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Abstract: Background: Studies have shown that ferroptosis- and oxidative stress-related genes (FORGs) perform 
crosstalk in ovarian cancer (OC). The specific role of FORGs in OC, however, remains unclear. We aimed to develop 
a molecular subtype and prognostic model associated with FORGs that could predict OC prognosis and evaluate 
the infiltration of tumor-associated immune cells. Methods: Gene expression samples were collected from the GEO 
(GSE53963) and Cancer Genome Atlas (TCGA) databases. Kaplan-Meier analysis was used to evaluate prognostic 
efficacy. Unsupervised clustering was applied to identify molecular subtypes, which was followed by tumor immune 
cell infiltration and functional enrichment analyses. Subtype-related differentially expressed genes (DEGs) were 
identified and used to establish prognostic models. Associations between the model and immune checkpoint ex-
pression, stromal scores, and chemotherapy were investigated. Results: OC patients were categorized into two 
FORG subtypes based on the expression characteristics of 19 FORGs. Molecular subtypes associated with patient 
prognosis, immune activity, and energy metabolism pathways were identified. Subsequently, DEGs in the two FORG 
subtypes were identified and used in prognostic models. We identified six signature genes (MEGF8, ECE1, SASH1, 
ARHGEF16, PLXNA1, and FCGBP) with LASSO analysis to assess the risk of OC. Patients in the high-risk group had 
poor prognoses and immunosuppression, while the risk scores were significantly associated with immune check-
point expression, stromal scores, and chemotherapy sensitivity. Conclusions: Our novel clustering algorithm was 
used to create distinct clusters of OC patients and a prognostic model was developed that accurately predicted 
patient outcomes and chemotherapy responses. This approach offers effective precision medicine for OC patients.
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Introduction

Ovarian cancer (OC) is a prevalent and lethal 
malignant tumor in women, and it has an 
increasing incidence [1, 2]. Although its inci-
dence rate is lower than that of cervical cancer 
and endometrial cancer, which ranks third in 
gynecologic malignancies, its mortality rate is 
higher. Due to its heterogeneous clinical mani-
festations and molecular mechanisms, more 
than 70% of patients are diagnosed at a late 

stage [2]. Despite the application of new target 
drugs, including poly (ADP-ribose) polymerase 
(PARP) inhibitors, the survival rate of OC remains 
low, with a five-year survival rate of only 47.8% 
[3]. In clinical settings, serum carbohydrate 
antigen 125 (CA125) and other tumor markers 
are not good at predicting poor prognoses, 
recurrence, and chemotherapy benefits in OC 
patients. Moreover, single gene prognosis pre-
diction models are often ineffective in the face 
of complex causative molecular mechanisms. 
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Consequently, there is an urgent need for  
novel prognostic biomarkers to improve OC 
outcome.

Ferroptosis is a newly identified form of pro-
grammed cell death, characterized by iron-
dependent accumulation of lipid peroxidation 
and an increase in reactive oxygen species 
(ROS) [4]. This form of cell death is distinct  
from autophagy, necrosis, cuproptosis, and 
apoptosis. Research has shown that ferropto-
sis plays a key role in OC cell proliferation  
and metastasis, as well as in the maintenance 
of tumor stemness, through abnormal expres-
sion of ferroptosis-related genes (FRGs) [5]. 
Bioinformatic analysis identified 57 FRGs that 
were abnormally expressed in tissues from  
OC patients compared to normal tissues, and 
they were associated with OC prognosis and 
immune cell infiltration [6]. Therefore, target- 
ing FRGs to induce iron-dependent cell death 
has been proposed as a novel approach to  
control OC progression, even in drug-tolerant 
tumors. Additionally, increased levels of oxida-
tive stress are a hallmark of tumor cells and the 
primary source of ROS, which can promote lipid 
peroxidation and ferroptosis, including NADPH 
oxidase (NOX) and mitochondrial-induced ROS 
[7]. In a moderate oxidative stress microenvi-
ronment, tumor cells can survive and prolifer-
ate, as they have evolved to maintain redox 
homeostasis [8]. This makes them resistant to 
chemotherapy. Therefore, targeting ferroptosis- 
and oxidative stress-related genes (FORGs) to 
simultaneously inhibit oxidative stress and fer-
roptosis signaling pathways is gaining consider-
able attention.

In this study, the frequency of mutations, 
changes in copy number, and the prognostic 
value of the FORGs were analyzed in OC 
patients. A total of 596 sample data were col-
lected from the Gene Expression Omnibus 
(GEO; GSE53963) and Cancer Genome Atlas 
(TCGA; https://portal.gdc.cancer.gov) databas-
es and patients were divided into two clusters. 
Prognostic values and immune infiltration were 
then analyzed within these two clusters. Diffe- 
rentially expressed genes (DEGs) between the 
two clusters were identified, and a risk predic-
tion model was established. This model was 
found to be effective in predicting a patient’s 
overall survival, immune infiltration, and sensi-
tivity to chemotherapy and immune checkpoint 

blockade therapy, indicating that our model’s 
signature may be a biomarker for predicting the 
prognosis of OC patients and guiding precise 
treatment strategies.

Materials and methods

Collection of OC data

RNA-seq data and patient clinical information 
data were acquired from TCGA and GEO (GSE- 
53963) databases. Patients with overall sur-
vival (OS) times and status were included in the 
study. FORGs were acquired from a previous 
study [9]. Copy number variation (CNV) data 
and somatic mutations were downloaded from 
TCGA. Prognostic values of FORGs were evalu-
ated using Kaplan-Meier (KM) methods.

Consensus clustering to identify FORG clusters

For consensus unsupervised analysis, the 
“ConsensusCluster-Plus” R package was used 
to categorize all patients into two FORG sub-
types [9, 10]. The number of classifications 
depended on the increase in intra-group corre-
lations and the decrease in inter-group correla-
tions. Principal component analysis (PCA) was 
performed to distinguish FORG clusters with 
the ggplot2 R package. DEGs were defined as 
|logFC| > 0.585 with an adjusted P-value < 
0.05.

Construction of the FORG-related prognostic 
risk score

LASSO analysis was applied to the subtype-
related DEGs to determine the optimal value of 
λ. The prognostic risk score was based on gene 
expression and correlation coefficients. Based 
on the median risk score, patients were sepa-
rated into two risk groups, and KM survival 
analysis was used to assess the predictive 
value of this signature.

Evaluation of immune cell infiltration in OC

Single-sample gene set enrichment analysis 
(ssGSEA) was performed to explore immune 
infiltration in different FORG subtypes. The 
marker genes for 23 types of immune cells 
were descripted in the Supplementary Table 1. 
The immune infiltration in high- and low-risk 
groups was quantified with the CIBERSORT 
algorithm [11], and the correlation between risk 
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scores and immune cell infiltration was ana-
lyzed with Spearman’s method [12].

Assessment of immune checkpoint expres-
sion, stromal scores, and chemotherapy 
effects

The immune checkpoint gene expression and 
stromal scores were compared between the 
two risk groups with the Wilcoxon test. Using 
the pRRophetic R package in R (version 4.1.0), 
the effect of molecular therapy and chemother-
apy was calculated as the IC50, and then the 
values were compared between the high- and 
low-risk groups. Drug sensitivity analysis R 
codes were described in the Supplementary 
Material.

Statistical analysis

Statistical analyses were analyzed with RStudio 
and R (version 4.1.0). Differences between the 
two groups were compared with the Wilcoxon 
test. All analyses were two-sided, and P < 0.05 
was considered significant.

Results

Genetic alterations of FORGs in OC

It has been reported that 34 FORGs were con-
sidered to be associated with ferroptosis and 
oxidative stress [4]. We conducted a compre-
hensive analysis of 596 samples from the GEO 
(GSE53963) and TCGA databases. Our results 
from a KM analysis revealed that 19 of the 34 
FORGs were closely related to the prognosis of 
OC (Figure 1A, 1B). Moreover, CNV analysis 
showed that 19 genes had higher CNV increas-
es or deletions (Figure 1C, 1D). Furthermore, 
somatic mutations among the FORGs in OC 
were analyzed and 40 (9.17%) of the 436 sam-
ples were found to be mutated (Figure 1E). 
Finally, a network among FORGs was construct-
ed to reveal the correlations between the 
FORGs and their prognostic significance, which 
indicated a high correlation among these genes 
(Figure 1F).

Identification of FORG subtypes

Patients with OC were categorized into two 
FORG subtypes using consensus clustering 
based on the expression characteristics of 19 
FORGs (Figure 2A). PCA revealed significantly 

distinct separation between the two FORG sub-
types (Supplementary Figure 1). KM analysis 
indicated that the prognosis of cluster A was 
significantly better than that of cluster B (Figure 
2B). The expression pattern of FORGs and clini-
copathologic factors in the two FORG subtypes 
are shown in a heatmap (Figure 2C), which 
demonstrated that most of the 19 FORGs were 
significantly upregulated in cluster B.

Characteristics of biological function and im-
mune infiltration in different FORG subtypes

To further investigate the biological functions 
and pathways associated with different FORG 
subtypes, the DEGs between gene set variation 
analysis (GSVA), Gene Ontology (GO), and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses were identified. The GSVA 
results showed that subtype A was mainly  
related to oxidative phosphorylation, metabo-
lism of xenobiotics by cytochrome P450, and 
drug metabolism cytochrome P450. Subtype B 
was mainly enriched in the NOTCH signaling 
pathway, mTOR signaling pathway, and insulin 
signaling pathway (Figure 3A). To identify the 
biologic function of each of the FORG subtypes 
in OC, 308 DEGs were analyzed with the 
“limma” R package. GO terms were closely 
associated with histone modification, protein 
alkylation, and protein methylation, while KEGG 
terms were enriched in endocrine resistance 
(Figure 3B). Finally, a ssGSEA analysis was per-
formed to assess the immune infiltration scores 
of the FORG subtypes (Figure 3C). In subtype  
A, the highest scores were observed for acti-
vated B cells, activated CD4 T cells, activated 
CD8 T cells, activated dendritic cells, activated 
CD56bright natural killer (NK) cells, eosino-
phils, myeloid-derived suppressor cells, macro-
phages, mast cells, NK cells, Type 1 T helper 
cells, and Type 17 T helper cells.

Construction of the FORG prognostic signature

LASSO analysis was applied to the 308 sub-
type-related DEGs (Supplementary Table 2) to 
determine the optimal value of λ (Figure 4A). 
The results indicated that MEGF8, ECE1, 
SASH1, ARHGEF16, PLXNA1, and FCGBP were 
identified as signature genes for the construc-
tion of a prognostic model according to expres-
sion levels. All OC patients were divided into 
two groups according to the median of the risk 
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Figure 1. Genetic alterations and prognostic role of ferroptosis- and oxidative stress-related genes (FORGs) in ovar-
ian cancer (OC). A, B. Kaplan-Meier analysis revealed that SNCA and IFNG were closely related to the prognosis of 
OC. C. Frequencies of copy number variation (CNV) increases and deletions and non-CNV among the FORGs. D. 
Locations of FORG CNV alterations on 23 chromosomes. E. Mutation frequencies of FORGs. F. Interactions among 
FORGs in OC. The lines represent interactions. 
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Figure 2. Identification of ferroptosis- and oxidative stress-related genes (FORGs) subtypes. A. Two FORG clusters 
were identified using consensus clustering analyses. B. Kaplan-Meier analysis indicated that the prognosis of clus-
ter A was significantly better than that of cluster B. C. The expression pattern of FORGs and clinicopathologic factors 
in the two FORG subtypes are shown in the heatmap.

scores. KM survival analysis demonstrated 
that low-risk patients had a better prognosis 
than high-risk patients (Figure 4B). To further 
investigate the differences in the composition 
of immune infiltration among the two groups, 
the percentages of the 22 immune cells were 
calculated with the CIBERSORT algorithm anal-
ysis. The results showed that resting CD4 mem-
ory T cells, resting NK cells, and M2 macro-
phages were positively correlated with risk 
scores, while activated CD4 memory T cells, 

activated NK cells, and M1 macrophages were 
negatively correlated with risk scores (Figures 
4C, 5).

Analysis of immune checkpoint expression, 
stromal scores, and chemotherapy effects 
between the two groups

Expression levels of immune checkpoint genes 
in the two groups were compared, and the 
results showed that the high-risk group had 
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Figure 3. Functional analyses and tumor microenvironment in ferroptosis- and oxidative stress-related genes 
(FORGs) clusters. A. GSVA analysis showed the enriched pathways in two FORG clusters. B. GO and KEGG analyses. 
C. ssGSEA analysis was performed to assess the immune infiltration scores of the FORG subtypes.

higher immune checkpoint expression levels, 
including TNFRSF8, TNFRSF25, and CD276, 
indicating that immunotherapy may be more 
effective in high-risk patients (Figure 6A, 6B). 
Additionally, we also found that stromal scores 
were increased in the high-risk group compar- 
ed with the low-risk group (Figure 6C). Sub- 
sequently, we evaluated the therapeutic effects 
of cisplatin and pazopanib using IC50 values. 
We found that the IC50 values of cisplatin were 
significantly increased in the high-risk group, 

while the IC50 values of pazopanib and axitinib 
(Supplementary Figure 2) were decreased in 
the same group, suggesting that the prognostic 
signature is closely associated with the efficacy 
of chemotherapy drugs (Figure 6D, 6E).

Discussion

Recent studies have highlighted the use of 
combining ferroptosis and oxidative stress 
pathways as prognostic signatures to predict 
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Figure 4. Construction of the ferroptosis- and oxidative stress-related genes (FORGs) prognostic signature. A. Cross-
validation for tuning parameter selection in the LASSO model. B. Kaplan-Meier survival analysis demonstrated that 
low-risk patients had a better prognosis than high-risk patients. C. Correlation between the immune cells, prognostic 
signature genes, and risk scores.

OS of OC patients, immune infiltration, and the 
effects of immunotherapy and chemotherapy. 
To date, only a few risk models have been con-
structed that integrate the two pathways. We 
propose a novel risk model that combines  
ferroptosis and oxidative stress pathways to 

improve the prognostic accuracy of OC patient 
outcomes. Nineteen FORGs were closely inves-
tigated in relation to the prognosis of ovarian 
cancer (OC). Among them, MAPK1 has been 
previously demonstrated to be involved in OC 
proliferation, migration, invasion, and chemo-
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Figure 5. Evaluation of immune cell infiltration in high- and low-risk groups. A, C, E. Resting CD4 memory T cells, 
resting natural killer (NK) cells, and M2 macrophages were positively correlated with risk scores. B, D, F. Activated 
CD4 memory T cells, activated NK cells, and M1 macrophages were negatively correlated with risk scores.
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Figure 6. Comparison analysis of immune checkpoint expression, stromal scores, and chemotherapy effects be-
tween the two groups. A, B. The immune checkpoint gene expressions were different in the high-risk and low-risk 
groups. C. Stromal scores and risk groups. D. IC50 values of cisplatin were significantly increased in the high-risk 
group. E. IC50 values of pazopanib were decreased in the high-risk group.

sensitivity [13, 14]. Additionally, GSTM1 has 
been suggested as a biomarker to predict the 
efficacy of paclitaxel-based chemotherapy in 
OC [15]. Furthermore, P62 has been found to 
inhibit vK3-induced oxidative damage through 
the KEAP1/NRF2 pathway in OC cells. Genetic 
alterations, including CNVs and somatic muta-
tions of the 19 FORGs, were also analyzed, and 
most of them showed increased or decreased 
CNV.

Based on the expression characteristics of 19 
FORGs in OC, patients were categorized into 
two molecular subtypes, with cluster A exhibit-

ing a better prognosis than cluster B. To investi-
gate the underlying mechanisms, GSVA results 
revealed that both clusters were mainly 
enriched in energy metabolism pathways, sug-
gesting that targeting these pathways may be 
beneficial for OC prognoses. Furthermore, 
immune infiltration levels were examined 
between the two clusters, and cluster A was 
found to be enriched in activated immune cells, 
including activated B cells, activated CD4 T 
cells, activated CD8 T cells, activated dendritic 
cells, activated CD56bright NK cells, and eosin-
ophils. These findings suggest that the higher 
infiltration levels of activated immune cells in 
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cluster A may partially explain the better prog-
noses of OC patients. Moreover, OC with dis-
tinct prognoses and immune microenviron-
ments were better classified by the two FORG 
subtypes, indicating that these FORGs may be 
associated with the formation of a complex 
immune microenvironment and an influence on 
OC progression. This evidence facilitates our 
understanding of the crosstalk between FORGs, 
immune cell infiltration, and OC progression.

Subtype-related DEGs in two FORG clusters 
were used to establish prognostic models for 
OC. Through LASSO analyses, a signature  
gene set, including MEGF8, ECE1, SASH1, 
ARHGEF16, PLXNA1, and FCGBP, was identi-
fied for OC risk assessment. Of these genes, 
ECE1 was significantly upregulated and is  
associated with OC development [16]. SASH1 
has been reported to be associated with OC 
lymph node metastasis [17]. OC patients were 
stratified into two risk groups according to risk 
scores, and patients in the low-risk group had a 
better prognosis. It has been suggested that 
the immune microenvironment is essential for 
tumor development and chemotherapy resis-
tance [18]. Some immune cells were signifi-
cantly correlated with risk scores. Specifically, 
resting CD4 memory T cells, resting NK cells, 
and M2 macrophages were positively correlat-
ed with risk scores, whereas activated CD4 
memory T cells, activated NK cells, and M1 
macrophages were negatively correlated with 
risk scores, suggesting that higher risk scores 
were associated with immunosuppression. 
Previous studies have demonstrated that mac-
rophages play a diverse role in the tumor micro-
environment [19]. M2 macrophages may con-
tribute to the immune escape of tumor cells by 
suppressing inflammation while simultaneously 
promoting tumor proliferation, and they are 
associated with a poor prognosis in OC and 
other cancers [20-22]. In contrast, M1 macro-
phages are generally thought to promote 
inflammation and are associated with a good 
prognosis in patients with OC [20, 23]. Our 
results are consistent with previous studies, 
but the precise nature of the interactions 
between the model genes, immune microenvi-
ronment, and tumor cells remains to be eluci-
dated. We also examined immune checkpoint 
expression, stromal scores, and chemotherapy 
effects between the two risk groups our results 
indicated that prognostic models may facilitate 

effective treatment with chemotherapy and tar-
geted drugs.

In summary, we constructed a novel FORG clus-
ter and prognostic model that showed efficien-
cy in predicting patient prognoses, immune cell 
infiltration, and chemotherapy responses in 
OC. Our findings provide new perspectives on 
crosstalk between FORGs, immune cell infiltra-
tion, and OC progression.
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Supplementary Material. Drug sensitivity analysis R codes

#if (!requireNamespace(“BiocManager”, quietly = TRUE))
#    install.packages(“BiocManager”)
#BiocManager::install(c(“car”, “ridge”, “preprocessCore”, “genefilter”, “sva”))

#install.packages(“ggpubr”)

library(limma)
library(ggpubr)
library(pRRophetic)
library(ggplot2)
set.seed(12345)

pFilter=0.001
expFile=”merge.txt”
riskFile=”risk.all.txt”
setwd(“C:\\biowolf\\cuproOmics\\51.pRRophetic”)
allDrugs=c(“A.443654”, “A.770041”, “ABT.263”, “ABT.888”, “AG.014699”, “AICAR”, “AKT.inhibitor.VIII”, 
“AMG.706”, “AP.24534”, “AS601245”, “ATRA”, “AUY922”, “Axitinib”, “AZ628”, “AZD.0530”, “AZD.2281”, 
“AZD6244”, “AZD6482”, “AZD7762”, “AZD8055”, “BAY.61.3606”, “Bexarotene”, “BI.2536”, “BIBW2992”, 
“Bicalutamide”, “BI.D1870”, “BIRB.0796”, “Bleomycin”, “BMS.509744”, “BMS.536924”, “BMS.708163”, 
“BMS.754807”, “Bortezomib”, “Bosutinib”, “Bryostatin.1”, “BX.795”, “Camptothecin”, “CCT007093”, 
“CCT018159”, “CEP.701”, “CGP.082996”, “CGP.60474”, “CHIR.99021”, “CI.1040”, “Cisplatin”, “CMK”, 
“Cyclopamine”, “Cytarabine”, “Dasatinib”, “DMOG”, “Docetaxel”, “Doxorubicin”, “EHT.1864”, “Elesclo- 
mol”, “Embelin”, “Epothilone.B”, “Erlotinib”, “Etoposide”, “FH535”, “FTI.277”, “GDC.0449”, “GDC0941”, 
“Gefitinib”, “Gemcitabine”, “GNF.2”, “GSK269962A”, “GSK.650394”, “GW.441756”, “GW843682X”, 
“Imatinib”, “IPA.3”, “JNJ.26854165”, “JNK.9L”, “JNK.Inhibitor.VIII”, “JW.7.52.1”, “KIN001.135”, “KU. 
55933”, “Lapatinib”, “Lenalidomide”, “LFM.A13”, “Metformin”, “Methotrexate”, “MG.132”, “Midostaurin”, 
“Mitomycin.C”, “MK.2206”, “MS.275”, “Nilotinib”, “NSC.87877”, “NU.7441”, “Nutlin.3a”, “NVP.BEZ235”, 
“NVP.TAE684”, “Obatoclax.Mesylate”, “OSI.906”, “PAC.1”, “Paclitaxel”, “Parthenolide”, “Pazopanib”, 
“PD.0325901”, “PD.0332991”, “PD.173074”, “PF.02341066”, “PF.4708671”, “PF.562271”, “PHA. 
665752”, “PLX4720”, “Pyrimethamine”, “QS11”, “Rapamycin”, “RDEA119”, “RO.3306”, “Roscovitine”, 
“Salubrinal”, “SB.216763”, “SB590885”, “Shikonin”, “SL.0101.1”, “Sorafenib”, “S.Trityl.L.cysteine”, 
“Sunitinib”, “Temsirolimus”, “Thapsigargin”, “Tipifarnib”, “TW.37”, “Vinblastine”, “Vinorelbine”, “Vori- 
nostat”, “VX.680”, “VX.702”, “WH.4.023”, “WO2009093972”, “WZ.1.84”, “X17.AAG”, “X681640”, 
“XMD8.85”, “Z.LLNle.CHO”, “ZM.447439”)

rt = read.table(expFile, header=T, sep=”\t”, check.names=F)
rt=as.matrix(rt)
rownames(rt)=rt[,1]
exp=rt[,2:ncol(rt)]
dimnames=list(rownames(exp),colnames(exp))
data=matrix(as.numeric(as.matrix(exp)),nrow=nrow(exp),dimnames=dimnames)
data=avereps(data)
data=data[rowMeans(data)>0.5,]
colnames(data)=gsub(“(.*?)\\_(.*?)”, “\\2”, colnames(data))

riskRT=read.table(riskFile, header=T, sep=”\t”, check.names=F, row.names=1)

for(drug in allDrugs){
 senstivity=pRRopheticPredict(data, drug, selection=1)
 senstivity=senstivity[senstivity!=”NaN”]
 senstivity[senstivity>quantile(senstivity,0.99)]=quantile(senstivity,0.99)
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 sameSample=intersect(row.names(riskRT), names(senstivity))
 risk=riskRT[sameSample, “risk”,drop=F]
 senstivity=senstivity[sameSample]
 rt=cbind(risk, senstivity)

 rt$risk=factor(rt$risk, levels=c(“low”, “high”))
 type=levels(factor(rt[,”risk”]))
 comp=combn(type, 2)
 my_comparisons=list()
 for(i in 1:ncol(comp)){my_comparisons[[i]]<-comp[,i]}

 test=wilcox.test(senstivity~risk, data=rt)

 if(test$p.value<pFilter){
  boxplot=ggboxplot(rt, x=”risk”, y=”senstivity”, fill=”risk”,
    xlab=”Risk”,
    ylab=paste0(drug, “ senstivity (IC50)”),
    legend.title=”Risk”,
    palette=c(“#0066FF”,”#FF0000”)
    )+ 
   stat_compare_means(comparisons=my_comparisons)
  pdf(file=paste0(“durgSenstivity.”, drug, “.pdf”), width=5, height=4.5)
  print(boxplot)
  dev.off()
 }
}
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Supplementary Figure 1. Principal component analysis showed the distinction between the two FORG clusters.

Supplementary Figure 2. The IC50 values of axitinib were decreased in the high-risk group.


