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Abstract: Background: Alzheimer’s disease (AD) is a widespread neurodegenerative disease that primarily affects 
the elderly. Unfortunately, the lack of convenient early diagnostic tools makes it difficult to intervene and treat the 
disease during its initial stages. Methods: We obtained four bulk and single-cell RNA-sequencing peripheral blood 
samples related to AD from public databases. Using Boruta and LASSO machine learning algorithms, we screened 
the signature genes and constructed a diagnostic model using lightGBM. The model was further validated in a test 
cohort. Additionally, we extracted hub biomarkers using the protein-protein interactions method and validated them 
in a single-cell RNA-seq dataset. Results: Our analysis revealed the identification of 37 AD-related peripheral blood 
signature genes, with their main enrichment in ribosome-related biological functions. Four core biomarkers, RPL24, 
RPL5, RPS27A, and RPS4X, were identified and exhibited good diagnostic power in the testing cohort. Immune 
infiltration analysis revealed a higher proportion of CD4+ T cells in AD patients’ peripheral blood compared to 
healthy controls, with a negative correlation with the four ribosome-associated core genes. Validation in a single-cell 
RNA-seq dataset confirmed these findings. Conclusions: Ribosomal family proteins have the potential to serve as 
biomarkers for the diagnosis and treatment of AD, and are associated with CD4+ T cell activation. 

Keywords: Neurodegenerative diseases, machine learning algorithms, bioinformatics, serum biomarker, single-
cell sequencing

Introduction

Alzheimer’s disease (AD) is a neurodegenera-
tive disorder that is characterized by progres-
sive cognitive decline and memory impairment. 
The typical pathological hallmarks of AD in- 
clude extracellular plaques of amyloid β (Aβ) 
depositions and neurofibrillary tangles, which 
are formed due to hyperphosphorylation of 
microtubule-associated tau protein. These pa- 
thological changes are accompanied by neuro-
nal loss, synaptic degeneration, glial cell activa-
tion, and neuroinflammation [1]. The burden of 
AD on patients and their families is significant, 
and it has become a significant social problem. 
Unfortunately, there is currently no cure for AD, 
and available drugs can only delay the progres-
sion of the disease. Therefore, early diagnosis 

and intervention are critical. Imaging tech-
niques, such as positron emission tomography 
(PET) and magnetic resonance imaging (MRI), 
are commonly used for the early diagnosis of 
AD. However, the high cost of PET and the low 
specificity of MRI present significant challenges 
to their practical application [2].

Recently, molecular biomarkers that reflect 
changes in the structure and function of neu-
rons have been discovered, which has greatly 
improved the efficiency of AD diagnosis. For 
example, cerebrospinal fluid biomarkers, such 
as Aβ40, Aβ42, and tau, can directly reflect  
AD neuropathology [3]. However, the invasive 
nature of cerebrospinal fluid collection and the 
associated risks limit their use for screening 
healthy individuals. As a result, there is a grow-
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ing need to identify biomarkers that are specif-
ic, sensitive, and minimally invasive.

Recent research has examined the use of 
peripheral blood biomarkers for AD diagnosis 
[4]. However, the abundance of biomarkers in 
the blood that reflect neuropathological dam-
age to brain tissue is extremely low due to  
the blood-brain barrier. Traditional techniques, 
such as enzyme-linked immunosorbent assays 
and electrochemiluminescence, are not sensi-
tive enough for quantitative and efficient detec-
tion. Therefore, the value of blood indicators in 
AD diagnosis is limited. However, the develop-
ment of advanced detection techniques, such 
as genomic, proteomic, and metabolomic anal-
ysis, is anticipated to lead to the identification 
of reliable and widely applicable peripheral 
blood biomarkers for early screening of AD.

AD is a complex disease that involves interac-
tions between multiple factors, and it is chal-
lenging to understand using simplified models. 
Machine learning has emerged as a powerful 
tool for identifying patterns in complex data 
and can be used to diagnose and determine 
prognoses in AD. Previous studies have demon-
strated the application of machine learning in 
identifying potential biomarkers for AD by ana-
lyzing gene expression profiles and construct-
ing differential co-expression networks [5]. 
Other studies have explored the role of long 
non-coding RNA expression in AD pathogenesis 
[6]. Despite these promising findings, the appli-
cation of machine learning in AD diagnosis and 
prognosis remains in its early stages.

In this study, we used transcriptome and sin-
gle-cell transcriptome data from public data-
bases to identify serum biomarkers for AD 
using a range of bioinformatics methods and 
machine learning algorithms. We also investi-
gated immune infiltration in AD. Figure 1 pro-
vides an overview of our research methodo- 
logy.

Methods

Datasets preprocessing in training, testing, 
and validation cohorts

Four datasets related to Alzheimer’s disease 
were acquired through the Gene Expression 
Omnibus (GEO). All datasets were collected 
from blood samples taken from patients with 
AD or healthy controls. Two of these datasets, 

GSE63060 and GSE63061, were selected for 
use as the training cohort. Both datasets were 
based on the GPL6947 chip and were derived 
from peripheral blood samples. GSE63060 
includes 145 AD samples and 104 control  
samples, while GSE63061 has 139 AD sam-
ples and 134 control samples [7]. The RNA- 
Seq dataset GSE140829 was used for the  
testing cohort, consisting of 204 AD blood sam-
ples and 249 healthy control samples [8]. 
Additionally, we used a single-cell RNA-Seq 
dataset GSE181279, which contains 36,849 
peripheral blood mononuclear cells from three 
AD and two healthy control samples, as the vali-
dation cohort [9]. Detailed information about 
the datasets used in this study is shown in 
Table 1. The clinical baseline characteristics of 
the AD and control groups from the training and 
testing cohorts are displayed in Table 2.

To begin the analysis, the microarray gene 
datasets GSE63060 and GSE63061 were 
downloaded, normalized, and log2-transformed 
using the “limma” package in R software (ver-
sion 4.2). The raw RNA-Seq dataset GSE1408- 
29 was annotated using the human genome to 
build 38 references and formatted to tran-
scripts per million (TPM) data for subsequent 
analysis. Finally, samples in the single-cell 
RNA-Seq (scRNA-Seq) dataset GSE181279 
were normalized, and batch effects were elimi-
nated using the canonical correlation analysis 
in the “Seurat” R package (version 4.0) [10].

Filtering for differentially expressed genes

To identify differentially expressed genes 
(DEGs) from the GSE63060 and GSE63061 
datasets, we applied the “sva” package [11] for 
data integration and batch correction. The 
“limma” package [12] was then utilized to ana-
lyze the expression data for DEG identification. 
Our criteria for DEG screening were set at |log-
2Foldchange| >1 and adjusted P < 0.05.

Features selection using Boruta and LASSO

In this section, we describe the methods used 
to select relevant features for further analysis. 
Firstly, we applied the Boruta algorithm to 
exclude genes that have low correlation with 
AD. To accomplish this, we reshuffled the origi-
nal features to obtain new features and trained 
a random forest model based on the input fea-
tures. The importance of each feature was then 
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calculated, and relevant features were selected 
from the original features using the feature 
importance in the new features as a reference. 
The iterations were stopped after all features 
were judged to be important or useless. This 
process helped to identify signature genes that 
may be associated with the onset and develop-
ment of AD.

Next, we continued the screening of signa- 
ture genes using the LASSO algorithm, which 
builds a regularized linear model and filters 
important features for classification by elimi-
nating features that are worthless or redun-
dant. To assess the discriminative ability of the 
hub genes, we applied principal component 
analysis (PCA).

To implement these methods, we utilized the 
“Boruta” (v7.0) [13] and “glmnet” (v4.1) [14] R 
packages for filtering and analyzing genetic 
data. By conducting this analysis, we aimed to 
select genes that are most relevant to AD, and 
that may be used as potential biomarkers or 
therapeutic targets.

Construction and validation of the diagnostic 
model in the testing cohort

After selecting signature genes using the 
Boruta and LASSO algorithms, we constructed 
an Alzheimer’s disease diagnosis model using 
the lightGBM algorithm. To evaluate the mod-
el’s performance, we utilized the testing cohort 
GSE140829 and conducted PCA to estimate 

Figure 1. The flow chart of this study.
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the model’s ability to distinguish Alzheimer’s 
disease samples from healthy controls. We 
used the “lightGBM” R package (v.3.3.2) [15] 
for model construction and receiver operating 
characteristic (ROC) analysis to evaluate the 
model’s performance.

Hub biomarker identification

In order to identify the core biomarkers associ-
ated with AD, we conducted a protein-protein 
interaction (PPI) network analysis using genes 
from the diagnostic model. The String online 
tool (https://www.string-db.org/, v11.5) was 
employed with a high confidence score of 0.7  
to construct the PPI network. Subsequently, we 
performed enrichment analysis to identify 
genes that play pivotal roles in the network. To 
identify the hub biomarkers, we conducted 
molecular complex detection (MCODE) analysis 
on the PPI network. The predictive power of 
these hub biomarkers was then analyzed and 
demonstrated in the training and testing 
cohorts. Additionally, we presented the expres-
sion profile of each core gene in different 
cohorts for both AD and control data using box 
plots.

Immune cell infiltration and association with 
hub biomarkers

To further explore the relationship between hub 
biomarkers and immune cell infiltration in AD, 
we utilized the CIBERSORT algorithm [16]. To 

analyze immune cell fraction in the merged 
gene expression matrix of GSE63060 and 
GSE63061. The gene expression matrix of the 
training dataset was uploaded to the official 
online platform (https://cibersortx.stanford.
edu/) to estimate the immune cell infiltration  
in each sample. Immune cells with P-values 
less than 0.05 were selected for further analy-
sis. We then calculated and demonstrated the 
correlation between immune cell infiltration 
and the expression of hub biomarkers.

Validation in sing-cell RNA seq dataset

To validate the results obtained from bulk RNA-
seq data, we further analyzed scRNA-Seq data. 
To begin with, we used the “Seurat” package  
to normalize the scRNA-Seq data and identify 
highly variable features for each sample using 
the “FindVariableFeatures” function. We then 
employed the “FindIntegrationAnchors” meth-
od to find anchors based on variable features, 
and used the “IntegrateData” function to inte-
grate the five scRNA-Seq samples. The data 
were scaled, and the cells were clustered and 
analyzed using the uniform manifold approxi-
mation and projection for dimension reduction 
(UMAP) algorithm. Cell types for cell clustering 
were identified using the CellMarker database 
[17] and the “singleR” package (v1.10) [18].

In addition, we calculated the proportions of 
various cell types in different samples and 
demonstrated expression differences of hub 

Table 1. The detailed information for gene datasets used in this study
GEO accession Platform; Data type Sample (number) Tissue Attribute
GSE63060 GPL6947; bulk RNA-seq AD (145); Control (104) Blood Training cohort
GSE63061 GPL10558; bulk RNA-seq AD (139); Control (134) Blood Training cohort
GSE140829 GPL15988; bulk RNA-seq AD (204); Control (249) Blood Testing cohort
GSE181279 GPL24676; scRNA-seq AD (3); Control (2) Blood Validation cohort
AD: Alzheimer’s disease; scRNA: single-cell RNA; GPL6947 Illumina HumanHT-12 V3.0 expression beadchip; GPL10558 Illu-
mina HumanHT-12 V4.0 expression beadchip; GPL15988 HumanHT-12 v4 Expression beadchip; GPL24676 Illumina NovaSeq 
6000 (Homo sapiens).

Table 2. The baseline characteristics of AD and control groups from training and test cohorts
Training cohort Testing cohort

AD Control P value AD Control P value
n 284 238 204 249
Gender (%) Female 184 (64.8) 143 (60.1) 0.31 104 (51.0) 139 (55.8) 0.35

Male 100 (35.2) 95 (39.9) 100 (49.0) 110 (44.2)
Age (Year, mean (SD)) 76.62 (6.73) 74.02 (6.32) 0.112 73.00 (7.09) 73.66 (6.25) 0.288
AD: Alzheimer’s disease; SD: standard deviation.
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biomarkers across samples and different cell 
types.

Biological enrichment investigation in CD4+ T 
cells

To explore the potential mechanisms in CD4+ T 
cells, we extracted this subset cell type from 
the scRNA-Seq dataset and performed gene 
set enrichment analysis (GSEA). Unlike focusing 
on the enrichment of a few significantly differ-
ent genes, GSEA sorts all the different genes 
between the two groups of samples by logFC 
value and examines the overall trends of enrich-
ment in the gene set. This approach helps to 
prevent important but non-significant biologi- 
cal traits from being overlooked. Terms with 
adjusted P-values < 0.05 were considered sig-
nificant in our analysis.

Results

Important feature genes associated with AD

We initially identified 267 differentially ex- 
pressed genes (DEGs) from the gene expres-
sion matrix in the two combined training 
cohorts, which consisted of 131 upregulated 
and 136 downregulated DEGs (Table S1;  
Figure 2A).

To refine the selection of important feature 
genes, we applied the Boruta algorithm and 
identified 39 genes as significant feature gen- 
es in the blood of AD (Table S2; Figure 2B).  
To further narrow down the selection, we 
employed the LASSO algorithm and selected 
21 hub genes, which were then used to con-
struct a gene model (Table S3; Figure 2C, 2D). 
The PCA plots demonstrated that these hub 
genes effectively discriminated between sam-
ples from AD patients and healthy controls 
(Figure 2E).

Construction of gene model and validation in 
testing cohort

The hub genes identified from the LASSO analy-
sis were utilized to construct a diagnostic 
model for AD using the lightGBM machine 
learning algorithm (Table S4). Subsequently,  
we evaluated the model’s diagnostic perfor-
mance. In the training cohort, the area under 
the ROC curve (AUC) and precision-recall curv- 
es were 0.994 and 0.997, respectively (Figure 

3A, 3B). In the testing cohort, the AUC and  
precision-recall curves were 0.76 and 0.79, 
respectively (Figure 3C, 3D). These results indi-
cate that the diagnostic model possessed sat-
isfactory diagnostic capability.

Hub biomarkers identification

The gene module was input into the STRING 
platform to construct a protein-protein interac-
tion (PPI) network. The biological pathways 
mainly enriched in the PPI network were ribo-
somal pathways (Figure S1; Figure 3E). Sub- 
sequently, the MCODE algorithm identified four 
hub biomarkers (RPL24, RPL5, RPS27A, and 
RPS4X) (Figure 3F). The ROC curves showed 
that these ribosomal biomarkers had good 
diagnostic abilities for AD, with AUC values of 
0.745 for RPS27A, 0.683 for RPL5, 0.705 for 
RPL24, and 0.661 for RPS4X (Figure 3G, 3H).

To further investigate the role of these ribosom-
al biomarkers in AD, we compared the expres-
sion levels of these biomarkers between 
healthy controls and patients with AD in the 
training cohort. The results showed that the 
expression levels of these ribosomal biomark-
ers were significantly higher in healthy controls 
than in patients with AD (P < 2.2e-16 for 
RPS27A, P = 5.4e-13 for RPL5, P = 8.1e-16 for 
RPL24, and P = 2.5e-10 for RPS4X) (Figure 
3I-L). A similar trend was observed in the test-
ing cohort (P = 0.028 for RPS27A, P = 0.0027 
for RPL5, P = 0.03 for RPL24, and P = 0.0041 
for RPS4X) (Figure 3M-P).

Immune cell infiltration in the training cohort

Using the CIBERSORT analysis, we examined 
the proportion of seven different immune cells 
and found statistically significant differences 
between the control and AD groups. Our results 
revealed that dendritic cells, M2 macrophages, 
and CD8+ T cells had higher proportions in con-
trol samples than in AD samples, while mast 
cells, natural killer cells, and CD4+ T cells had a 
higher proportion in the AD samples (Figure 
4A).

Furthermore, we evaluated the relationships 
between the hub biomarkers and immune cells 
using correlation heatmaps. Our analysis sh- 
owed that RPL24, RPL5, RPS27A, and RPS4X 
were positively correlated with dendritic cells, 
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M2 macrophages, and CD8+ T cells, whereas 
they all showed a negative correlation with 

mast cells, natural killer cells, and CD4+ T cells 
(Figure 4B).

Figure 2. Identification of important genes associated with AD. A. The heatmap of differentially expressed genes in 
combined training cohort (GSE63060 and GSE63061). B. Confirmed important genes associated with AD by using 
Boruta algorithm. C, D. LASSO algorithm was applied for further narrow down the important genes related to AD. 
E. PCA plot has shown the ability of the hub genes to distinguish between AD and normal groups. Abbreviation: AD: 
Alzheimer’s disease; NC: normal control.
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Figure 3. Gene model validation and hub biomarkers identification. Receiver operator characteristic curve of gene 
model in training cohort (A) and testing cohort (C). Precision-recall curve of gene model in training cohort (B) and 
testing cohort (D). (E) The bar plot has displayed the results of functional enrichment analysis of the gene model. 
(F) Hub biomarkers identified by molecular complex detection algorithm. (G) ROC analysis of RPS27A and RPL5 in 
testing cohort. (H) ROC analysis of RPL24 and RPS4X in testing cohort. The gene expression profile of RPS27A (I), 
RPL5 (J), RPL24 (K) and RPS4X (L) in training cohort. The boxplots have demonstrated the expression of RPS27A 
(M), RPL5 (N), RPL24 (O) and RPS4X (P) in testing cohort. Abbreviation: ROC: receiver operator characteristic; AUC: 
area under curve; AD: Alzheimer’s disease; NC: normal control.
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Validation using scRNA-Seq data

Following pre-processing and application of the 
UMAP algorithm, we identified 19 cell clusters 
(Figure S2), and ultimately identified five differ-
ent cell types, including monocytes, B cells, 
natural killer cells, CD8+ T cells, and CD4+ T 
cells (Figure 5A). Notably, CD4+ T cells were 
the most abundant cell type and had a higher 
proportion in AD samples (63.08%) compared 
to healthy controls (49.34%), suggesting a 
potentially significant role in AD progression 
(Figure 5B).

Subsequent analysis revealed that the expres-
sion levels of RPL24, RPL5, RPS27A, and 
RPS4X were higher in healthy controls com-
pared to patients with AD (Figure 5C). 
Furthermore, violin plots demonstrated that 
these hub biomarkers were primarily expressed 

in CD4+ T cells, indicating the important role of 
ribosomal genes in CD4+ T cells (Figure 5D).

Specifically, all four biomarkers showed higher 
expression levels in the control group in CD4+ 
and CD8+ T cells and B cells, with RPL5, RPL24, 
and RPS4X significantly more highly expressed 
in natural killer cells of the control group. The 
expression pattern of these four gene markers 
in monocytes varied, with RPS27A and RPL24 
being highly expressed in the AD group and 
RPS4X showing lower expression (Figure 6A-D).

Biological functions and pathway enrichment 
in CD4+ T cells

Based on the results of GSEA the top five GO 
and KEGG terms were selected and presented. 
As shown in Figure 7A, in patients with AD, sev-
eral upregulated biological processes (BP) were 

Figure 4. Immune cell infiltration in training cohort. A. The boxplot has shown the proportions of different types of im-
mune cells in AD and normal control samples. B. Correlation heatmap has displayed the association between the ex-
pression of hub biomarkers and immune cell infiltration. Abbreviation: AD: Alzheimer’s disease; NC: normal control.
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identified, including “regulation of leukocyte 
chemotaxis”, “regulation of cation transmem-
brane transport”, and “regulation of trans- 
membrane transport”. In contrast, “cytoplas-
mic translation” and “ribosomal large subunit 
biogenesis” were significantly downregulated. 
In terms of cellular components (CC), terms 
with significant statistical differences in the  
AD group were mainly related to ribosome func-
tion and included “cytosolic large ribosomal 
subunit” and “cytosolic ribosome” (Figure 7B). 
Patients with AD showed upregulated “protein 
serine threonine phosphatase activity” in mo- 
lecular functions (MF), whereas RNA synthesis 

functions were downregulated, including “trans-
lation regulator activity nucleic acid binding” 
and “translation regulator activity” (Figure 7C). 
Additionally, pathway analysis revealed that the 
MAPK signaling and T-cell differentiation path-
ways were upregulated in the AD group, while 
the “ribosome” pathway was downregulated, 
consistent with the results of GO analysis 
(Figure 7D).

Discussion

Alzheimer’s disease (AD) is a multifaceted and 
intricate process that involves multiple sys-

Figure 5. Validation in single-cell RNA-Seq dataset. A. Identification of varied cell types in the single-cell RNA-Seq da-
taset by using UMAP algorithm. B. Proportions of different cell types in AD and normal control samples. C. The violin 
diagram shows the differences in the expression of RPS27A, RPL24, RPL5 and RPS4X in AD and normal samples 
(Wilcoxon t-test, *P < 0.05, **P < 0.01). D. The expression profile of RPS27A, RPL24, RPL5 and RPS4X in different 
types of cells in scRNA-Seq dataset. Abbreviation: AD: Alzheimer’s disease; NC: normal control.
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Figure 6. Violin diagrams show the differential expression of RPS27A (A), RPL5 (B), RPL24 (C) and RPS4X (D) in various cell types in AD patients and normal controls, 
respectively. (Wilcoxon t-test, *P < 0.05, **P < 0.01, ***P < 0.001). Abbreviation: AD: Alzheimer’s disease; NC: normal control.
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Figure 7. The GSEA plots have shown the biological function and pathway enrichment of DEGs in CD4+ T cells in the peripheral blood of AD patients and normal 
control. By using gene ontology gene sets, we conducted enrichment analysis of BP (A), CC (B) and MF (C) for DEGs and only the top 5 terms were displayed. For 
explore the molecular pathway enrichment for DEGs, the KEGG analysis was introduced, and the top 5 enriched pathway were demonstrated (D). Abbreviation: BP: 
biological process; CC: cellular component; MF: molecular function; DEGs: differentially expressed genes.
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tems, making it challenging for a single bio-
marker to capture the entire pathological pro-
cess. Several studies have highlighted the 
importance of combining the detection of mul-
tiple blood biomarkers to significantly enhance 
diagnostic efficiency for AD [3, 9, 19]. High-
throughput sequencing technologies offer tre-
mendous opportunities for investigating AD. 
Transcriptome sequencing can be employed to 
identify differences in mRNA expression at the 
transcriptome level, and follow-up studies can 
subsequently validate the findings using pro-
tein analyses. However, given the high-dimen-
sional gene expression profile data, an increas-
ing number of researchers are turning to 
machine learning rather than traditional statis-
tical techniques for data analysis to effectively 
reveal the biological properties of AD [20]. 

In this study, we employed the Boruta algo- 
rithm to identify characteristic genes associat-
ed with AD. Compared to traditional feature-
selection algorithms, the Boruta algorithm is 
known to provide superior results in identifying 
the importance of variables. In the field of AD 
research, the Boruta algorithm has been widely 
used for feature selection in multi-omics data. 
For example, it can be used to screen biomark-
ers of various neurodegenerative diseases at 
the microRNA level to determine the character-
istics of these diseases [21]. Additionally, the 
Boruta feature filtering method has been 
employed in a study to analyze the characteris-
tics of each brain region according to the sys-
tematic methylation map in patients with AD 
[22]. The study revealed important methylation 
signatures that contribute to the development 
of the disease. Moreover, the Boruta algorithm 
has also been applied to single nucleotide poly-
morphism data to aid in the early detection of 
AD [23]. The above studies demonstrate the 
versatility and wide applicability of the Boruta 
algorithm in the context of AD research.

Next, we utilized the LASSO algorithm to fur- 
ther refine characteristic genes and employed 
the lightGBM algorithm to construct a gene 
model with potential relevance to AD. The per-
formance of this model was assessed using 
ROC analysis, which demonstrated favorable 
predictive ability in both the training and test- 
ing sets, suggesting that it may be a valuable 
tool for identifying patients with AD. Further- 
more, we utilized the MCODE algorithm to iden-

tify the core genes of the model, and found that 
these genes were primarily involved in the regu-
lation of ribosomal activity. In cells, ribosomes 
play a central role in the translation of proteins 
from mRNA, but with age, ribosomal function 
deteriorates, leading to an increase in defec-
tive proteins [24]. Synthesis of new proteins is 
a critical process for neuronal activity-depen-
dent learning and memory, with ribosome bio-
synthesis being the key rate-limiting step in 
intracellular protein translation [25]. Multiple 
studies have reported a reduction in ribosome 
numbers and increased oxidation of ribosomal 
RNA in the brains of AD patients, resulting in 
reduced protein synthesis viability due to ribo-
somal dysfunction, which is a key feature of 
metabolic disorders in the AD brain [26]. A 
decrease in total ribosomal RNA and total RNA 
can be observed in the cerebrum of AD pa- 
tients [27]. Oxidative stress in the cerebrum  
of AD patients has also been found to signifi-
cantly impair the synthesis of 5S ribosomal 
RNA, which is responsible for ribosome stabili-
ty, and specifically impairs ribosome function 
[28]. Animal studies have shown that Aβ injec-
tions lead to protein synthesis impairment by 
heavy polyribosomes formation in the hippo-
campus of the AD rat model [29]. Similarly, 
pathological tau proteins can bind to ribosomes 
and damage RNA translation [30]. Impaired 
protein synthesis due to ribosome dysfunction 
has been observed not only in patients with AD, 
but also in various other neurodegenerative 
pathologies [31].

Furthermore, we identified four core genes, 
namely RPL24, RPS27A, RPL5, and RPS4X, 
that exhibited lower expression levels in AD. 
These genes showed a strong ability for the 
diagnosis of AD as suggested by the ROC  
analysis. RPL24 is located in the cytoplasm 
and is an essential constituent of the 60S  
subunit of ribosomes. Its primary biological 
functions include RNA binding and forming the 
structure of the ribosomal protein complex. 
Previous studies have demonstrated that 
RPL24 can inhibit translation elongation and 
improve protein synthesis homeostasis, there-
by inhibiting protein synthesis in tumor cells 
[32, 33]. Nevertheless, the understanding of 
the role of RPL24 in AD is still limited. RPS27A, 
a member of the 40S subunit of the ribosome, 
is one of the core genes identified in multiple 
bioinformatics studies investigating mild cogni-
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tive impairment, and its levels are significantly 
altered in the blood of AD patients [34, 35]. 
Recent studies have shown that RPS27A, as 
part of a triplet with interleukin (IL)-18 and 
CX3CL1, acts as a potential upstream regulator 
in microglia cells to reduce IL-18 and alleviate 
neurodegenerative diseases [36]. As one of the 
components of the 60S subunit of the ribo-
some, RPL5 has been shown to inhibit tumori-
genesis by activating downstream tumor sup-
pressor factors and downregulating oncopro-
tein expression [37]. RPL5 can also suppress 
breast cancer cell growth by regulating E2F 
transcription factor 1 and endoplasmic reticu-
lum stress of tumor cells [38]. However, the 
role of RPL5 in AD remains unclear. Previous 
research has shown that numerous ribosomal 
genes, including RPS4X, are highly assembled 
and translated in axons far from the cellular 
body of neurons to maintain local ribosomal 
function [39]. Interestingly, proteomic analysis 
of high-purity cerebral capillaries isolated from 
the gray and white matter of four donors with 
AD and three controls showed that RPS4X was 
upregulated in AD brain vessels, but no signifi-
cant difference was observed in brain paren-
chyma [40]. This finding may explain the low 
expression of RPS4X in the peripheral blood of 
AD patients.

Further immune infiltration analysis was con-
ducted on the training set and demonstrated 
that the level of CD4+ T cells was significantly 
higher in patients with AD as compared to the 
control group, and this showed a negative cor-
relation with the previously identified ribosomal 
biomarkers. These findings suggest that the 
low expression of key ribosomal genes in AD is 
associated with the accumulation of CD4+ T 
cells. To validate this observation, peripheral 
blood scRNA-Seq data from the AD and con- 
trol groups were utilized as a validation set, 
which also showed significant enrichment of 
CD4+ T cells and reduction of ribosomal key 
genes in AD, thereby corroborating the results 
obtained from the bulk RNA-Seq data. Pre- 
vious studies have reported that the increased 
levels of activated CD4+ T cells and CD8+ T 
cells in the peripheral blood of AD patients are 
closely linked to cognitive deficits and magnetic 
resonance imaging changes in specific brain 
regions [41]. CD4+ T cells can aggravate or alle-
viate AD symptoms based on their infiltrating 
subgroups and constitute a major source of 

pro-inflammatory cytokines that decrease 
endothelial integrity and stimulate astrocytes, 
leading to Aβ production [42]. Furthermore, in 
vitro studies have demonstrated that β-secre- 
tase 1 levels in 5xFAD-transgenic mice were 
higher in CD4+ T cells, and its activation was 
enhanced [43, 44]. Recent studies have dem-
onstrated the significance of ribosomal pro-
teins in the regulation of the immune system. 
Immune cells, such as T cells and B cells, 
require high levels of protein synthesis to sup-
port their proliferation and activation during 
immune responses, and ribosomal proteins 
play a vital role in this process. Dysregulation of 
ribosomal proteins can affect the immune 
response, and certain ribosomal proteins, such 
as RPL5 and RPL11, can interact directly with 
the p53 tumor suppressor protein to regulate 
the expression of genes involved in cell growth 
and proliferation [45]. Moreover, ribosomal 
stress caused by ribosomal protein dysfunction 
can activate the p53 pathway and induce cell 
cycle arrest or apoptosis, resulting in the elimi-
nation of potentially harmful cells.

Evidence suggests that the RPS4X gene is 
associated with immune cell infiltration. For 
instance, the RPS4X gene is upregulated in 
peripheral blood mononuclear cells (PBMCs) 
from patients with systemic lupus erythemato-
sus (SLE), a disease characterized by chronic 
immune cell infiltration and inflammation [46]. 
Additionally, RPS4X expression is positively cor-
related with disease activity and the number of 
infiltrating immune cells. Another study found 
that RPS4X expression was significantly down-
regulated in CD4+ T cells from multiple sclero-
sis (MS) patients compared with healthy con-
trols. MS is a chronic inflammatory disease of 
the central nervous system characterized by 
immune cell infiltration, and RPS4X expression 
was inversely correlated with disease severity 
and the frequency of infiltrating T cells in the 
brain [47]. Furthermore, RPS27A has been 
shown to modulate immune responses in a 
variety of disease settings by regulating the 
recruitment and activity of tumor-associated 
macrophages, which play a crucial role in shap-
ing the tumor microenvironment and promoting 
cancer progression [48]. Studies have shown 
that RPL5 gene expression is related to im- 
mune cell infiltration in different types of can-
cer. For example, in colorectal cancer, high 
RPL5 expression is associated with increased 
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infiltration of CD8+ T cells and natural killer 
cells, as well as improved patient survival [49]. 
However, the role played by the interaction 
between ribosomes and CD4 cells in the  
pathogenesis of AD remains unclear. A possible 
explanation is that as the degree of ageing and 
inflammation increases in AD patients, abnor-
malities in the translation of proteins by ribo-
somes occur, leading to the activation of CD4 
cells [50].

In this study, we utilized the GSEA algorithm to 
examine the functional enrichment of CD4+ T 
cells from patients with Alzheimer’s disease 
(AD). Our analysis revealed that ribosomes and 
their synthesis-related functions and pathways 
were inhibited in these cells. Previous studies 
have highlighted the critical role of ribosomes 
in the protein production of effector CD4+ T 
cells following TCR stimulation [51]. Moreover, 
ribosomal proteins (RPs) have been linked to a 
variety of physiological and pathological pro-
cesses, including the regulation of T-cell devel-
opment and immune-related diseases [52]. For 
instance, Noc4L-mediated ribosome biogene-
sis controls the activation of regulatory T cells 
(Tregs) and maintains immune homeostasis 
[53]. Additionally, post-transcriptional mecha-
nisms have been shown to regulate ribosomes 
in murine CD4+ T cells after 24 hours of ac- 
tivation [54]. Nonetheless, further studies are 
needed to comprehensively elucidate the role 
of RPs in AD and their potential as a therapeu-
tic target.

Furthermore, we observed that leukocyte che-
moattraction-related pathways were highly 
expressed in CD4+ T cells from AD patients. 
Leukocyte chemotaxis refers to the process by 
which white blood cells migrate to specific sites 
of inflammation or infection in response to 
chemical signals. In AD, leukocyte chemotaxis 
enhances the recruitment of activated im- 
mune cells into the brain via chemotaxis [55]. 
Aβ has been found to be chemotactic for  
monocytes and it induces the secretion of pro-
inflammatory cytokines and chemokines in the 
periphery as well as the brain [56]. Additionally, 
microglia and monocyte-derived cells have 
been shown to play an important role in pro-
moting proinflammatory and neurotoxic path-
ways [57]. Notably, blood samples from AD 
patients with dementia have revealed neutro-
phil hyperactivation associated with increased 
reactive oxygen species production [58]. 

Overall, ribosome family proteins have been 
shown to play a role in Alzheimer’s disease (AD) 
pathogenesis. Studies have reported that  
alterations in ribosomal function and biogene-
sis are associated with AD [59, 60]. Ribosomal 
proteins have been identified as potential bio-
markers for AD, and changes in the expression 
levels of certain ribosomal proteins have been 
observed in AD patients [26]. Additionally, sev-
eral studies have suggested that ribosomal 
dysfunction can lead to the accumulation of 
misfolded proteins, including amyloid-beta (Aβ) 
and tau, which are hallmarks of AD pathology 
[29, 61]. Therefore, ribosome family proteins 
may play an important role in AD pathogenesis, 
and further research is needed to fully eluci-
date the mechanisms involved. 

However, the present study has certain limita-
tions that must be considered. Firstly, although 
bioinformatics methods are useful for generat-
ing hypotheses, it is essential to verify the find-
ings using in vivo or in vitro experiments. 
Secondly, a larger sample size and more exten-
sive clinical data collection could enhance the 
validity and reliability of the conclusions. 
Therefore, future studies are warranted to con-
firm the results of the present investigation and 
to expand upon the findings reported here.

Conclusions

In conclusion, our study utilized machine learn-
ing and bioinformatics approaches to analyze 
multiple datasets of bulk RNA-Seq and scRNA 
data, identifying four under expressed ribo-
some family protein biomarkers (RPL24, 
RPS27A, RPL5, RPS4X) in AD peripheral blood. 
Further, our findings suggest that these bio-
markers are negatively correlated with CD4+ T 
cells activation in AD patients.
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Table S1. Differentially expressed genes in training cohorts (|logFC| >1 and adjust P-value < 0.05)
Genes logFC AveExpr t P.Value adj.P.Val B
RPS27 1.609555 9.360017 8.004628 7.82E-15 6.39E-13 22.93928
SNRPG 1.560314 8.624294 8.761071 2.71E-17 4.33E-15 28.49838
NDUFB3 1.525468 8.209974 9.3203 3.25E-19 7.97E-17 32.84635
LSM3 1.518026 7.449509 9.399124 1.72E-19 5.26E-17 33.47474
TXN 1.505974 9.029185 9.330874 2.99E-19 7.84E-17 32.93042
RPS3A 1.488942 9.137976 5.789404 1.22E-08 2.88E-07 9.031426
AIF1 1.482472 9.583373 10.57976 7.85E-24 6.36E-21 43.31744
RPS27A 1.471432 11.22784 10.56869 8.65E-24 6.36E-21 43.22158
ENY2 1.46671 7.751628 10.50344 1.53E-23 9.39E-21 42.65787
HSPE1 1.442115 7.878766 10.48004 1.88E-23 9.87E-21 42.45623
CMTM2 1.423501 9.803581 8.642466 6.76E-17 9.55E-15 27.60172
CD3D 1.412729 9.713352 8.18586 2.08E-15 2.19E-13 24.23616
FCER1A 1.374636 8.465744 6.248154 8.63E-10 2.64E-08 11.60099
COX7A2 1.367872 9.666367 7.089347 4.40E-12 2.28E-10 16.74402
RPL7 1.364625 7.449686 8.400067 4.24E-16 4.73E-14 25.79776
NDUFB2 1.348251 9.117247 8.001095 8.03E-15 6.41E-13 22.91422
PSMA4 1.345087 7.687818 8.417991 3.71E-16 4.27E-14 25.92982
DBI 1.342793 7.573618 8.653271 6.22E-17 9.15E-15 27.68303
RPL24 1.340774 11.10152 8.444713 3.03E-16 3.72E-14 26.12711
TMCO1 1.319965 8.386782 6.489204 2.01E-10 7.28E-09 13.01867
EEF1B2 1.308908 8.298641 8.059392 5.26E-15 4.72E-13 23.32879
DPM1 1.30758 7.926542 8.417659 3.72E-16 4.27E-14 25.92737
RPL5 1.307361 9.893617 7.151992 2.91E-12 1.55E-10 17.14862
UFC1 1.289101 8.789978 11.6999 3.04E-28 1.12E-24 53.33741
PSMA6 1.27603 7.944563 6.722693 4.69E-11 2.04E-09 14.43524
MRPL33 1.275817 9.322367 10.76414 1.54E-24 2.83E-21 44.92362
TAX1BP1 1.275691 9.0186 6.564644 1.26E-10 4.78E-09 13.47173
SNRPB2 1.274217 8.620786 9.411019 1.56E-19 5.21E-17 33.56989
PSMA3 1.273224 7.272025 10.0806 5.90E-22 2.71E-19 39.06033
COX6C 1.272149 9.396508 7.237844 1.64E-12 9.13E-11 17.70784
SEC11A 1.268193 8.960055 8.296291 9.21E-16 9.96E-14 25.03737
TPT1 1.260235 12.64568 4.951095 9.98E-07 1.37E-05 4.786157
POLR3GL 1.247474 8.724454 8.53491 1.53E-16 2.01E-14 26.7965
DNAJC8 1.243341 9.662491 9.276359 4.64E-19 1.00E-16 32.49769
COMMD3 1.24251 8.778826 6.71466 4.93E-11 2.08E-09 14.3858
SLU7 1.238382 7.618838 8.062144 5.15E-15 4.72E-13 23.34842
IGBP1 1.234193 8.058435 9.349145 2.58E-19 7.29E-17 33.07587
HMGB2 1.233574 7.338737 6.721438 4.73E-11 2.04E-09 14.42751
VPS29 1.230121 8.767872 6.389813 3.68E-10 1.25E-08 12.42857
ANAPC13 1.229039 9.062079 8.075493 4.68E-15 4.41E-13 23.4437
RPS4X 1.226629 11.42672 6.715426 4.91E-11 2.08E-09 14.39051
SH2D1A 1.211206 7.805405 6.922 1.31E-11 6.26E-10 15.67762
NGDN 1.207658 7.404584 8.963076 5.61E-18 1.09E-15 30.04633
RPL12 1.206323 11.00729 7.574583 1.65E-13 1.21E-11 19.95344
SSBP1 1.202602 8.844253 8.864241 1.22E-17 2.03E-15 29.28572
S100P 1.201722 8.534098 3.066349 0.002279 0.011524 -2.49927
CLEC4A 1.199682 8.853891 6.010665 3.47E-09 9.59E-08 10.2495
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ACAT1 1.196367 7.5686 7.43027 4.46E-13 2.83E-11 18.98096
SEC11C 1.191696 7.671402 7.301401 1.07E-12 6.05E-11 18.12534
VBP1 1.189889 7.767461 5.933711 5.40E-09 1.42E-07 9.821328
VPREB3 1.189533 7.766085 4.820647 1.88E-06 2.45E-05 4.179462
MTIF3 1.189342 7.695863 8.904146 8.91E-18 1.64E-15 29.59207
ZNHIT3 1.188955 7.537992 6.884199 1.67E-11 7.79E-10 15.43966
SUB1 1.188161 7.189655 6.886199 1.65E-11 7.79E-10 15.45222
BOLA2 1.186158 8.837085 6.038841 2.95E-09 8.28E-08 10.40747
FRG1 1.18499 7.705225 8.009453 7.56E-15 6.31E-13 22.97352
GNL2 1.184044 7.7993 9.305633 3.66E-19 8.42E-17 32.72984
UCHL3 1.183686 7.269827 9.80055 6.27E-21 2.56E-18 36.73236
LARP7 1.180143 7.184561 8.13943 2.93E-15 2.91E-13 23.90177
MPHOSPH10 1.17912 7.854866 8.152241 2.67E-15 2.73E-13 23.99389
FGL2 1.177594 11.29 5.278012 1.92E-07 3.37E-06 6.371032
ZC3H15 1.173928 7.188201 7.556873 1.87E-13 1.34E-11 19.83329
TMSB10 1.172418 12.6362 8.656653 6.06E-17 9.15E-15 27.70849
POLE4 1.170632 9.105497 5.80595 1.11E-08 2.69E-07 9.121129
EIF4A2 1.168289 10.43317 4.268268 2.34E-05 0.000225 1.775971
TRAPPC4 1.165273 8.540057 8.864463 1.21E-17 2.03E-15 29.28741
KLRF1 1.162783 7.794414 3.765954 0.000185 0.001395 -0.17241
GNL3 1.161637 7.27984 6.625284 8.65E-11 3.38E-09 13.83912
SET 1.160755 9.058105 6.374144 4.05E-10 1.37E-08 12.33625
MRPL36 1.160749 7.854119 7.424341 4.64E-13 2.89E-11 18.94133
RPL26L1 1.160499 7.067921 7.410133 5.12E-13 3.13E-11 18.84646
TRAT1 1.158254 7.308237 5.689111 2.13E-08 4.75E-07 8.492512
ZBED5 1.156992 8.186188 4.486661 8.91E-06 9.95E-05 2.693956
NDUFB6 1.156392 8.41702 7.350937 7.65E-13 4.61E-11 18.45279
VAMP7 1.156114 8.100145 5.563607 4.23E-08 9.14E-07 7.829854
SNRK 1.154602 9.019402 4.457393 1.02E-05 0.000111 2.568467
PTRH2 1.154589 7.223705 7.544441 2.03E-13 1.41E-11 19.74908
ZCCHC17 1.15268 7.743866 8.078528 4.57E-15 4.41E-13 23.46538
DYNLT3 1.148081 7.147284 6.627953 8.50E-11 3.36E-09 13.85536
MRPS17 1.147402 7.228969 10.60016 6.56E-24 6.36E-21 43.49432
NUP88 1.146683 8.088509 6.642555 7.76E-11 3.17E-09 13.94428
NAP1L1 1.145913 8.556691 4.568925 6.12E-06 7.12E-05 3.050733
BTF3 1.144319 9.098358 7.319806 9.45E-13 5.51E-11 18.24679
NDUFAF2 1.144043 7.201889 8.022276 6.89E-15 6.03E-13 23.06458
SNURF 1.143706 8.549658 5.452381 7.68E-08 1.53E-06 7.253555
CUTC 1.142512 7.552621 7.22285 1.81E-12 9.95E-11 17.60978
SNRPF 1.14176 8.824739 5.126121 4.17E-07 6.54E-06 5.623288
LYRM2 1.139303 7.546508 6.631655 8.31E-11 3.36E-09 13.87788
CD79A 1.135425 7.862534 3.5857 0.000368 0.00249 -0.8154
TBC1D15 1.134592 7.623807 5.790084 1.22E-08 2.88E-07 9.035108
ATG3 1.134195 7.976037 5.849834 8.69E-09 2.17E-07 9.36013
PTPN4 1.134169 8.050844 4.605276 5.18E-06 6.20E-05 3.210292
TCEAL8 1.132485 7.034816 8.534871 1.53E-16 2.01E-14 26.79621
CD58 1.131889 7.699419 4.419536 1.20E-05 0.000129 2.407279
RPL15 1.131746 10.51133 3.697884 0.00024 0.001721 -0.41874
AGTPBP1 1.130733 8.64499 5.246539 2.26E-07 3.86E-06 6.214478
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TAF12 1.1285 7.811007 7.796496 3.48E-14 2.66E-12 21.47794
HLA-DOB 1.126125 7.86112 4.136751 4.11E-05 0.000372 1.243759
HMGN1 1.125817 8.84021 5.26283 2.08E-07 3.62E-06 6.295406
PLAC8 1.121874 9.908433 4.613638 4.98E-06 5.99E-05 3.247165
SPAG7 1.121814 7.449676 7.317478 9.60E-13 5.51E-11 18.23142
PPP1R2 1.12169 8.009864 4.642495 4.36E-06 5.29E-05 3.374868
BTBD10 1.120736 7.515313 7.107501 3.90E-12 2.05E-10 16.86097
CCT8 1.120637 9.397083 5.537508 4.87E-08 1.04E-06 7.693697
COMMD1 1.116948 8.456085 7.040907 6.05E-12 3.00E-10 16.43318
ZNF22 1.116835 7.533323 4.277447 2.25E-05 0.000219 1.813695
LYPLAL1 1.116631 7.465392 6.70958 5.09E-11 2.13E-09 14.35456
SDAD1 1.115534 8.990701 5.392528 1.05E-07 2.00E-06 6.947732
MTIF2 1.115318 7.553229 7.551995 1.93E-13 1.36E-11 19.80023
SLC30A9 1.113518 7.482694 5.394483 1.04E-07 2.00E-06 6.957674
SYF2 1.112482 7.847031 4.554967 6.53E-06 7.52E-05 2.989777
RPL34 1.11233 6.832642 7.5304 2.24E-13 1.53E-11 19.65411
PPP1CC 1.111531 9.496883 3.643695 0.000296 0.002066 -0.61179
MRPS28 1.110568 6.91372 7.489131 2.98E-13 1.95E-11 19.37579
RABEP1 1.109975 7.866664 4.174793 3.49E-05 0.000322 1.396103
WBP4 1.108676 7.171659 5.945118 5.06E-09 1.34E-07 9.884495
PDCD10 1.108059 7.25675 4.273146 2.29E-05 0.000222 1.79601
CFDP1 1.107623 7.312833 7.344341 8.00E-13 4.74E-11 18.40909
BTLA 1.107028 7.065203 5.772089 1.34E-08 3.15E-07 8.93779
NFU1 1.106481 7.336419 6.318371 5.67E-10 1.85E-08 12.00921
RPS21 1.105676 7.44293 4.736828 2.80E-06 3.55E-05 3.797446
RGS18 1.105546 9.012759 2.129215 0.033704 0.108111 -4.89122
CD160 1.104222 7.316553 4.049876 5.90E-05 0.000518 0.900752
PRMT1 1.103759 8.093079 6.290136 6.72E-10 2.13E-08 11.84459
LTV1 1.103603 7.513847 6.780627 3.25E-11 1.47E-09 14.79324
BCCIP 1.103004 7.281884 5.994611 3.81E-09 1.01E-07 10.15977
CLK1 1.101738 7.987373 3.06231 0.00231 0.011634 -2.51137
ARPC2 1.101513 12.05039 5.697407 2.03E-08 4.59E-07 8.536773
USP1 1.101417 7.262528 4.349162 1.64E-05 0.000168 2.111035
NDUFA9 1.100453 7.974848 6.299781 6.34E-10 2.03E-08 11.90076
MRFAP1L1 1.100101 7.745686 4.571153 6.06E-06 7.08E-05 3.060478
CLN3 -1.10002 7.767752 -5.92669 5.62E-09 1.47E-07 9.782523
TBC1D3B -1.10012 7.34544 -5.87844 7.39E-09 1.89E-07 9.516801
ACSL1 -1.10017 9.274877 -2.23205 0.026036 0.087244 -4.66997
S100A10 -1.10052 11.6047 -3.60725 0.000339 0.002318 -0.7401
JAK1 -1.10083 9.0193 -3.16823 0.001624 0.008738 -2.18885
ADAM15 -1.10124 8.334721 -4.22926 2.77E-05 0.000261 1.616476
DUSP18 -1.10134 8.860939 -4.5835 5.73E-06 6.79E-05 3.114588
PUM1 -1.10155 9.615751 -4.82956 1.80E-06 2.36E-05 4.220467
NINJ1 -1.1018 10.89604 -3.1977 0.001469 0.008002 -2.09725
NKG7 -1.10223 12.03308 -2.36091 0.018597 0.066113 -4.37826
SLC16A5 -1.10227 7.820328 -4.95594 9.74E-07 1.35E-05 4.808981
RHBDD2 -1.10232 9.357268 -4.4807 9.15E-06 0.000102 2.668354
SLC11A1 -1.10322 8.70159 -3.57067 0.000389 0.002614 -0.86767
IGFBP7 -1.10322 7.62935 -4.74774 2.66E-06 3.38E-05 3.846841
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PIAS4 -1.10328 9.048995 -4.93074 1.10E-06 1.50E-05 4.690526
HIP1 -1.10352 7.398625 -3.66296 0.000275 0.001931 -0.54346
YIPF6 -1.10378 8.802682 -4.49781 8.47E-06 9.55E-05 2.741962
SIGLEC5 -1.104 7.699953 -3.37482 0.000794 0.004822 -1.52951
WWC3 -1.10431 8.062959 -5.16029 3.51E-07 5.76E-06 5.789793
TST -1.10446 9.516769 -3.75656 0.000192 0.001435 -0.20668
OSBPL5 -1.10474 7.821929 -4.25601 2.47E-05 0.000236 1.725716
KIAA0513 -1.10541 8.734343 -3.99801 7.31E-05 0.000622 0.699215
CNNM3 -1.10546 7.572529 -5.49771 6.03E-08 1.25E-06 7.487175
GATAD2B -1.1057 8.130054 -5.13473 4.00E-07 6.41E-06 5.66514
ADAR -1.10595 10.12459 -3.54899 0.000422 0.002793 -0.94269
CHFR -1.10679 9.43106 -6.51774 1.68E-10 6.32E-09 13.18953
ZAP70 -1.10717 8.671486 -4.01221 6.89E-05 0.000594 0.754179
TSPAN32 -1.10725 8.688197 -4.9849 8.45E-07 1.19E-05 4.945777
SYT11 -1.10737 8.848883 -4.25068 2.52E-05 0.00024 1.703903
IER3 -1.10768 7.744146 -4.91147 1.21E-06 1.63E-05 4.600326
CEP350 -1.1088 8.390328 -6.43685 2.77E-10 9.69E-09 12.70685
PLCG2 -1.1092 9.852003 -3.99613 7.37E-05 0.000625 0.691989
IFNGR2 -1.11019 11.30619 -4.098 4.83E-05 0.000431 1.089898
TMEM154 -1.11123 10.23983 -2.54028 0.011365 0.044023 -3.9456
NT5C2 -1.11126 9.282328 -4.33735 1.73E-05 0.000176 2.061762
SPSB3 -1.11127 9.693225 -4.94708 1.02E-06 1.40E-05 4.76727
CTSW -1.11138 8.613774 -3.19809 0.001467 0.008002 -2.09604
ATP6V1F -1.11202 10.32295 -5.12589 4.18E-07 6.54E-06 5.622147
AKT1 -1.11208 10.03643 -5.01411 7.31E-07 1.06E-05 5.084526
SLC22A4 -1.11216 7.819931 -3.97878 7.91E-05 0.000665 0.625151
E4F1 -1.1127 8.505191 -6.25489 8.29E-10 2.56E-08 11.64
ZNF746 -1.11306 9.233585 -4.41972 1.20E-05 0.000129 2.40805
NISCH -1.11355 8.497056 -6.26327 7.89E-10 2.46E-08 11.68852
RBCK1 -1.1136 8.314714 -5.22366 2.54E-07 4.30E-06 6.101184
PSTPIP1 -1.11369 8.534335 -5.32501 1.50E-07 2.71E-06 6.606381
KIR3DL1 -1.11373 7.80358 -3.43652 0.000636 0.003964 -1.32483
NFKBIZ -1.11378 9.466229 -4.08126 5.18E-05 0.000458 1.023871
MGAT1 -1.1142 9.938249 -5.30701 1.65E-07 2.94E-06 6.516016
GDPD3 -1.11422 7.550261 -6.07218 2.43E-09 6.87E-08 10.59522
PNPLA6 -1.11482 9.193207 -5.12637 4.17E-07 6.54E-06 5.624499
AKAP13 -1.11497 8.456562 -6.2278 9.74E-10 2.93E-08 11.4834
SLC26A8 -1.11525 7.19938 -5.00279 7.73E-07 1.11E-05 5.030684
ANKS1A -1.11575 7.871144 -7.50219 2.72E-13 1.82E-11 19.46376
UBR4 -1.11628 8.897887 -5.16306 3.46E-07 5.73E-06 5.803303
PPP1R14B -1.11665 8.347555 -7.20978 1.98E-12 1.07E-10 17.52444
TRIM38 -1.11799 8.946014 -5.25446 2.17E-07 3.76E-06 6.253794
SPI1 -1.11803 10.21408 -3.33 0.00093 0.005504 -1.67592
RAB24 -1.11832 7.765331 -6.31773 5.69E-10 1.85E-08 12.0055
SLC27A3 -1.1187 8.59676 -5.4655 7.16E-08 1.44E-06 7.320988
STAT5B -1.11871 8.834655 -5.38548 1.09E-07 2.05E-06 6.911907
TNFRSF1A -1.11975 10.59215 -4.37724 1.45E-05 0.000152 2.228716
TRPC4AP -1.12011 9.039122 -5.01913 7.13E-07 1.04E-05 5.108408
PISD -1.1212 8.973175 -4.50975 8.02E-06 9.13E-05 2.793476
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TNFSF13B -1.12137 10.32359 -3.78362 0.000172 0.001313 -0.1078
CTNNA1 -1.12212 9.058431 -4.83048 1.79E-06 2.35E-05 4.224664
IDS -1.12244 8.948136 -5.67116 2.35E-08 5.21E-07 8.396951
SLC9A8 -1.12261 7.814915 -6.08298 2.28E-09 6.51E-08 10.6562
ZC3H3 -1.12305 8.417697 -6.09685 2.11E-09 6.09E-08 10.73471
KLF6 -1.12327 8.515199 -5.75912 1.45E-08 3.36E-07 8.867834
STAT3 -1.12348 9.236638 -4.11882 4.43E-05 0.000397 1.172399
B4GALT5 -1.12378 9.570983 -3.76106 0.000188 0.001419 -0.19026
CREBBP -1.12418 9.131086 -4.63759 4.46E-06 5.39E-05 3.35313
TNFRSF14 -1.12494 10.963 -6.27253 7.46E-10 2.34E-08 11.74229
PPTC7 -1.12519 8.792531 -6.00353 3.62E-09 9.71E-08 10.20959
BCKDK -1.12746 9.185912 -5.46243 7.28E-08 1.45E-06 7.30519
NCSTN -1.12991 9.644502 -5.07555 5.38E-07 8.11E-06 5.3787
KLF2 -1.13077 12.49163 -5.46534 7.17E-08 1.44E-06 7.320148
EMILIN2 -1.13123 8.785816 -5.13854 3.92E-07 6.35E-06 5.683661
MAPK8IP3 -1.1313 8.707327 -6.75584 3.80E-11 1.70E-09 14.63974
HBQ1 -1.13162 10.26462 -2.29827 0.021941 0.075848 -4.52206
GAK -1.13179 9.788639 -5.48058 6.61E-08 1.36E-06 7.398673
PGS1 -1.13396 9.113736 -5.47493 6.81E-08 1.39E-06 7.369535
SLC7A7 -1.13443 10.39408 -5.26299 2.07E-07 3.62E-06 6.296205
STAT1 -1.13457 9.402702 -3.57413 0.000384 0.002585 -0.85565
MKNK2 -1.13559 9.475694 -4.92667 1.12E-06 1.52E-05 4.671436
FCGRT -1.1357 10.75588 -5.16873 3.36E-07 5.59E-06 5.831082
FRAT1 -1.13618 7.940727 -5.39263 1.05E-07 2.00E-06 6.948265
AGTRAP -1.13664 8.520648 -6.3319 5.23E-10 1.73E-08 12.0883
NOL12 -1.137 7.944724 -8.01711 7.15E-15 6.11E-13 23.02788
KLHDC8B -1.13802 7.697377 -4.99393 8.08E-07 1.15E-05 4.988618
MEGF9 -1.13833 7.964413 -5.75611 1.47E-08 3.38E-07 8.851622
HSPA6 -1.13856 9.246179 -4.16615 3.63E-05 0.000332 1.361375
RXRA -1.14058 10.79991 -5.04347 6.32E-07 9.29E-06 5.224698
ALPL -1.14151 10.85446 -2.53757 0.011452 0.044314 -3.95237
HELZ -1.14229 8.122759 -9.04475 2.95E-18 6.02E-16 30.67949
ARHGEF2 -1.14303 11.04351 -7.04596 5.85E-12 2.95E-10 16.46554
EIF2AK2 -1.14442 9.050618 -3.70077 0.000238 0.001717 -0.4084
APBB3 -1.14472 8.112898 -7.48108 3.15E-13 2.03E-11 19.32161
PIK3CD -1.14619 9.466606 -5.36662 1.21E-07 2.24E-06 6.816288
NXF1 -1.15088 9.277887 -7.91847 1.46E-14 1.14E-12 22.33068
CSF1R -1.15111 10.10815 -4.46709 9.73E-06 0.000107 2.609944
ZNF281 -1.15415 8.601829 -5.02938 6.78E-07 9.89E-06 5.157305
CA4 -1.15434 8.585433 -3.72413 0.000217 0.00159 -0.32425
SMAP2 -1.15472 12.43063 -4.88769 1.36E-06 1.81E-05 4.489434
DCUN1D1 -1.15771 7.871169 -5.79905 1.16E-08 2.76E-07 9.083691
EFHD2 -1.15826 11.92824 -6.73603 4.31E-11 1.91E-09 14.51744
FPR2 -1.15936 8.952108 -3.78242 0.000173 0.001316 -0.1122
TBXAS1 -1.16107 9.847507 -6.08574 2.25E-09 6.45E-08 10.67185
ITGA5 -1.1626 8.763511 -5.88828 6.99E-09 1.80E-07 9.570841
MYO1G -1.16508 9.949531 -6.41311 3.20E-10 1.11E-08 12.56618
ITGB2 -1.16527 13.21236 -6.40996 3.26E-10 1.12E-08 12.54757
PLOD1 -1.16601 8.902714 -6.23176 9.51E-10 2.89E-08 11.50626
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FOXO3 -1.16664 10.06672 -4.64507 4.31E-06 5.26E-05 3.386318
ACADVL -1.168 9.851089 -7.7459 4.97E-14 3.73E-12 21.12727
PPM1F -1.16989 10.37548 -5.34873 1.33E-07 2.43E-06 6.725851
SLC15A4 -1.17323 9.615326 -6.20753 1.10E-09 3.28E-08 11.36663
TLN1 -1.1741 9.189393 -5.10243 4.70E-07 7.17E-06 5.508425
BEST1 -1.17693 8.18837 -6.19241 1.20E-09 3.53E-08 11.27969
RHBDF2 -1.17751 9.006029 -6.87514 1.77E-11 8.15E-10 15.38281
CEBPB -1.18182 12.08324 -5.84151 9.11E-09 2.25E-07 9.314671
SRRM2 -1.18189 10.02406 -6.57623 1.17E-10 4.49E-09 13.5417
CSAD -1.18473 8.247861 -6.99147 8.35E-12 4.04E-10 16.11772
ULK1 -1.1859 10.03443 -6.4738 2.21E-10 7.80E-09 12.92668
FPR1 -1.1872 12.42206 -5.11369 4.44E-07 6.83E-06 5.562954
OSCAR -1.19048 9.26419 -6.47432 2.20E-10 7.80E-09 12.92983
APBB1IP -1.19128 10.68937 -6.0041 3.61E-09 9.71E-08 10.2128
RNF24 -1.19134 9.954112 -4.84265 1.69E-06 2.23E-05 4.280765
FES -1.19348 8.875001 -6.99583 8.12E-12 3.98E-10 16.14549
LPP -1.19569 9.726372 -9.57503 4.08E-20 1.50E-17 34.8905
MYADM -1.20489 11.64442 -4.99868 7.89E-07 1.12E-05 5.011149
GRN -1.21056 9.844343 -5.82237 1.01E-08 2.49E-07 9.210354
SORL1 -1.21059 10.85277 -5.2221 2.56E-07 4.32E-06 6.093503
ABTB1 -1.2221 10.46012 -6.62955 8.42E-11 3.36E-09 13.8651
PGLYRP1 -1.22315 9.569679 -4.26985 2.32E-05 0.000224 1.782453
CSNK1G2 -1.22986 10.26575 -5.73617 1.64E-08 3.74E-07 8.744359
ITGAM -1.26164 9.471993 -8.47597 2.40E-16 3.04E-14 26.35848

Table S2. Feature genes identified by Boruta algorithm
Gene Important decision
VPS29 1.099922 Rejected
RPS3A 1.205005 Rejected
GRN 1.576741 Rejected
SORL1 1.706963 Rejected
MYADM 2.126641 Rejected
TAX1BP1 2.147483 Rejected
PSMA6 2.148816 Rejected
FCER1A 2.179526 Rejected
SH2D1A 2.318225 Rejected
PGLYRP1 2.546298 Rejected
EEF1B2 2.588323 Rejected
COX6C 2.808093 Tentative
COMMD3 2.935152 Tentative
CD3D 2.975145 Confirmed
TPT1 3.01185 Confirmed
NDUFB2 3.369418 Confirmed
RPS27 3.397104 Confirmed
COX7A2 3.459972 Confirmed
TMCO1 3.467814 Confirmed
ABTB1 3.490556 Confirmed
CSNK1G2 3.527216 Confirmed
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POLR3GL 3.807013 Confirmed
SEC11A 3.928164 Confirmed
SLU7 4.142269 Confirmed
HMGB2 4.597455 Confirmed
DPM1 4.789581 Confirmed
RPL24 4.80265 Confirmed
SNRPG 5.258554 Confirmed
RPL12 5.447277 Confirmed
RPL5 5.554934 Confirmed
RPS4X 5.565047 Confirmed
NGDN 5.639681 Confirmed
ANAPC13 5.906456 Confirmed
PSMA4 5.97657 Confirmed
SNRPB2 6.095489 Confirmed
RPL7 6.140573 Confirmed
DBI 6.630868 Confirmed
DNAJC8 7.058027 Confirmed
PSMA3 7.641101 Confirmed
IGBP1 8.153762 Confirmed
SSBP1 8.222691 Confirmed
ITGAM 8.553201 Confirmed
HSPE1 8.776746 Confirmed
TXN 8.798499 Confirmed
LSM3 8.901268 Confirmed
NDUFB3 9.049477 Confirmed
ENY2 10.15341 Confirmed
CMTM2 10.84303 Confirmed
MRPL33 11.0729 Confirmed
AIF1 11.28228 Confirmed
RPS27A 13.19591 Confirmed
UFC1 13.50049 Confirmed
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Table S3. Hub genes identified by LASSO algorithm
AIF1
RPS27A
CMTM2
COX7A2
NDUFB2
RPL24
TMCO1
DPM1
RPL5
UFC1
MRPL33
SNRPB2
PSMA3
DNAJC8
IGBP1
ANAPC13
RPS4X
SSBP1
ABTB1
CSNK1G2
ITGAM

Table S4. Gene model constructed by lightGBM
Gene Coefficient
AIF1 0.653944
RPS27A 0.863563
CMTM2 1.284774
COX7A2 -0.40885
NDUFB2 -0.44523
RPL24 -0.66977
TMCO1 -1.23248
DPM1 -0.42652
RPL5 0.053078
UFC1 1.409454
MRPL33 0.02332
SNRPB2 0.338794
PSMA3 0.621297
DNAJC8 1.316004
IGBP1 0.144825
ANAPC13 0.269325
RPS4X 0.36695
SSBP1 0.263203
ABTB1 -0.91195
CSNK1G2 -0.64088
ITGAM -0.53259
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Figure S1. Protein-protein interaction network based on genes obtained from gene module constructed by lightGBM 
algorithm. 

Figure S2. Nineteen clusters identified by using the uniform manifold approximation and projection for dimension 
reduction (UMAP) algorithm in blood single-cell RNA-seq collected from patients with Alzheimer’s disease.


