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Abstract: Objectives: To investigate the role of DNA methylation regulators in the prognosis of clear cell renal cell 
carcinoma (ccRCC) and to construct a DNA methylation regulator-based signature for predicting patient outcome. 
Methods: Data from the TCGA dataset were downloaded and analyzed to identify differentially expressed DNA meth-
ylation regulators and their interaction as well as correlation. Consensus clustering was used to establish groups 
of ccRCC with distinct clinical outcomes. A prognostic signature based on two sets of DNA methylation regulators 
was established and validated in an independent cohort. Results: Our analysis revealed that the expression levels 
of DNMT3B, MBD1, SMUG1, DNMT1, DNMT3A, TDG, TET3, MBD2, UHRF2, MBD3, UHRF1, and TET2 were signifi-
cantly upregulated in ccRCC samples, while UNG, ZBTB4, TET1, ZBTB38, and MECP2 were markedly downregulated. 
UHRF1 was identified as a hub gene in the DNA methylation regulator interaction network. Significant differences 
were found regarding overall survival, gender, tumor status, and grade between ccRCC patients in the two risk 
groups. The prognostic signature, based on two sets of DNA methylation regulators, was an independent prognostic 
indicator, and these findings were validated in an external, independent cohort. Conclusions: The study provides 
evidence that DNA methylation regulators play a significant role in the prognosis of ccRCC and the developed DNA 
methylation regulator-based signature could effectively predict patient outcome.
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Introduction

Renal cell carcinoma (RCC) is a common malig-
nancy of the genitourinary system, affecting 
more than 400,000 people worldwide each 
year [1]. There are several pathologic types of 
RCC, with clear cell renal cell carcinoma (ccRCC) 
being the most common type, accounting for 
approximately 75% of all primary renal cancer 
[2]. Although early-stage renal cancer is ame-
nable to radical surgical treatment, 20-40% of 
patients experience disease progression after 
surgery. The 2-year survival rate for advanced 
or metastatic renal cancer is less than 20%, 
and the 5-year survival rate is only 12% [3, 4]. 
Moreover, drug resistance or non-response to 
the treatment also contribute to the poor prog-
nosis of patients with ccRCC [3]. Therefore, it is 
crucial to identify biomarkers that can accu-
rately and reliably predict the prognosis of 
ccRCC to improve the treatment outcome.

Although TNM pathological stage is the most 
important factor affecting the prognosis of 
patients with renal cancer [3], other factors 
such as, histologic grade, constitutional symp-
toms, sarcomatoid features, tumor thrombus 
level, perinephric or sinus fat invasion, the exis-
tence of tissue necrosis in the tumor, as well as 
biochemical abnormalities and changes are 
also related to the prognosis of renal cancer [5, 
6]. Thus, various prognostic models have been 
developed and externally validated by combin-
ing independent prognostic factors [7-9]. 
However, the predictive power of these models 
is suboptimal as the clinical outcomes vary sig-
nificantly between patients with ccRCC at iden-
tical TNM pathological stages [10]. Hence, iden-
tifying novel and reliable prognostic molecular 
signatures is vital for selecting the most appro-
priate therapeutic strategies and ameliorating 
the unfavorable prognosis of patients with 
ccRCC.

http://www.ajtr.org
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Cells in an organism contain the same genomic 
sequence, but they display a wide morphologic 
and functional diversity. It has been shown that 
epigenetic changes are responsible for this het-
erogeneity. Similarly, during tumorigenesis, epi-
genetic modifications occur such that DNA 
methylation modulate the chromatin structure 
and regulate gene expression and cancer cell 
proliferation [11, 12]. The process of DNA 
methylation is the covalent addition of the 
methyl group to the DNA sequence, for exam-
ple, at the 5’ carbon of the cytosine ring. This 
modification has been extensively studied in 
several diseases, particularly in cancer includ-
ing renal cell carcinoma. The role of this modifi-
cation in early detection, cancer progression, 
accurate diagnosis, and as biomarkers for the 
response to treatment has been the focus of 
many studies [13-19]. For example, Kubiliūtė  
et al. performed DNA methylation analysis in 
the whole genome of eleven pairs of ccRCC  
and noncancerous renal tissues (NRT) and 
found that the methylation frequency in the 
entire genome was significantly higher in  
ccRCC tissues than in NRT (33-60% vs 0-11%). 
Furthermore, numerous adverse clinicopatho-
logic data were found to be associate with the 
hypermethylation of ZNF677 and PCDH8 in 
ccRCC tissues [20].

Hypermethylation on the promoter of onco-
genes is a key event during tumorigenesis. 
Therefore, the addition and removal of methyl 
groups at the appropriate time and location 
play a crucial role in suppressing tumor gene 
mutations and hence cancer progression. 
Thus, DNA methylation is precisely controlled.  
A recent study performed a genome-wide 
CRISPR-Cas9 knockout screening in human 
embryonic stem cells (ESCs) to discover DNA 
methylation regulators. It successfully identi-
fied not only known methylation regulators 
such as KDM2B, TDG, and TET1 but also the 
functionally unknown gene QSER1, which coop-
erates with TET1 to prevent the chromatin bind-
ing of two DNA methyltransferases (DNMT3B 
and DNMT3A), thereby interfering with DNA 
methylation [21].

As we know, in the initial stages of ccRCC devel-
opment, genetic and epigenetic alterations are 
gradually acquired, resulting in uncontrollable 
tumor cell growth [2]. Hence, understanding 

the molecular triggers of ccRCC tumorigenesis 
is crucial for the prevention and treatment of 
ccRCC. Although aberrant DNA methylation 
modifications is known to induce various tumor 
types, its role in ccRCC is not yet well under-
stood. In particular, DNA methylation regulators 
and their relationship to the prognosis of ccRCC 
remain to be determined.

Materials and methods

Collection of ccRCC datasets

The clinical data in the TCGA database were 
downloaded from the Genomic Data Commons 
(GDC) (https://portal.gdc.cancer.gov/), where 
all TCGA RNA-seq transcriptome data are also 
available. The quantification and normalization 
of these data were performed with the Partek 
expectation maximization (EM) algorithm. In 
total, 542 ccRCC samples and 72 normal sam-
ples were analyzed.

Analysis of the differential expression of DNA 
methylation regulator and data preprocessing

The Edge R package was used to screen DNA 
methylation regulators between cancer speci-
mens and normal control specimens. The false 
discovery rate (FDR) and adjusted P-values 
were determined using the classical Benjamini-
Hochberg procedure. Meanwhile, log2FC > 1 
was chosen as the cutoff threshold. In this 
study, instead of investigating DNA methyla-
tion, we studied the expression of genes that 
regulate DNA methylation since DNA methyla-
tion can function differently depending on the 
genomic context. We focused on twenty cur-
rently known DNA methylation regulators, 
including three erasers (TET1, TET2, TET3), 
three writers (DNMT1, DNMT3A, DNMT3B), and 
14 readers (ZBTB4, ZBTB33, ZBTB38, UHRF1, 
UHRF2, MBD1, MBD2, MBD3, MBD4, MECP2, 
UNG, SMUG1, TDG, NTHL1) [22].

PPI network construction and correlation 
analysis

To identify interactions among the DNA methyl-
ation regulators, the STRING database (version 
11.5 https://string-db.org/) was employed to 
analyze the protein-protein interaction (PPI) 
among DNA methylation regulators. Hub gene 
network illustration was visualized by utilizing 
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Cytoscape software (version 3.10.0 https://
cytoscape.org). A Pearson correlation heatmap 
was used to display the association among dif-
ferent DNA methylation regulators.

Analysis of consensus clusters

To reveal the prognostic value of these DNA 
methylation regulator, samples from TCGA 
ccRCC dataset was clustered into two groups 
based on the consensus expression of the DNA 
methylation regulator in R using “Consensus 
Cluster Plus”. Kaplan-Meier and log-rank tests 
were used to calculate the difference in overall 
survival (OS) between the two groups. A Chi-
square test was performed to compare the dis-
tribution of T, M, gender, age, grade, and stage 
between the different groups.

Generation and prediction of prognostic signa-
tures

Survival analysis in R was used to evaluate the 
relationship between DNA methylation regula-
tors and the overall survival in the samples 
from TCGA ccRCC dataset. Genes with hazard 
ratios (HRs) exceeding 1 were considered high-
risk, while genes with HRs less than 1 were 
considered protective. A two-set of prognostic 
gene signatures was identified. The Akaike 
information criterion (AIC) and multivariate Cox 
regression analysis were implemented for opti-
mal model selection. For each patient, a risk 
score was calculated by adding the scores of 
each regulator together, which was done by 
multiplying the expression by a coefficient. The 
samples in the TCGA ccRCC dataset were strat-
ified into low-risk and high-risk groups based on 
the median risk score. Finally, we used the 
Kaplan-Meier estimator and the 2-sided log-
rank test to evaluate the differences in OS 
between the high-risk and low-risk patients. 
This prognostic model was assessed using a 
receiver operating characteristic curve (ROC). 
The clinicopathologic data were compared 
using the Chi-square test. Differences were 
visualized using heatmaps created with the 
Pretty Heatmaps R package. To identify inde-
pendent prognostic factors for the TCGA ccRCC 
cohort, both univariate and multivariate Cox 
regression analyses were performed. Further 
evaluation was conducted on the survival dif-
ference between the high-risk and low-risk 
groups stratified by gender, stage, grade, and 
age.

Patient recruitment in the validation cohort

The validation study using patient samples 
from our own hospital was approved by the 
Ethics Committee of the Naval Medical 
University Shanghai Changhai Hospital. A total 
of 285 ccRCC patients with survival data at 
follow-up from the Urology Department of 
Shanghai Changhai Hospital Kidney Cancer 
Specialized Database were included in this 
study. The participants in this independent vali-
dation cohort had the same inclusion and 
exclusion criteria as used the discovery cohort. 
The patient inclusion criteria were: (1) Clinically 
diagnosed with renal cancer with indications 
for partial nephrectomy or radical nephrectomy, 
no significant contraindications to surgery; (2) 
Pathologically diagnosed again with ccRCC 
postoperatively and was verified by an experi-
enced pathologist. The detailed clinicopatho-
logic information of this cohort was summa-
rized in Table S1. Written informed consent was 
obtained from all participants for the use of 
their frozen tissue samples.

Quantitative real-time PCR

Total RNA was extracted from tissue speci- 
mens byRNAiso Plus (Takara Bio, Tokyo, Japan) 
according to the manufacturer’s instruction. 
PrimeScript™ RT Master Mix (Perfect Real 
Time) (Takara Bio, Tokyo, Japan) was used to 
synthesize the complementary DNAs (cDNAs). 
The amplification of cDNAs was conducted with 
TB Green® Premix Ex Taq™ (Takara Bio, Tokyo, 
Japan) using the QuantStudio™ 6 Flex Real-
Time PCR System (Thermo Fisher Scientific, 
MA, USA). Normalization of gene expression 
against GAPDH and measurement of the rela-
tive expression levels of DNA methylation regu-
lators were performed using the 2-ΔΔCt method. 
The standard procedure for two-step PCR 
amplification was used: one cycle of 95°C for 
30 s, followed by 40 cycles of 95°C for 5 s, and 
60°C for 20 s, followed by a melt curve run. The 
primer sequences and other regulators are 
shown in Table S2 and Figure S1.

Prognostic signature validation 

Patients in the validation dataset were divided 
into high- and low-risk groups based on the risk 
scores and the median scores derived from lin-
ear prediction. The difference in OS between 
these two groups was then calculated, and the 
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clinicopathologic data in the validation cohort 
were also evaluated. Univariate and multivari-
ate Cox regression analyses were conducted  
to assess risk scores. Clinicopathological data 
were used to stratify high-risk and low-risk 
groups.

Statistical analysis

The expression levels of DNA methylation regu-
lators in ccRCC were compared across differ-
ent WHO grades using one-way ANOVA, while 
t-tests were used to compare the expression 
levels based on age, gender, status, and stage. 
Patients were divided into two groups accord-
ing to the consensus expression of DNA meth-
ylation regulators or classified into high- and 
low-risk groups based on the median risk score 
derived from the risk signature. Chi-square 
tests were employed to compare gender distri-
bution, WHO grade, and status between the 
two risk groups. Prognostic analysis was per-
formed using the Kaplan-Meier method to gen-
erate survival curves, and log-rank tests were 
used to determine the differences between 
groups. Hazard ratios (HRs) for DNA methyla-
tion regulators and DNA methylation regulator 
pattern-related genes were calculated utilizing 
the univariate Cox regression model. Statisti- 
cal significance was set at P<0.05 for all two-
sided tests. R 3.6.2 (https://www.r-project.org), 
SPSS 26 (SPSS Inc., Chicago, IL), and Prism 9 
(GraphPad Software Inc., LaJolla, CA) were 
used for all statistical analyses.

Results

Twenty DNA methylation regulators were differ-
entially expressed between ccRCC and control 
samples

As shown in Figure 1A, the heatmap illustrated 
the expression level or pattern of the DNA 
methylation regulators in ccRCC and normal 
control samples. Positive colors near red stood 
for those that were highly expressed and posi-
tively correlated, while negative colors near 
blue indicated lowly expressed and negatively 
correlated. The expression levels of DNMT3B 
(***), MBD1 (***), SMUG1 (***), DNMT1 
(***), DNMT3A (***), TDG (***), TET3 (***), 
MBD2 (***), UHRF2 (***), TET2 (*), MBD3 
(***) and UHRF1 (***) were significantly up- 
regulated in tumor samples compared to nor-
mal control samples, while tumor samples had 

much lower levels of UNG (***), ZBTB4 (***), 
TET1 (**), ZBTB38 (*) and MECP2 (***). There 
was no significant difference between normal 
and cancer samples in NTHL1, MBD4, or 
ZBTB33 expression (Figure 1B).

The interaction and correlation among twenty 
DNA methylation regulators

The interaction among the twenty DNA methyla-
tion regulators was displayed in Figure 2A. 

UHRF1 appeared to be the hub gene highly con-
nected with neighboring genes within a given 
module of the interaction network among the 
differential gene expression (DEGs) according 
to the three centrality indicators: degree 
strength, betweenness centrality, and eigen-
vector centrality. The result of the Cytoscape 
network was further supported by a correlation 
analysis (Figure 2B). Similarly, UHRF1 was cor-
related to the other seven DNA methylation 
regulators, with DNMT1 being the most related 
(r=0.65) (Figure 2C).

ccRCC patients with different clinical out-
comes were clustered according to the expres-
sion of DNA methylation regulator

Using the expression similarity of twenty DNA 
methylation regulators, k=2 was used to divide 
the patients in the ccRCC dataset into two  
clusters, cluster 1 and cluster 2 (Figure 3A-C). 
Patients in cluster 1 had a significantly shorter 
OS than those in cluster 2 (P=0.026) (Figure 
3D). Moreover, we evaluated the association 
between the expression of the DNA methyla-
tion regulators and clinicopathologic features  
in ccRCC and found a significant difference 
between clusters 1 and 2 in rank (*), gender (*), 
and status (**), while there was no significant 
difference in other data such as stage and age 
(Figure 3E).

Prognostic signature identification

The TCGA ccRCC dataset was analyzed using 
univariate Cox regression to identify DNA meth-
ylation regulators related to OS. The results 
demonstrated that MECP2 (P<0.001), ZBTB4 
(P<0.001), TET2 (P=0.03), MBD3 (P=0.04), 
DNMT3A (P=0.02), UHRF1 (P<0.001), SMUG1 
(P<0.001), DNMT3B (P<0.001) and TDG (P< 
0.001) were significantly correlated with OS 
(Figure 4A). To further confirm the reliability of 
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the prediction model, we examined the expres-
sion of the significant DNA methylation regula-
tors in 64 pairs of ccRCC clinical samples with 
OS by quantitative RT-PCR. Among the signifi-
cant DNA methylation regulator modifiers asso-
ciated with OS, only UHRF1, TDG, DNMT3B, 
MBD3, MECP2, ZBTB4, and TET2 significantly 
differed in the clinical sample (Figure 4B).
Furthermore, MECP2 (HR=0.42, 95% CI=0.28-
0.63), ZBTB4 (HR=0.49, 95% CI=0.37-0.65), 
and TET2 (HR=0.55, 95% CI=0.37-0.81) were  
a group of protective genes with HRs less than 

1, while TDG (HR=2.70, 95% CI=1.69-4.32), 
DNMT33B (HR=2.09, 95% CI=1.58-2.78), 
UHRF1 (HR=1.92, 95% CI=1.53-2.41) and 
MBD3 (HR=1.44, 95% CI=1.15-1.97) were risk 
genes with HRs more than 1 (Figure 4A). 

Moreover, a two-set of regulators was chosen 
to establish the prognostic signature based on 
quantitative RT-PCR and HRs results. The coef-
ficients were obtained from the LASSO algo-
rithm to calculate the risk score for each patient 
using the formula: total risk score * (# of mark-

Figure 1. Expression levels of DNA methylation regulators in the TCGA clear cell renal cell carcinoma (ccRCC) data-
set. A. The expression profiles of DNA methylation regulators were visualized as a heatmap. Red indicates higher 
expression, and blue indicates lower expression. B. Significantly different expression of DNA methylation regulators 
between tumor and normal tissue.
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Figure 2. Correlations and interactions among DNA methylation regulators. A. A PPI network was constructed to evaluate the interaction among DNA methylation 
regulators. B. Cytoscape network quantified the regulator-regulator interactions. C. The Pearson correlation heatmap was used to determine the correlation among 
DNA methylation regulators.
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Figure 3. Overall survival (OS) and grade of patients in the two different clusters in TCGA ccRCC cohort. A. Consensus clustering cumulative distribution function 
(CDF) for k=2 to 10. B. Relative change in area under CDF curve for k=2 to 10. C. The TCGA ccRCC cohort was divided into two distinct clusters when k=2. D. The OS 
of patients in cluster 1 was significantly shorter than in cluster 2. E. Significant difference in grade, gender, and status between clusters 1 and 2.
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Figure 4. Construction of the prognostic signature based on data from the TCGA ccRCC cohort. A. Univariate Cox regression analysis of the DNA methylation regula-
tors to identify genes significantly correlated with overall survival (OS). B. qRT-PCR analysis of DNA methylation regulators in 64 pairs of ccRCC clinical samples. 
C. The OS of patients was much shorter in the high-risk group than in the low-risk group. D. The distributions of risk scores. E. The distributions of risk scores and 
OS status. The green and red dots indicate the alive and dead status, respectively. F. An ROC curve was used to evaluate the prediction efficiency of the prognostic 
signature. G. No significant differences in gender, grade, and stage were found between the high- and low-risk groups.
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ers tested/sum of individual regulator risk 
scores). A total of 525 ccRCC cases were divid-
ed into 2 groups, high- and low-risk groups. The 
survival curve displayed that the patients with 
in the high-risk group had a significantly shorter 
OS than those in the low-risk group (P<0.0001) 
(Figure 4C). Figure 4D shows the distributions 
of the two sets of gene signature-based risk 
scores. The risk scores as well as OS status 
were distributed (Figure 4E). Importantly, the 
prognostic signature model exhibited satisfac-
tory prediction efficiency with an area under the 
curve value of 0.703 (Figure 4F). As shown in 
Figure 4G, two-set of DNA methylation regula-
tors were expressed in the high- and low-risk 
groups, and there was a significant difference 
between the two risk groups in stage (*), grade 
(*), gender (*), and age (**).

Prognostic signature-based risk score was an 
independent prognostic factor for TCGA ccRCC 

The prognostic signature-based risk scores 
were rated utilizing univariate and multivariate 
Cox regression analyses. After excluding sam-
ples with unknown age or gender, 525 patients 
were included for the subsequent analysis. The 
univariate Cox regression analysis indicated 
that the age (P=0.01, HR=1.56, 95% CI=1.13-
2.15), grade (P=0.01, HR=1.41, 95% CI=1.10-
1.79), stage (P=0.03, HR=1.65, 95% CI=1.06-
2.57) and risk score (P<0.001, HR=1.53, 95% 
CI=1.28-1.82) were all significantly associated 
with the OS (Figure 5A). Furthermore, the age 
(P<0.001, HR=1.61, 95% CI=1.18-2.21), grade 
(P<0.001, HR=2.30, 95% CI=1.86-2.85), stage 
(P<0.001, HR=1.93, 95% CI=1.68-2.21), T 
(P<0.001, HR=1.99, 95% CI=1.67-2.36), M 
(P<0.001, HR=4.39, 95% CI=3.18-6.06) and 

risk score (P<0.001, HR=1.85, 95% CI=1.61-
2.13) were identified as independent prognos-
tic factors by the Cox multivariate regression 
model (Figure 5B). In addition, we tested the 
intrinsic value of different clinicopathological 
data. We found a significantly shorter OS in 
high-risk group than in the low-risk group for 
patients younger than 65 years (P<0.0001), 
patients older than 65 years (P<0.0001), 
female patients (P<0.0001), male patients 
(P<0.0001), patients at G1-G2 (P=0.0024), 
patients at G3-G4 (P<0.0001), patients at 
stage I-II (P=0.03), and patients at the stage  
III-IV (P<0.0001) (Figure 6A-H). 

Prognostic signature validation

The validated cohort included 285 patients 
with ccRCC. A cutoff value was used to classify 
86 patients into a high-risk group, and 199 
patients were categorized into a low-risk group. 
The OS was significantly shorter in the high-risk 
group than in the low-risk group (P<0.0001) 
(Figure 7A). Figure 7B and 7C show the risk 
scores, OS, and OS status distributions. The 
high- and low-risk groups differed significantly 
in several clinicopathologic values such as  
T (*), stage (**), gender (*), and age (*)  
(Figure 7D). Univariate Cox regression analysis 
revealed that stage (P<0.001, HR=3.51, 95% 
CI=2.04-6.03) was significantly associated 
with OS (Figure 8A). Furthermore, multivariate 
Cox regression analysis showed that stage 
(P<0.001, HR=2.74, 95% CI=1.99-3.77), T 
(P<0.001, HR=2.25, 95% CI=1.62-3.12), and 
risk score (P<0.001, HR=1.25, 95% CI=1.11-
1.41) were independent prognostic indicators 
(Figure 8B). As shown in Figure 9A-H, the OS 

Figure 5. Identification of independent prognostic factors in the TCGA ccRCC cohort. A. Univariate Cox regression 
analysis of the risk score and clinicopathologic data to identify the indicators that significantly correlated with over-
all survival (OS). B. Multivariate Cox regression analysis of the risk score and clinicopathologic data to reveal the 
independent prognostic factors.
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rate was significantly shorter in the high-risk 
group compared to that of the low-risk group for 
patients younger than age 65 (P=0.00027), 
older than age 65 (P=0.061), female patients 
(P=0.012), male patients (P=0.00022), pati- 

ents at the T3-T4 (P=0.025), patients at the 
stage I-II (P=0.035) or those at the stage III-IV 
(P=0.046). However, no significant difference in 
OS was observed for T1-T2 patients (P=0.35) 
between the high-risk and low-risk groups.

Figure 6. Survival difference between the high- and low-risk groups stratified by clinicopathologic data in the TCGA 
ccRCC cohort. A, B. The difference in overall survival (OS) between high- and low-risk groups stratified by age. C, 
D. The difference in OS between high- and low-risk groups stratified by gender. E, F. The difference in OS between 
high- and low-risk groups stratified by grade. G, H. The difference in OS between high- and low-risk groups stratified 
by stage.
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Figure 7. Validation of the prognostic signature in an independent ccRCC cohort. A. The ccRCC patients in the high-risk group had a significantly shorter overall sur-
vival (OS) than those in the low-risk group. B. Distributions of risk scores.C. Distributions of risk scores and OS status. D. Significant differences in T, stage, gender, 
and age between the high- and low-risk groups.
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Discussion

In this study, we found that 17 out of the 20 
foremost DNA methylation regulators were 
either highly expressed or expressed at low lev-
els in TCGA ccRCC datasets, indicating involve-
ment of these important regulators in the onco-
genesis or in the prognosis of patients with 
ccRCC. Our further unsupervised consensus 
clustering of DNA methylation regulators 
defined 2 ccRCC subgroups. The OS, tumor 
grade, gender, and status were dramatically 
distinct between the 2 ccRCC subgroups, imply-
ing that an unfavorable prognosis of ccRCC is 
associated with the expression level of DNA 
methylation regulator.

Significantly, we established seven genetic  
risk profiles, including TDG, DNMT3B, UHRF1, 
MBD3, MECP2, ZBTB4, and TET2, and demon-
strated that they could robustly predict the 
prognosis of ccRCC patients from different 
independent cohorts. Our predictive model 
revealed that MECP2, ZBTB4, and TET2 expres-
sion were positively associated with ccRCC 
prognosis, suggesting that they might act as 
tumor suppressors.

Consistent with the findings from previous stud-
ies, epigenetic regulators, including DNA meth-
ylation regulators, are aberrantly expressed in 
diverse types of cancer. For example, low 
expression of ZBTB4 is related to a decreased 
latency of recurrence in breast and prostate 
cancers [23]. ZBTB4-/- mice were more vulner-
able to DMBA/TPA-induced skin carcinogene-
sis [24].

Recently, Luo et al. discovered that MECP2 
depletion in colorectal cancer (CRC) cells sig-

nificantly inhibited stem cell populations, as 
well as suppressing the migration and invasion 
of the CRC cells in vitro and metastasis in vivo 
[25]. However, in our bioinformatic analysis and 
validation experiments, we found that MECP2 
was downregulated in ccRCC, suggesting that 
the same DNA methylation regulators might 
have distinct roles in different cancers. A fur-
ther in-depth investigation is required to eluci-
date the underlying molecular mechanisms of 
these different functions.

Moreover, we found DNMT3B, TDG, UHRF1, 
and MBD3 were highly expressed in ccRCC  
and negatively associated with prognosis. As 
described above, DNA methylation is catalyzed 
by DNMTs which include DNMT1, DNMT2, 
DNMT3A and DNMT3B. Distinct from other 
members of DNMTs, DNMT2 lacks methylation 
transferase activity in vitro, while DNMT3B, 
DNMT3A, and DNMT1 are the main ones that 
exert methyltransferase activity in vivo [26, 
27]. As an oncogene, DNMT3B is frequently 
upregulated in tumors and is associated with 
the downregulation of its targets. In some can-
cer types, its overexpression is an adverse 
prognostic marker [28].

Similarly, aberrant TDG expression is observed 
in many malignant diseases or their disease 
models, including esophageal cancer [29], rec-
tal cancer [30], and melanoma [31]. The TDG-
mediated imbalance of the demethylation path-
way increases the risk of gene mutation, which, 
in turn, increases the susceptibility of cells to 
various risk factors, thereby leading to genomic 
instability and tumor formation. Several studies 
have discovered that decreased gene expres-
sion levels of TDG or decreased TDG protein 

Figure 8. Identification of independent prognostic factors in the validated ccRCC cohort. A. Univariate Cox regression 
analysis of the risk score and clinicopathologic data to identify the significantly associated indicators with overall 
survival (OS). B. Multivariate Cox regression analysis of the risk score and clinicopathologic data to reveal the inde-
pendent prognostic factors.
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activity may increase the risk of cancer 
development.

At present, information on the roles of these 
genes in tumorigenesis is still scarce. Never- 
theless, a few researchers recently reported 
that UHRF1 expression was significantly higher 
in RCC tumor tissues than in normal control  
tissue [32], which is consistent with our find-
ings. The downregulation of UHRF1 expression 

induced by shRNA in RCC cell lines can cause 
decreased cell viability, attenuated cell migra-
tion and invasion, and incremental apoptosis. 
In support of these in vitro findings, knockdown 
of UHRF1 in a RCC xenograft models also sig-
nificantly inhibited tumor growth. Furthermore, 
UHRF1 was shown to recruit HDAC1 to the 
TXNIP promoter, regulating the deacetylation of 
histone H3K9 and leading to the repression of 
TXNIP expression.

Figure 9. Survival differences between high- and low-risk groups stratified by clinicopathologic data in the validated 
ccRCC cohort. A, B. The difference in overall survival (OS) between the high- and low-risk groups stratified by age. C, 
D. The difference in OS between high- and low-risk groups stratified by gender. E, F. The difference in OS between 
high- and low-risk groups stratified by grade. G, H. The difference in OS between high- and low-risk groups stratified 
by stage.
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The development of ccRCC is a complex and 
multi-step process resulting from the interplay 
of mutations, such as VHL, epigenetic regula-
tion, abnormal angiogenesis, and the aberrant 
expression of immune-related genes [7]. This 
complexity limits the use of single or a few 
genes to predict disease risk. Furthermore, the 
accuracy and reliability of disease prediction 
are significantly influenced by the quality and 
quantity of gene expression and other molecu-
lar events. In our study, we constructed a robust 
risk profile of MECP2, ZBTB4, TET2 and TDG, 
DNMT3B, UHRF1, and MBD3 using the TCGA 
ccRCC dataset, which showed excellent perfor-
mance in predicting the clinical outcome of 
ccRCC. These findings provide important evi-
dence for future investigations into the involve-
ment of DNA methylation or DNA methylation 
regulators in ccRCC. 

However, the limited sample number may have 
led to bias and reduce the accuracy of the pre-
diction models. As technology advances and 
research progresses, including experimental 
validation, the expression of these DNA meth-
ylation regulators holds great potential to 
improve the accuracy and reliability for the 
prognosis of patients with ccRCC.

Conclusion

In this study, we investigated the crucial role of 
DNA methylation regulators in the progression 
of ccRCC. More importantly, we established a 
robust prognostic signature which was further 
validated in independent patient cohorts. This 
DNA methylation regulators-related signature 
could accurately and reliably predict a poor 
clinical outcome, indicating that it could serve 
as a promising biomarker for monitoring ccRCC 
development and providing useful information 
for therapeutic decision making.
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Table S1. The clinical information of the validated ccRCC cohort from Changhai Hospital Kidney Can-
cer Specialized Disease Database
Clinicopathological features Number
Age
    ≤65 198 (69.47%)
    >65 87 (30.53%)
Gender, n (%)
    Male 186 (65.26%)
    Female 99 (34.74%)
Pathological diagnosis
    clear cell renal cell carcinoma 285 (100%)
Tumor grade
    G1 130 (45.61%)
    G2 117 (41.05%)
    G3 28 (9.82%)
    G4 10 (3.52%)
TNM stage
    Stage I 166 (58.24%)
    Stage II 99 (34.73%)
    Stage III 18 (6.32%)
    Stage IV 2 (0.07%)

Table S2. Primer information for DNA methylation regulators
Species Gene primer Sequence (5’->3’) Length/nt Tm/°C Product length/bp
Homo DNMT3B F1 CTGGATGTTTGAGAATGTTGTAGC 24 60.06 90

R1 GCATCAATCATCACTGGATTACAC 24 60.63
MBD1 F2 ACTGTGGAATCAGCTTCTCAGG 22 60.82 119

R2 CACACGCTTAAACATTCTCTGTTC 24 60.22
SMUG1 F3 CACTGTTTTGTCCACAATCTATGC 24 60.81 111

R3 ACAGATCCCAAGAAGCTGTTCTC 23 61.14
DNMT1 F4 AAACCTCAGGAAGAGTCTGAAAGA 24 59.93 102

R4 TCGTTCTCTGGATGTAACTCTACG 24 59.84
DNMT3A F5 CCTGCGGTGATCTCCAAGTC 20 63.13 90

R5 CTCACTCCGCTTCTCCAAGT 20 59.60 
TDG F6 AACCATTTTTGGAAGTGTTTGTTT 24 60.06 97

R6 ATCCAATACCATACTTCCCTGGTA 24 59.87
TET3 F7 ACCTCTTAAGTACCTGGACACACC 24 59.86 120

R7 GGACCTTCATCTTTCTCCACTATT 24 59.07
MBD2 F8 GCGATGTCTACTACTTCAGTCCAA 24 59.85 106

R8 GTTCTGAAGTCAAAACTGCTGAGA 24 60.10 
UHRF2 F9 TGGACAGTGTACCCTCTACGTCTA 24 60.11 101

R9 TAGAGTACCGCTTTCTGGGTATTC 24 60.05
TET2 F10 GAGAAATCATGGAAGAAAGGTTTG 24 60.33 111

R10 ACTTAGCAATAGGACATCCCTGAG 24 60.04
MBD3 F11 GGCCACAGGGATGTCTTTTACTAT 24 61.72 108

R11 GAAGTCGAAGGTGCTCAGGTC 21 61.35
UHRF1 F12 TCATCAGAGAGGACAAGAGCAAC 23 60.95 111

R12 CCTCCACTTTACTCAGGAACAACT 24 60.09
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Figure S1. qRT-PCR of DNA methylation regulators in 64 pairs of ccRCC clinical samples.

UNG F13 TTGCAGAAGAAAGAAAGCATTACA 24 60.40 99
R13 GGATGACAACCTTCACATCTTTTA 24 59.42

ZBTB4 F14 CTATTGTGAGAAAGTGTTTGCTCTG 25 59.54 113
R14 AGTAAGTGACAAAGGTCTCCCAAC 24 59.97

TET1 F15 ACATAAGATAAGGGCAGTGGAAAA 24 60.24 123
R15 ACGGTCTCAGTGTTACTCCCTAAG 24 60.11

ZBTB38 F16 TATGAAAATGCACGAGAAAACAGT 24 60.06 121
R16 TCAGGGTGTTTACAGTATCTTGGA 24 59.93

MECP2 F17 AAGCTTAAGCAAAGGAAATCTGG 23 60.25 108
R17 GAAGTACGCAATCAACTCCACTTT 24 60.90 

NTHL1 F18 ATGAGGAACAAAAAGGATGCAC 22 60.36 101
R18 GTCTGCTTGATGTATTTCACCTTG 24 60.06

MBD4 F19 GTACTTTATCAGCCCACAAGGACT 24 59.96 91
R19 TGGCTTAAGAGAAGTCTCTCCATT 24 59.92

ZBTB33 F20 ACAAGGAAGTGAAAAATTGTTGGT 24 60.18 106
R20 AGAACTGACATTTGGTGGTGTAGA 24 59.96


