and blue represents low expression; G. Kaplan-Meier curves of OS in 
ICD-High and ICD-Low subtypes in the TCGA TNBC cohort. Abbreviations: ICD, Immunogenic cell death; TNBC, Triple-
negative breast cancer; TCGA, The cancer genome atlas; CDF, Cumulative distribution function; OS, Overall survival; 
BRCA, Breast cancer. *P < 0.05, **P < 0.01, ***P < 0.001, & ****P < 0.0001.
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were inclined to concur with DLC1 or DNAH17 
mutations (Figure 3F).

Microenvironment landscape in ICD-high and 
ICD-low subtypes

Since increasing evidence has demonstrated 
the effect of ICD in initiating the adaptive 
immune responses to eliminate tumor cells, we 
compared the composition of the TME between 
the two ICD subtypes. We found a higher 

immune score and a higher tumor heterogene-
ity in the ICD-high subtype than in the ICD-low 
subtype (Figure 4A). Then, we utilized TIMER 
combined with the LM22 signature matrix to 
assess the difference in the tumor infiltrating 
immune cells between these two ICD subtypes. 
Figure 4B shows the results of TNBC patients 
and normal samples from the TCGA cohort. As 
shown in Figure 4C, ICD-high subtype patients 
exhibited an increased proportion of memory B 
cells, M1 macrophage, activated memory CD4+ 

Figure 2. Identification of DEGs and underlying signal pathways in different subtypes. A. Volcano plot presents the 
distribution of DEGs quantified between ICD-high and ICD-low subtypes with a threshold of |log2 Fold change| > 
0.25 and P < 0.05 in TCGA cohort; B. Heatmap shows the DEG expression in different subtypes; C. Radar plots 
present the GO (left) and KEGG (right) signaling pathway enrichment analysis. The layer represents -log10 (p. adjust-
value), the orange color represents the ICD-High group, and the blue color represents the ICD-Low group. Abbrevia-
tions: DEGs, Differentially expressed genes; ICD, Immunogenic cell death; TCGA, The cancer genome atlas; GO, 
Gene ontology; KEGG, Kyoto encyclopedia of genes and genomes.
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Figure 3. Genomic landscape related to ICD subtypes. (A, B) Comparison of the differences in the mutation status in 
the top 30 genes with mutations between ICD-High (A) and ICD-Low groups (B) in the TCGA TNBC cohort. Genes were 
ranked by mutation frequency. (C) Boxplots show that CLIP2, KIG5C, SEMA4F, SGIP1, and SMAP1 gene mutations 
were significantly correlated with high ICD signatures in the ICI-cohort, while ARID1B, DUSP27, OR5I1, and OBSCN 
gene mutations are significantly correlated with low ICD signature (Wilcoxon rank sum test). (D) Comparison of the 
TMB in TCGA pan-cancer cohort. (E, F) Concurrence (blue) and mutual exclusion (brown) between high-frequency 
mutation genes (the top 30 genes with mutations) in ICD-High (E) and ICD-Low (F) groups. Abbreviations: ICD, Immu-
nogenic cell death; TCGA, The cancer genome atlas; TNBC, Triple-negative breast cancer; ICI, Immune checkpoint 
inhibitors; TMB, Tumor mutation burden. P < 0.1, *P < 0.05.
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Figure 4. The immune landscape of ICD-High and ICD-Low subtypes. (A) Violin plots show the median, and quartile 
estimations for each immune score, and tumor purity score; (B) Relative proportion of immune infiltration in ICD-
high and ICD-low subtypes; (C) Box plots visualize 22 immune cells between different subtypes; (D, E) Box plots 
present differential expression of multiple immune checkpoints (D), and HLA genes (E) between ICD-high and ICD-
low subtypes. Abbreviations: ICD, Immunogenic cell death; HLA, Human leukocyte antigen. *P < 0.05, **P < 0.01, 
***P < 0.001, and ****P < 0.0001.

T cells, and Tregs. Additionally, most of the 
immune checkpoints and the human leukocyte 

antigen (HLA) genes were highly expressed in 
the ICD-high subtype. In contrast, the ICD-low 
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subtype exhibited the opposite results (Figure 
4D, 4E). Together, these results demonstrated 
that the ICD-high subtype was related to the 
intense immune phenotype, while the ICD-low 
subtype was related to the weakened immune 
phenotype.

Generation and validation of the ICD risk sig-
nature

We further established a prognostic model 
based on the genes associated with ICD. First, 
the univariate Cox analysis revealed that 13 

Figure 5. Construction and validation of the ICD risk signature. A. Univariate Cox analysis evaluates the prognostic 
value of the ICD genes in terms of OS; B, C. Lasso Cox analysis identified 13 genes most associated with OS in TCGA 
dataset; D. Risk score distribution, survival status of each patient, and heatmaps of prognostic 5-gene signature in 
TCGA database; E, F. Kaplan-Meier analyses demonstrate the prognostic significance of the risk model in TCGA and 
GSE65194 cohort. Abbreviations: HR, Hazard ratio; ICD, Immunogenic cell death; OS, Overall survival; Lasso, Least 
absolute shrinkage and selection operator; TCGA, The cancer genome atlas.
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ICD-associated genes were strongly related to 
the survival of patients (Figure 5A). We then 
tested the ICD-related genes and utilized them 
in LASSO regression analysis to construct the 
prediction model (Figure 5B, 5C). The risk 
scores were calculated based on the algori- 
thm: Risk score = 0.30048840 * LY96 + 
(-0.29873897) * IFNG + 0.09035484 * TLR4 
+ (-0.24929602) * IFNB1 + 0.06176552 * IL6. 
Importantly, we further analyzed the associa-
tion of the risk score with survival status and 
found that the low-risk score cohort had more 
samples with alive status than that in the high-
risk score cohort (Figure 5D). The prognostic 
value of the ICD risk signature in TNBC was fur-
ther evaluated by using KM analysis (Figure 
5E). According to analysis with TCGA samples, 
the high-risk score group exhibited a poor OS, 
consistent with the data in the GEO dataset 
(Figure 5F).

The immune landscapes of the ICD-high and 
ICD-low subtypes

Given the role that ICD plays in antitumor immu-
nity, we exploited the correlation between ICD 
risk score and TME. Our results demonstrated 
that patients with high-risk score presented a 
positive correlation with M1 macrophages, acti-
vated memory CD4+ T cells, and CD8+ T cells 
(Figure 6A). Furthermore, we verified these 
results in the GEO cohort (Figure 6B). Moreover, 
we determined the predictive value of the ICD 
risk signature in immunotherapy efficacy by 
using TIDE and revealed that the ICD high-risk 
group had the highest response rate to immu-
notherapy in the immunotherapy response 
group, indicating that groups at high risk could 
be more likely to benefit from immunotherapy 
compared to groups at low risk (Figure 6C).

Discussion

The characteristic of immunogenic cell death 
(ICD) is the secretion of DAMPs to the immune 
system, where DAMPs attract and activate 
innate immune cells via interaction with various 
PRRs, as well as subsequently present anti-
gens to T cells to trigger the immune response 
[5, 6]. As a result, ICD plays an important role in 
eliciting the host immune system to exert an 
anticancer response [19]. Accordingly, many 
studies have focused on the immunotherapeu-
tic application of ICD, and many novel immuno-

therapeutic regimens for ICD have been pro-
posed [18, 20, 21]. Therefore, it is critical to 
identify ICD-related biomarkers that will predict 
the efficacy of ICD immunotherapy in patients 
with TNBC. In this study, we confirmed that the 
expression of ICD-associated genes was inti-
mately correlated with the clinical outcomes 
and the TME of TNBC. Our study also classified 
the tumors into ICD-high and ICD-low subtypes 
by consensus clustering of the ICD-associated 
genes. We showed that ICD-high subtype was 
enriched in tumor infiltrating immune cells  
and had upregulated expression of immune 
checkpoints, which might show a better 
response to immunotherapy. In addition, we 
constructed a prognostic risk signature with 33 
ICD-associated genes, which was used to 
divide the TNBC patients into two ICD sub-
groups. Furthermore, this risk signature was 
verified in predicting the prognosis of patients 
with TNBC. Our results supported the findings 
from other studies. For example, it was report-
ed that a signature consisting of 34 ICD-
associated genes was correlated with the sur-
vival of women with ovarian cancer, breast can-
cer, and lung cancer. Additionally, a significant 
association was found between some of the 
ICD-associated genes, e.g., LY96, IFNG, TLR4, 
IFNB1, and IL6, and the immune-active micro-
environment in TNBC patients. Since tumor 
immunotherapy can induce anti-tumor immune 
responses and activate long-term immunologi-
cal memory responses [22], immunotherapy 
has significantly changed the paradigm of can-
cer therapy. Nevertheless, a low response rate 
caused by an immunosuppressive tumor micro-
environment is still a major barrier to overcome. 
Considering that ICD can attract innate immune 
cells and release DAMPs to promote DC matu-
ration, T cell activation, and CTLs infiltration, 
which elicits antitumor immune responses [23, 
24], we classified the patients into two ICD  
subtypes by consensus clustering. Of these, 
the ICD-high subtype showed an immune-
active microenvironment, while the ICD-low 
subtype presented an immune-suppressive 
microenvironment.

In summary, our results reveal the correlation 
of ICD subgroups with the alterations in the 
immune microenvironment of patients with 
TNBC. This finding might guide clinicians in the 
selection of immunotherapy for the treatment 
of TNBC patients. Furthermore, our study pro-
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Figure 6. Association of ICD risk signature with the tumor microenvironment. (A, B) Scatter plots show the correlation of risk score with the infiltration of macro-
phages M1, T cells CD4+ memory activated, and T cells CD8+ in the TCGA TNBC cohort (A), and further validated in the GSE65194 cohort (B); (C) Box plot presents 
the association of ICD risk score with immunotherapy response. Abbreviations: ICD, Immunogenic cell death; TCGA, The cancer genome atlas; TNBC, Triple-negative 
breast cancer; TIDE, Tumor immune dysfunction and exclusion.
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poses a classification system based on the 
ICD-related signature to predict the prognosis 
and immunotherapeutic response which may 
be useful in clinical practice.
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