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Abstract: Background: Stanford type A aortic dissection (STAAD) is a serious cardiovascular disease with a high mor-
tality rate. Ferroptosis is closely associated with various diseases, including cardiovascular disease. However, the 
role of ferroptosis in the progression of STAAD remains unclear. Methods: Gene expression profiles of GSE52093, 
GSE98770, and GSE153434 datasets were downloaded from the Gene Expression Omnibus (GEO) database. 
Weighted gene co-expression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO), 
and support vector machine-recursive feature elimination (SVM-RFE) were performed to determine the ferroptosis-
associated characteristic genes in STAAD. Receiver operating characteristic (ROC) curve analysis was performed 
to evaluate the diagnostic efficacy. Furthermore, immune cell infiltrations were analyzed using the CIBERSORT 
algorithm. Drug sensitivity analysis was conducted based on the CellMiner database. Results: A total of 65 differen-
tially expressed ferroptosis-associated genes were screened. DAZAP1 and GABARAPL2 were identified as valuable 
diagnostic biomarkers for STAAD. A nomogram with high accuracy and reliability was constructed as a diagnostic 
tool for STAAD. Furthermore, immune infiltration analysis suggested that monocytes were higher in the STAAD group 
compared with the control group. DAZAP1 was positively correlated with monocytes, whereas GABARAPL2 was 
negatively correlated with monocytes. Pan-cancer analysis showed that DAZAP1 and GABARAPL2 were closely asso-
ciated with the prognosis of various cancers. In addition, some antitumor drugs might be useful for the treatment of 
STAAD. Conclusion: DAZAP1 and GABARAPL2 might serve as potential diagnostic biomarkers for STAAD. Meanwhile, 
DAZAP1 and GABARAPL2 might be related to cancer and STAAD in terms of ferroptosis, which provides insights into 
developing new therapeutic approaches for STAAD.
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Introduction

Aortic dissection (AD) is a life-threatening car-
diovascular disease with an incidence of 3.5-
7.2 per 100,000 people annually [1, 2]. AD is 
characterized by tears of the intimal and medial 
layers of the aortic wall, resulting in the forma-
tion of true and false lumens [3]. The most 
common type of AD is Stanford type A AD 
(STAAD), which accounts for almost 75% of all 
cases of AD and has a high mortality rate of 
90%, if left untreated [4, 5]. Early diagnosis and 
treatment as well as close follow-up of AD 
patients are essential to improve their survival 

rate [6]. Currently, open surgical repair is the 
most effective treatment strategy for STAAD, 
but it requires a high level of technology and an 
experienced center [7]. Despite improvements 
in diagnostic methods, operative approaches, 
and perioperative care, these patients still have 
a high in-hospital mortality rate of 22% and an 
operative mortality rate of 18% [8, 9]. The main 
pathological mechanisms underlying AD include 
smooth muscle cell (SMC) alteration, extracel-
lular matrix degradation, and inflammatory cell 
infiltration [10]. However, the potential molecu-
lar mechanisms underlying AD remain poorly 
understood. Therefore, exploring the pathogen-
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esis of AD at the gene expression levels may 
provide new insights into diagnosis and thera-
py, thereby improving the clinical outcomes.

With the development of high-throughput se- 
quencing and DNA microarray, studies based 
on bioinformatics analysis have revealed that 
immune-, necroptosis-, and N6-methyladeno- 
sine (m6A)-related characteristic genes and 
their potential molecular pathways are closely 
related to the progression of STAAD [7, 11, 12]. 
Ferroptosis is a non-apoptotic and iron-depen-
dent programmed cell death process, which is 
characterized by the production of free radicals 
and excessive accumulation of lipid peroxides 
[13]. Emerging evidence suggests that ferrop-
tosis might be involved in AD progression by 
promoting SMC dysfunction [14]. Chen et al. 
revealed that BRD4770 prevents aortic dilation 
and AD occurrence in a mouse model by inhibit-
ing SMC ferroptosis and inflammatory response 
[15]. Li et al. found that ferroptosis was acti-
vated during AD progression and ferroptosis of 
SMCs was regulated via the METTL3-SLC7A11/
FSP1 axis [16]. Moreover, liproxstatin-1 was 
found to attenuate aortic degeneration and  
AD development by inhibiting ferroptosis in 
mice [16]. These findings indicate that targeting 
ferroptosis might alleviate or treat AD. In addi-
tion, the immune-inflammatory response was 
reported to be involved in the progression of 
STAAD [5]. Several bioinformatic analyses have 
revealed that the proportion of immune cell 
infiltration was different between STTAD and 
healthy controls [17, 18]. Dysregulated ferrop-
tosis is involved in an increasing number of 
physiological and pathophysiological process-
es, including immune responses [19]. However, 
the relationship between ferroptosis and the 
immune-inflammatory response in STAAD pro-
gression is unclear.

Herein, we performed a comprehensive bioin-
formatics analysis based on weighted gene co-
expression network analysis (WGCNA), least 
absolute shrinkage and selection operator 
(LASSO), and support vector machine-recursive 
feature elimination (SVM-RFE) to identify the 
ferroptosis-associated characteristic genes in- 
volved in STAAD, which were expected to serve 
as diagnostic biomarkers and therapeutic tar-
gets. Moreover, we explored the relationship 
between ferroptosis-associated characteristic 
genes and immune infiltrating cells to further 
understand the relationship between ferrop- 

tosis and immune-inflammatory response in 
STAAD progression. Finally, we explored the 
roles of characteristic genes in pan-cancer 
analysis to provide new insights into the poten-
tial relationship between STAAD and cancer.

Materials and methods

Datasets and data preprocessing

The gene expression profiles of STAAD patients 
were obtained from GSE52093, GSE98770, 
and GSE153434 datasets of the Gene Ex- 
pression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/gds/). The GSE52093 
dataset included seven STAAD samples and 
five control samples, which were analyzed 
using the GPL10558 platform (Illumina 
HumanHT-12 V4.0 expression beadchip). The 
GSE153434 dataset included 10 STAAD sam-
ples and 10 control samples, which were ana-
lyzed using the GPL20795 platform (HiSeq X 
Ten). The mRNA expression profile of the 
GSE98770 dataset included six STAAD sam-
ples and five control samples, which were ana-
lyzed using the GPL14550 platform (Agilent- 
028004 SurePrint G3 Human GE 8×60K 
Microarray). The microRNA (miRNA) expression 
profile of the GSE98770 dataset included six 
STAAD samples and five control samples, which 
were analyzed using the GPL17660 platform 
(Agilent-031181 Unrestricted_Human_miRNA_
V16.0_Microarray 030840). After normaliza-
tion and batch effect correction using “limma” 
and “sva” R packages, the gene expression 
profiles of GSE52093 and GSE98770 were 
merged into a single file as a discovery dataset 
for subsequent analysis. The GSE153434 were 
log2-transformed and normalized as a valida-
tion dataset using the “limma” R package.

Screening of ferroptosis-associated differen-
tially expressed genes (FDEGs)

The list of ferroptosis-associated genes was 
extracted from the FerrDb V2 database (http://
www.zhounan.org/ferrdb). Using the “limma” R 
package, FDEGs and differentially expressed 
miRNAs (DEmiRNAs) were screened using a 
threshold of P < 0.05. The top 50 FDEGs and 
DEmiRNAs were visualized in a heatmap using 
the “pheatmap” R package. The significant 
FDEGs and DEmiRNAs were visualized in the 
volcano plot using “dplyr”, “ggplot2”, and “ggre-
pel” R packages.
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Functional enrichment analysis

To gain further insight into the biological func-
tions and pathways of FDEGs, Gene Ontology 
(GO) enrichment and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analyses 
were performed using the “clusterProfiler”, 
“org.Hs.eg.db”, and “enrichplot” R packages.  
P < 0.05 was considered statistically signifi-
cant. In addition, gene set enrichment analysis 
(GSEA) was performed based on the gene  
set “c2.cp.kegg.v7.5.1.symbols.gmt” from the 
Molecular Signatures Database.

Selection of characteristic genes by WGCNA, 
LASSO, and SVM-RFE

WGCNA is a comprehensive biological algo-
rithm used for constructing the co-expressed 
gene modules with high biological significance. 
The gene co-expression network of ferroptosis-
related genes was constructed using the 
“WGCNA” R package. The “pickSoftTreshold” 
(WGCNA package) function was used to calcu-
late the soft power β value (range: 1-20) based 
on the criterion of scale-free network. The adja-
cency matrix was constructed based on the 
most appropriate soft power β value. Then, the 
adjacency matrix was transformed into a topo-
logical overlap matrix, and a hierarchical clus-
tering dendrogram was constructed to divide 
the modules. Finally, the correlation between 
each module and traits was calculated by 
Pearson correlation analysis. Then, we identi-
fied the most significant module that correlated 
with STAAD, of which the genes were obtained 
for subsequent analysis.

LASSO is a regression analysis method used 
for variable selection and regularization to 
improve the predictive accuracy and interpret-
ability. The optimal hub genes in STAAD patients 
were determined by LASSO analysis using the 
“glmnet” R package.

SVM-RFE is a feature selection algorithm that 
sorts gene features using sequential backward 
feature elimination. SVM-RFE was performed to 
identify the optimal variables by deleting fea-
ture vectors using “e1071”, “kernlab”, and 
“caret” R packages. The intersection of hub 
genes obtained by WGCNA, LASSO, SVM-RFE 
analyses and FDEGs was conducted to de- 
termine the overlapped genes using the 
“VennDiagram” R package. Receiver operating 

characteristic (ROC) diagnostic curves were 
constructed and the area under the curve (AUC) 
was calculated to evaluate the diagnostic accu-
racy using the “pROC” R package.

Construction of miRNA-mRNA regulatory net-
work

The miRNAs targeted by characteristic genes 
were predicted using the StarBase database 
(https://starbase.sysu.edu.cn/). The miRNAs 
predicted by at least two databases were con-
sidered target miRNAs. DEmiRNAs were inter-
sected with target miRNAs to identify the over-
lapped miRNAs. The miRNA-mRNA regulatory 
network was constructed using Cytoscape soft-
ware (version 3.8.2). The top 25 genes inter-
acted with characteristic genes were identifi- 
ed through the STRING interacting network 
(https://cn.string-db.org/). Then, Bayesian net-
work was constructed to infer the gene regula-
tory network using the “CBNplot” R packages.

Establishment of a nomogram

A nomogram incorporating the characteristic 
genes was constructed using the “rms” R pack-
age. The diagnostic accuracy and reliability of 
the nomogram were evaluated using the cali-
bration curve. Decision curve analysis was per-
formed to evaluate the clinical usefulness of 
the nomogram.

Analysis of immune cell infiltrations

CIBERSORT is a deconvolution algorithm that 
calculates the relative proportions of 22 types 
of immune infiltrating cells in tissues. The rela-
tive proportions of immune cells in each sam-
ple were visualized as a bar plot. The difference 
in immune cells between STAAD samples and 
control samples was visualized as a violin plot. 
The correlations between characteristic genes 
and immune infiltrating cells were analyzed 
using Spearman’s correlation analysis and visu-
alized as a lollipop plot.

Pan-cancer analysis of characteristic genes

Because ferroptosis is closely associated with 
various cancers, we used the ferroptosis-asso-
ciated characteristic genes to explore the 
potential relationships between cancers and 
STAAD. We compared the expression of charac-
teristic genes between normal samples and 
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various cancers, which was visualized in a box-
plot. Furthermore, we explored the prognostic 
value of characteristic genes in pan-cancer 
analysis using a forest plot. In addition, the  
correlations between the characteristic genes 
and immune cells in all The Cancer Genome 
Atlas (TCGA) cancers were explored using 
CIBERSORT, EPIC, MCPCOUNTER, QUANTISEQ, 
TIMER and XCELL algorithms based on the 
TIMER 2.0 database (http://timer.cistrome.
org/).

Drug sensitivity analysis

To develop new drugs to better treat STAAD, 
drug sensitivity analysis was performed based 
on the CellMiner database (version 2022.1, 
database 2.8.1). Pearson correlation analysis 
between characteristic genes and antitumor 
drug sensitivity was performed using the 
“impute”, “limma”, “ggplot2”, and “ggpubr” R 
packages.

Statistical analysis

The statistical analyses were performed using 
the Perl software (version 5.32.1.1) and R soft-
ware (version 4.2.0). Wilcoxon test was used to 
compare the differences between the two 
groups. Spearman or Pearson’s correlation 
analysis was used to analyze the correlation 
between the variables. Cox regression model 
analysis was used for survival analysis in vari-
ous cancers. P < 0.05 was considered statisti-
cally significant.

Results

Data preprocessing and FDEGs screening

After eliminating the batch effects and normal-
ization, GSE52093 and GSE98770 datasets, 
including 13 STAAD samples and 10 normal 
samples, were merged into a single gene 
expression profile for analysis. As shown in 
Figure 1A and 1B, principal component analy-
sis was performed to evaluate the performance 
of normalization and batch effect correction. 
The expression profile of 453 ferroptosis-asso-
ciated genes was extracted and a total of 65 
FDEGs were screened, which included 24 
upregulated genes and 41 downregulated 
genes (Table S1). The top 50 FDEGs were 
shown in a heatmap (Figure 1C), and the FDEGs 
were visualized as a volcano plot (Figure 1D).

GO and KEGG pathway enrichment analyses

The GO function terms comprised biological 
processes, molecular functions, and cellular 
components. As expected, the top 10 GO terms 
were mainly enriched in the cellular responses 
to chemical stress, iron ion, extracellular stimu-
lus, cellular response to extracellular stimulus, 
iron ion homeostasis, and transition metal ion 
homeostasis (Figure 2A). The KEGG pathways 
were mainly enriched in autophagy, ferroptosis, 
cellular senescence, HIF-1 signaling pathway, 
mTOR signaling pathway, and NOD-like receptor 
signaling pathway (Figure 2B).

Identification of characteristic genes

First, the most significant module correlated 
with STAAD was identified using WGCNA. We 
identified β = 7 (R2 = 0.88) as the most appro-
priate soft power value to construct the scale-
free network (Figure 3A). A total of three mod-
ules were identified, and their hierarchical clus-
tering dendrogram was constructed (Figure 
3C). Finally, the correlation between STAAD and 
modules was shown in a heatmap. The blue 
module (cor = 0.53, P = 0.009) was most sig-
nificantly correlated with STAAD (Figure 3B). 
The 166 genes in the blue module were se- 
lected for further analysis. Then, LASSO regres-
sion analysis was performed to identify the 
optimal λ = 0.244 using ten-fold cross-valida-
tion, and the five candidate genes were select-
ed based on the optimal λ (Figure 3D and 3E). 
Subsequently, SVM-RFE analysis showed a 
minimum error when the feature number was 8, 
at which point eight genes were identified as 
candidate genes (Figure 3F). Finally, two char-
acteristic genes (DAZAP1 and GABARAPL2) 
shared by FDEGs, WGCNA, LASSO, and SVM-
RFE were identified using the intersection 
(Figure 3G). Compared with normal samples, 
we discovered that the expression of DAZAP1 
was higher (P = 5.44e-04) but the expression 
of GABARAPL2 (P = 9.14e-04) was lower in 
STAAD samples (Table S1).

Validation and evaluation of diagnostic efficacy 
of characteristic genes in predicting STAAD

In the GSE153434 dataset, we found that 
DAZAP1 (P = 3.2e-04, Figure 4A) was signifi-
cantly upregulated but GABARAPL2 (P = 7.6e-
05, Figure 4B) was significantly downregulated 
in STAAD samples compared with the control 



Ferroptosis-associated biomarkers in STAAD

3096 Am J Transl Res 2023;15(5):3092-3114



Ferroptosis-associated biomarkers in STAAD

3097 Am J Transl Res 2023;15(5):3092-3114

samples, which was consistent with the results 
of the discovery dataset. Subsequently, ROC 
diagnostic curves of DAZAP1 and GABARAPL2 
were constructed to evaluate the diagnostic 
efficacy for STAAD. In the discovery dataset, 
DAZAP1 (AUC: 0.923, 95% confidence interval 
[CI]: 0.785-1.000; Figure 4C) and GABARAPL2 
(AUC: 0.900, 95% CI: 0.738-1.000; Figure 4D) 
had a good diagnostic ability for STAAD. In addi-
tion, we verified the diagnostic efficacy of char-
acteristic genes in the GSE153434 dataset. 
ROC curves of DAZAP1 (AUC: 0.940, 95% CI: 
0.810-1.000; Figure 4E) and GABARAPL2 (AUC: 
0.970, 95% CI: 0.880-1.000; Figure 4F) showed 
a robust diagnostic power.

GSEA of characteristic genes

To better illustrate the potential mechanisms of 
characteristic genes in STAAD, GSEA was per-
formed to compare the biological processes 
between the low- and high-expression groups 
that were classified based on the median 
expressions of characteristic genes. We discov-
ered that the high DAZAP1 expression sub-
group was mainly enriched in DNA replication 
and ribosome, whereas the low DAZAP1 expres-
sion subgroup was mainly enriched in bladder 
cancer, Huntington’s disease, oxidative phos-
phorylation, Parkinson’s disease, and protea-
some and RIG-I-like receptor signaling pathway 
(Figure S1A). The high GABARAPL2 expression 
subgroup was mainly enriched in ABC trans-
porters, gap junctions, tight junctions, trypto-
phan metabolism, and Wnt signaling pathway, 
whereas the low GABARAPL2 expression sub-
group was mainly enriched in cysteine and 
methionine metabolism, Parkinson’s disease, 
and Notch signaling pathway (Figure S1B).

miRNA-mRNA regulatory network

After normalization, 183 DEmiRNAs, including 
138 upregulated DEmiRNAs and 45 downregu-
lated DEmiRNAs, were identified using the 
“limma” R package (Figure S2). In total, 46 miR-
NAs targeted by DAZAP1 and 39 miRNAs tar-

geted by GABARAPL2 were predicted by the 
StarBase database (Table S2). Based on the 
negative correlation between miRNA and 
mRNA, the downregulated DEmiRNAs and 
upregulated DEmiRNAs were intersected wi- 
th the miRNAs targeted by DAZAP1 and 
GABARAPL2, respectively. Finally, two miRNAs 
(hsa-miR-10b-5p and hsa-miR-199b-5p) tar- 
geted by DAZAP1 and seven miRNAs (has- 
miR-34a-5p, hsa-miR-145-5p, hsa-miR-186-
5p, hsa-miR-374a-5p, hsa-miR-374b-5p, hsa-
miR-374c-5p, and has-miR-495-3p) targeted by 
GABARAPL2 were identified to construct the 
regulatory network using the Cytoscape soft-
ware (Figure 5A).

Furthermore, Bayesian network was construct-
ed to further explore the potential regulatory 
relationships of DAZAP1 and GABARAPL2 
(Figure 5B). The regulatory network revealed 
that DAZAP1 could regulate the expression of 
ATG4B and TP53INP1, while GABARAPL2 might 
be involved in the regulation of ATG5, ATG7, and 
CALCOCO2. In addition, we also discovered that 
GABARAPL2 might interact with DAZAP1 by tar-
geted ATG5.

Construction of the characteristic gene-based 
nomogram

A nomogram based on DAZAP1 and GABARAPL2 
was constructed as a diagnostic tool for STAAD 
(Figure 5C). The calibration curve demonstrat-
ed that the nomogram might be accurate and 
reliable for diagnosing STAAD (Figure 5D). The 
decision curve analysis further indicated that 
the nomogram model could provide a robust 
clinical benefit for patients (Figure 5E).

Immune infiltration analysis

The abundances of immune cells in each sam-
ple were analyzed using the CIBERSORT algo-
rithm, which was displayed as a bar plot (Figure 
6A). Furthermore, the violin plot showed that 
the STAAD group had lower infiltration levels of 
Tregs and gamma delta T cells, and higher infil-

Figure 1. PCA and FDEGs analyses. A. PCA shows the distribution of the two datasets before normalization and 
batch effect correction. B. PCA shows the distribution of the two datasets after normalization and batch effect cor-
rection. C. Heatmap of the top 50 FDEGs between STAAD samples and control samples. The red represents upregu-
lated genes, but the blue represents downregulated genes. D. Volcano plots of FDEGs between STAAD samples and 
control samples. The red dots represent upregulated genes, the green dots represent downregulated genes and the 
black dots represent genes with no significant difference. PCA, principal component analysis; FDEGs, ferroptosis-
associated differentially expressed genes; STAAD, Stanford type A aortic dissection.
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tration levels of resting NK cells and mono-
cytes, compared with the control group (Figure 
6B). Moreover, the correlation of the two char-
acteristic genes with immune infiltration cells 
was explored. We found that DAZAP1 was posi-
tively correlated with resting NK cells, mono-
cytes, and memory B cells, but negatively cor-
related with gamma delta T cells (Figure 7A). 
GABARAPL2 was positively correlated with CD8 
T cells, gamma delta T cells, and Tfh cells, while 
it was negatively correlated with resting NK 
cells and monocytes (Figure 7B).

Pan-cancer analysis of DAZAP1 and 
GABARAPL2

Based on the TCGA data, differential analysis 
showed that the expression of DAZAP1 was 
high in BLCA, BRCA, CESC, CHOL, COAD, DLBC, 
HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, 
PRAD, READ, STAD, THCA, and UCEC, while the 
expression of GABARAPL2 was low in BRCA, 
CESC, COAD, KICH, KIRC, LUAD, LUSC, READ, 
and UCEC (Figure 8A and 8B). Furthermore, we 
explored the correlation between DAZAP1/
GABARAPL2 and prognosis, including overall 
survival (OS) and progression-free survival 
(PFS) based on the TCGA data. Univariate  
cox regression analysis for OS revealed that 
DAZAP1 expression was significantly associat-
ed with OS in 10 cancers: ACC, KIRC, LGG, 
LIHC, MESO, and SARC as a risk factor, where-
as BLCA, READ, STAD, and THYM as a protec-
tive factor (Figure 9A). GABARAPL2 expression 
was significantly associated with OS in 11 can-
cers: ACC, KICH, KIRC, LGG, MESO, PAAD, and 
SKCM as a protective factor, whereas BRCA, 
ESCA, HNSC, and STAD as a risk factor (Figure 
9B). Univariate cox regression analysis for PFS 
revealed that DAZAP1 expression was signifi-
cantly associated with PFS in seven cancers as 
a risk factor in ACC, KIRC, LGG, LIHC, PCPG, 
PRAD, and SARC (Figure 9C). GABARAPL2 
expression was significantly associated with 
PFS in seven cancers a as protective factor in 
KICH, KIRC, LGG, and PAAD, and a risk factor in 
ESCA, HNSC, and STAD (Figure 9D).

Furthermore, pan-cancer analysis of immune 
cell infiltration using CIBERSORT, EPIC, MCP- 
COUNTER, QUANTISEQ, TIMER and XCELL algo-

rithms showed that different immune cells such 
as CD8+ T cell, CD4+ T cell, macrophages, neu-
trophil and B cells were strongly correlated with 
DAZAP1 (Figure 10) and GABARAPL2 (Figure 
11) in various cancers.

Correlation between characteristic genes and 
drug sensitivity

The drug sensitivity analysis showed that 
DAZAP1 and GABARAPL2 were significantly 
associated with the sensitivity of various anti-
cancer drugs (Figure 12). DAZAP1 was positive-
ly correlated with some drugs, including nelara-
bine, hydroxyurea, and cladribine, but negative-
ly correlated with depsipeptide and ARRY-162. 
GABARAPL2 was positively correlated with LEE-
011, palbociclib, and ifosfamide.

Discussion

AD is a devastating disease with a high mortal-
ity rate, which is characterized by tears in the 
aortic wall [17]. Poorly controlled hypertension, 
inherited connective tissue lesions, vascular 
inflammation, history of cardiac surgery, and 
trauma are the primary pathological causes of 
aortic wall damage and contribute to AD [20-
22]. The increased oxidative stress and expres-
sion of inflammatory factors and matrix metal-
loproteinases caused by immune cell infiltra-
tion in the aortic wall contribute to vascular 
SMC apoptosis and aortic remodeling, which 
play a crucial role in AD pathogenesis [10]. 
However, the identification of potential molecu-
lar pathways underlying STAAD is difficult. 
Ferroptosis, a recently identified form of regu-
lated cell death, is distinct from apoptosis, 
autophagy, pyroptosis, and necroptosis. It plays 
a critical role in regulating immune cell function 
[23]. Ferroptosis is closely associated with the 
biological processes of cancers, blood diseas-
es, ischemia-reperfusion injury, and cardiovas-
cular diseases [24-27]. Recent studies have 
shown that glutathione peroxidase 4, glutathi-
one, and iron accumulation play critical roles in 
cardiovascular diseases [28, 29]. Nonetheless, 
studies of the ferroptosis-associated biomark-
ers and pathways in the progression of STAAD 
are scarce.

Figure 2. Functional enrichment analysis of FDEGs. A. GO enrichment analysis. B. KEGG enrichment analysis. 
FDEGs, ferroptosis-associated differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of 
Genes and Genomes.
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Figure 3. Construction of WGCNA co-expression network and identification of characteristic genes by LASSO and 
SVM-RFE. A. Determination of most appropriate soft power β value. B. Heatmap of correlation between modules 
and occurrence of STAAD. C. Gene co-expression modules represented by different colors under the clustering den-
drogram. D, E. Identification of the optimal λ and selection of candidate genes in the LASSO model. F. Identification 
of candidate genes by SVM-RFE algorithm. G. Venn diagram of the characteristic genes shared by FDEGs, WGCNA, 
LASSO, and SVM-RFE. WGCNA, weighted gene co-expression network analysis; LASSO, least absolute shrinkage and 
selection operator; SVM-RFE, support vector machine-recursive feature elimination; STAAD, Stanford type A aortic 
dissection; FDEGs, ferroptosis-associated differentially expressed genes.
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Figure 4. Validation and evaluation of expression and diagnostic efficacy of characteristic genes. A, B. Comparison of DAZAP1 and GABARAPL2 expression between 
control samples and STAAD samples in the GSE153434 dataset. C, D. ROC diagnostic curves of DAZAP1 and GABARAPL2 in discovery dataset. E, F. ROC diagnostic 
curves of DAZAP1 and GABARAPL2 in the GSE153434 dataset. STAAD, Stanford type A aortic dissection; ROC, receiver operating characteristic.
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Herein, we screened 24 upregulated and 41 
downregulated ferroptosis-associated genes in 
STAAD compared with the control samples. 
Subsequently, GO and KEGG enrichment analy-
ses showed that the FDEGs were mainly 
enriched in pathways highly associated with 
ferroptosis and immune-inflammatory respons-
es. On the basis of WGCNA, SVM-REF, and 
LASSO regression analyses, upregulated DA- 
ZAP1 and downregulated GABARAPL2 were 
identified as characteristic genes. ROC analysis 
revealed that both of them were helpful for the 
early diagnosis of STAAD.

DAZAP1, which is a widely and abundantly 
expressed RNA-binding protein, plays a criti- 
cal role in posttranscriptional modifications, 

tructive immune response were caused by a 
lack of GABARAPL2 [37, 38]. A bioinformatics 
analysis revealed that GABARAPL2 is one of the 
ferroptosis-associated hub genes in sepsis and 
had a robust diagnosis power for sepsis [39]. 
However, no previous studies have reported  
the potential roles of DAZAP1 and GABARAPL2 
in the field of STAAD. Our study is the first to 
suggest that dysregulation of DAZAP1 and 
GABARAPL2 may play crucial roles in STAAD 
progression.

MiRNAs negatively regulate the expression of 
protein-coding genes through direct binding to 
the target mRNAs [40]. Previous studies have 
confirmed that miRNAs play an important role 
in cardiovascular diseases [41]. Our miRNA-

Figure 5. A. A miRNA-mRNA regulatory network based on DAZAP1 and GABARAPL2. B. Bayesian regulatory network 
of DAZAP1 and GABARAPL2. C. A nomogram based on DAZAP1 and GABARAPL2. D. The calibration curve of the 
nomogram. E. The decision curve analysis of the nomogram. miRNA, microRNA; STAAD, Stanford type A aortic dis-
section.

Figure 6. Immune infiltration analysis. A. The abundance of 22 types of im-
mune cells in each sample evaluated by CIBERSORT algorithm. B. The differ-
ences in immune cells between control samples and STAAD samples. STAAD, 
Stanford type A aortic dissection.

including alternative splicing, 
nucleocytoplasmic transport, 
and translation [30-32]. Hu- 
ang et al. found that DAZAP1 
was significantly upregulated 
in synovitis of osteoarthritis 
by bioinformatics analysis 
[33]. Wang et al. revealed that 
higher expression of DAZAP1 
was significantly correlated 
with larger tumor size, higher 
incidence of vascular inva-
sion, and worse prognosis  
in hepatocellular carcinoma 
[34]. Meanwhile, DAZAP1 co- 
uld regulate ferroptosis in 
hepatocellular carcinoma ce- 
lls by targeting SLC7A11 [34]. 
GABARAPL2, which was ini-
tially identified for its involve-
ment in protein transport and 
membrane fusion events, is 
best recognized for its role in 
autophagy [35]. Emerging evi-
dence indicates that high 
mRNA expression of GABA- 
RAPL2 was associated with 
better OS in renal cancer but 
worse OS in head and neck 
cancer [36]. In mice, exces-
sive activation of caspase-11 
inflammasomes and a des- 
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mRNA regulatory network indicated that dys-
regulation of DAZAP1 and GABARAPL2 in 
STAAD might be regulated by miRNAs. 

that DAZAP1 and GABARAPL2 might be 
involved in STAAD progression through these 
ferroptosis-related pathways.

Figure 7. The correlation between (A) DAZAP1, (B) GABARAPL2 and immune infiltrating cells.

Figure 8. The expression of characteristic genes in pan-cancer analysis. Pan-
caner expression levels of (A) DAZAP1 and (B) GABARAPL2 in the TCGA da-
taset (*P < 0.05, **P < 0.01, ***P < 0.001). TCGA, The Cancer Genome Atlas.

Furthermore, GSEA showed 
that DAZAP1 was associated 
with DNA replication, oxida-
tive phosphorylation, and 
RIG-I-like receptor signaling 
pathway, while GABARAPL2 
was associated with ABC 
transporters, Notch signaling 
pathway, and Wnt signaling 
pathway. For example, iron 
plays a critical role in many 
cellular functions, including 
DNA replication and repair 
[42]. Jang et al. revealed th- 
at suppression of oxidative 
phosphorylation could sig- 
nificantly aggravate RSL3-
induced ferroptosis in cardio-
myocytes [43]. The activation 
of the Wnt/β-catenin signal-
ing pathway leads to weak-
ened cellular lipid ROS pro-
duction, thereby suppressing 
ferroptosis in gastric cancer 
cells [44]. Shan et al. discov-
ered that the potential mech-
anism of heme-induced fer-
roptosis in human nucleus 
pulposus cells might involve 
the Notch signaling pathway 
[45]. Hence, we speculated 
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Figure 9. The correlation between characteristic genes and prognosis in pan-cancer. Univariate cox regression anal-
ysis of the correlation between (A) DAZAP1 and (B) GABARAPL2 expression and OS in various tumors. Univariate 
cox regression analysis of the correlation between (C) DAZAP1 and (D) GABARAPL2 expression and PFS in various 
tumors. Red represents a risk factor and green represents a protective factor. OS, overall survival; PFS, progression-
free survival.

Accumulating evidence suggests that dysregu-
lation of monocytes is closely associated with 
STAAD progression [46-49]. Li et al. revealed 
that a specific decrease in monocytes and mac-
rophages significantly prevented AD occur-
rence [50]. Shen et al. revealed that the level of 
M2-like monocytes was downregulated, indicat-
ing that monocytes are prone to the inflamma-
tory response in STAAD [51]. They also found 
that monocyte-derived proBDNF was involved 
in the inflammatory response in STAAD pro-
gression [51]. Besides, macrophages were 

found to play a crucial role in STAAD [47, 52]. 
However, Liu et al. revealed that expanded 
macrophages originated primarily from circulat-
ing monocytes in AD [53]. Herein, immune infil-
tration analysis suggested that monocytes 
were higher in the STAAD group compared with 
the control group, indicating that monocytes 
might play a major role in the immune-inflam-
matory response of STAAD. Ferroptosis plays a 
critical role in regulating immune cell function. 
On the one hand, ferroptosis of immune cells 
could affect the number and function of 
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Figure 10. The correlation between DAZAP1 and immune cells in all TCGA cancers by CIBERSORT (A), XCELL (B), EPIC (C), MCPCOUNTER (D), QUANTISEQ (E) and 
TIMER (F) algorithms. TCGA, The Cancer Genome Atlas.
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Figure 11. The correlation between GABARAPL2 and immune cells in all TCGA cancers by CIBERSORT (A), XCELL (B), EPIC (C), MCPCOUNTER (D), QUANTISEQ (E) and 
TIMER (F) algorithms. TCGA, The Cancer Genome Atlas.
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Figure 12. Drug sensitivity analysis of DAZAP1 and GABARAPL2 with various antitumor drugs.
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immune cells [19]. On the other hand, ferropto-
sis of non-immune cells could also be recog-
nized by immune cells, thereby initiating a 
range of immune-inflammatory responses [19]. 
In our study, upregulated DAZAP1 was positive-
ly correlated with monocytes, whereas down-
regulated GABARAPL2 was negatively correlat-
ed with monocytes. Consequently, we sup-
posed that DAZAP1 and GABARAPL2 might 
contribute to STAAD progression via the 
immune-inflammatory response activated by 
monocytes. Furthermore, Bayesian network 
revealed that DAZAP1 could regulate the 
expression of ATG4B and TP53INP1, while 
GABARAPL2 might be involved in the regulation 
of ATG5, ATG7, and CALCOCO2. Previous stud-
ies have demonstrated that ATG4B, ATG5, ATG7 
and TP53INP1 played vital roles in autophagy 
process [54-56]. The induction of autophagy 
has been reported to be essential for survival 
and differentiation of monocytes [57]. There- 
fore, DAZAP1 and GABARAPL2 might regulate 
monocytes infiltration through activating auto- 
phagy process.

Interestingly, there are shared potential biologi-
cal pathways between the epidemiology and 
risk factors in cancer progression and cardio-
vascular disease [58]. In addition, chemothera-
peutic drugs used in cancers can cause cardio-
vascular diseases that affect the long-term 
prognosis and quality of life of patients [59]. 
DAZAP1 and GABARAPL2 are closely associat-
ed with several cancers [34, 36]. In our study, 
pan-cancer analysis revealed that DAZAP1 was 
a risk factor for ACC, KIRC, LGG, LIHC, MESO, 
and SARC, and a protective factor for BLCA, 
READ, STAD, and THYM. GABARAPL2 was a pro-
tective factor for ACC, KICH, KIRC, LGG, MESO, 
PAAD, and SKCM, and a risk factor for BRCA, 
ESCA, HNSC, and STAD. The results suggest 
that DAZAP1 and GABARAPL2 might play an 
important role in multiple cancers and STAAD 
via shared ferroptosis-associated pathways. 
Furthermore, we performed drug sensitivity 
analysis and found that some antitumor drugs 
might be useful for the treatment of STAAD.

This is the first comprehensive bioinformatics 
analysis based on WGCNA, LASSO, and SVM-
REF to explore the characteristic genes and 
potential signaling pathways in STAAD patients, 
even in pan-cancer analysis. Compared with 
the method of gene selection using Cytohubba 
used in the study of Zou et al. [60], WGCNA, 
LASSO, and SVM-REF have a more robust 

power in identifying characteristic genes. 
However, there were several limitations to our 
study. First, although two datasets were merged 
into one dataset for analysis, the sample size 
was not adequately large. Second, only public 
datasets were utilized in our study; further in 
vivo and in vitro experiments are needed to vali-
date our results.

Taken together, ferroptosis-associated DAZAP1 
and GABARAPL2 might serve as potential diag-
nostic biomarkers for STAAD. Meanwhile, 
DAZAP1 and GABARAPL2 might be related to 
cancer and STAAD in terms of ferroptosis, 
which provides insights into developing new 
therapeutic approaches for STAAD.
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Table S1. Identification of FDEGs
Gene logFC AveExpr t P.Value adj.P.Val B
HELLS 0.8359227 2.3882317 4.2032991 0.0003223 0.0495268 0.3367139
CD82 0.8311592 3.5081326 4.0440796 0.0004814 0.0495268 -0.024288
FANCD2 1.5211429 1.5744555 4.0070706 0.0005284 0.0495268 -0.108005
DAZAP1 0.5841334 3.755147 3.9957799 0.0005436 0.0495268 -0.133528
YWHAE 0.5317648 4.0273574 3.9935344 0.0005467 0.0495268 -0.138602
ZEB1 -0.717438 3.308456 -3.788143 0.0009145 0.0602939 -0.601072
GABARAPL2 -0.439363 5.2581049 -3.779734 0.0009339 0.0602939 -0.619921
SUV39H1 0.569327 3.4076179 3.7271003 0.0010648 0.0602939 -0.737731
ISCU -0.451527 5.3855562 -3.32635 0.0028592 0.1237945 -1.621868
AURKA 1.2970392 2.7740385 3.3008098 0.0030425 0.1237945 -1.67726
SAT1 0.6746701 6.0828358 3.2657087 0.003313 0.1237945 -1.753164
NUPR1 -0.520274 4.9016981 -3.263101 0.003334 0.1237945 -1.758792
EZH2 1.1887329 2.3752931 3.2368701 0.0035526 0.1237945 -1.815325
CDC25A 1.4102887 1.1530665 3.1448243 0.0044346 0.1371875 -2.012452
METTL14 -0.424355 3.1447146 -3.134785 0.0045426 0.1371875 -2.033829
VLDLR -0.662363 3.2775932 -3.093318 0.0050166 0.142031 -2.121858
SLC1A5 0.8520257 3.453116 3.0291441 0.0058449 0.1535532 -2.257204
KIF20A 1.8871973 2.6303238 3.0025433 0.0062254 0.1535532 -2.312976
PIR -0.48806 4.168239 -2.984791 0.0064923 0.1535532 -2.350084
YTHDC2 -0.394997 3.1741704 -2.928752 0.0074089 0.1535532 -2.466624
AKT1S1 0.4446406 2.5436438 2.9253345 0.0074686 0.1535532 -2.473702
MEF2C -0.573616 4.6565821 -2.911467 0.0077156 0.1535532 -2.502383
FZD7 -0.780211 3.5889364 -2.880585 0.0082941 0.1535532 -2.566038
PEX12 -0.622923 0.1671568 -2.862361 0.0086546 0.1535532 -2.603461
MIB1 -0.581861 3.433729 -2.861224 0.0086775 0.1535532 -2.605791
MAPKAP1 0.4600786 3.1131903 2.8545675 0.0088132 0.1535532 -2.619432
NRAS 0.5215214 3.2160485 2.8074997 0.0098317 0.1625362 -2.715469
SLC2A12 -0.854204 3.1356008 -2.749284 0.0112459 0.1625362 -2.833222
CDKN1A 0.8167442 5.408044 2.7303563 0.0117457 0.1625362 -2.871252
PARP1 0.6034819 5.1446969 2.7054948 0.012434 0.1625362 -2.921011
SLC2A1 -0.758322 4.2254184 -2.697138 0.0126738 0.1625362 -2.937686
ATG5 -0.379667 3.810515 -2.68492 0.0130323 0.1625362 -2.96202
SLC2A6 0.7002498 2.9642501 2.6839341 0.0130616 0.1625362 -2.963981
LCN2 0.9567785 1.7915761 2.6774836 0.0132551 0.1625362 -2.976803
PGD 0.7133895 4.2249522 2.6730037 0.013391 0.1625362 -2.985699
AEBP2 -0.588874 4.3603838 -2.672196 0.0134157 0.1625362 -2.987302
CDCA3 1.8007431 1.3592944 2.6624556 0.0137163 0.1625362 -3.006616
TMSB4Y -1.09534 1.676318 -2.662352 0.0137195 0.1625362 -3.006822
CAPG 0.6573162 2.9703705 2.6479065 0.0141771 0.1625362 -3.035398
G6PD 0.5827004 3.9427675 2.6425024 0.014352 0.1625362 -3.046068
IL6 2.539577 3.4433129 2.6278096 0.0148377 0.163938 -3.075022
SLC39A7 0.5114347 2.5801949 2.597423 0.0158913 0.1713993 -3.134636
TFRC 0.8953884 4.5875769 2.5659518 0.0170561 0.1796839 -3.195994
PGRMC1 -0.347977 5.8177972 -2.547228 0.0177864 0.1831189 -3.232309
QSOX1 0.4029206 4.6578045 2.4916685 0.0201284 0.1948412 -3.339215
CTSB 0.4146601 5.7563045 2.4909819 0.0201591 0.1948412 -3.340528
RRM2 1.3426324 1.7653906 2.4897247 0.0202153 0.1948412 -3.342932
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ATG7 0.3523107 4.0988676 2.4544718 0.0218531 0.2022545 -3.410056
AHCY 0.5432805 4.6804235 2.4539664 0.0218774 0.2022545 -3.411014
NR1D2 -0.736605 3.030286 -2.433782 0.0228706 0.2072076 -3.449198
TFR2 0.7119539 1.1974064 2.4153883 0.0238118 0.2115048 -3.483838
FURIN 0.8085024 3.0151396 2.4008654 0.02458 0.2141299 -3.51108
PPARA -0.434426 1.9965579 -2.388512 0.0252514 0.215828 -3.534177
HIF1A 0.6472224 3.5379125 2.329698 0.0286852 0.2406373 -3.643179
SIRT1 -0.428423 4.0224109 -2.320442 0.0292631 0.2410213 -3.660185
SLC25A28 0.2875183 5.1606301 2.2811701 0.0318351 0.2518381 -3.731882
NEDD4 -0.393083 3.0990802 -2.276304 0.0321677 0.2518381 -3.740713
ALOX12B -0.716195 0.1420565 -2.275193 0.0322442 0.2518381 -3.742729
PDK4 0.8972811 5.3263126 2.2556761 0.0336134 0.2580826 -3.778022
LPCAT3 0.4355689 3.9652514 2.2357097 0.0350688 0.2647691 -3.813933
MLLT1 0.7153367 1.7034213 2.182258 0.0392506 0.2914838 -3.909073
PEBP1 -0.232076 5.859959 -2.171606 0.040136 0.2932514 -3.927857
OTUB1 0.2756531 2.7336187 2.1308619 0.0436911 0.3137023 -3.999155
MLST8 0.2668988 3.7537418 2.1239669 0.04432 0.3137023 -4.011132
AGPS 0.3761828 3.7444888 2.0862225 0.0479087 0.3338867 -4.076246
Abbreviations: FDEGs, ferroptosis-associated differentially expressed genes; FC, fold change; AveExpr, average expression.
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Figure S1. GSEA analysis of (A) DAZAP1 and (B) GABARAPL2. GSEA, gene set enrichment analysis.
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Table S2. miRNAs targeted by DAZAP1 and GABARAPL2 were predicted based on StarBase database
miRNA Name Gene Name PITA RNA22 miRmap microT miRanda PicTar TargetScan
hsa-miR-24-3p DAZAP1 1 0 1 0 1 0 1
hsa-miR-199a-5p DAZAP1 1 0 1 0 1 0 0
hsa-miR-199a-3p DAZAP1 1 0 0 0 0 1 1
hsa-miR-7-5p DAZAP1 1 0 0 0 1 0 0
hsa-miR-10a-5p DAZAP1 0 0 1 1 0 0 0
hsa-miR-10a-5p DAZAP1 1 0 1 1 1 1 1
hsa-miR-10b-5p DAZAP1 0 0 1 1 0 0 0
hsa-miR-10b-5p DAZAP1 1 0 1 1 1 1 1
hsa-miR-199b-5p DAZAP1 1 0 1 0 1 0 0
hsa-miR-216a-5p DAZAP1 1 0 1 0 1 1 0
hsa-miR-218-5p DAZAP1 1 0 0 0 1 1 1
hsa-miR-219a-5p DAZAP1 1 0 0 0 1 1 1
hsa-miR-9-3p DAZAP1 0 0 1 1 0 1 0
hsa-miR-134-5p DAZAP1 1 0 0 0 1 0 0
hsa-miR-186-5p DAZAP1 1 0 0 0 1 0 0
hsa-miR-186-5p DAZAP1 1 0 0 0 1 0 0
hsa-miR-320a DAZAP1 1 0 1 1 1 1 1
hsa-miR-342-3p DAZAP1 1 0 0 0 1 1 0
hsa-miR-339-5p DAZAP1 0 0 1 1 1 0 0
hsa-miR-339-5p DAZAP1 1 0 1 1 1 0 0
hsa-miR-490-3p DAZAP1 1 0 0 0 1 0 0
hsa-miR-495-3p DAZAP1 1 0 0 1 0 0 0
hsa-miR-508-3p DAZAP1 1 0 0 0 0 1 0
hsa-miR-487b-3p DAZAP1 1 0 0 0 1 0 0
hsa-miR-641 DAZAP1 1 0 1 0 0 0 0
hsa-miR-653-5p DAZAP1 1 0 0 0 1 1 0
hsa-miR-199b-3p DAZAP1 1 0 0 0 0 1 1
hsa-miR-455-3p DAZAP1 1 0 1 0 0 1 0
hsa-miR-582-3p DAZAP1 1 0 1 0 0 1 0
hsa-miR-873-5p DAZAP1 1 0 0 0 1 0 0
hsa-miR-216b-5p DAZAP1 1 0 0 0 1 0 0
hsa-miR-942-5p DAZAP1 1 0 1 0 0 0 0
hsa-miR-513b-5p DAZAP1 1 0 1 1 0 0 0
hsa-miR-513b-5p DAZAP1 1 0 1 1 0 0 0
hsa-miR-320b DAZAP1 1 0 1 1 1 1 1
hsa-miR-320c DAZAP1 1 0 1 1 1 1 1
hsa-miR-1249-3p DAZAP1 1 0 1 0 0 0 0
hsa-miR-1249-3p DAZAP1 1 0 1 0 0 0 0
hsa-miR-320d DAZAP1 1 0 1 1 1 1 1
hsa-miR-3129-5p DAZAP1 0 0 0 0 0 1 1
hsa-miR-3164 DAZAP1 0 0 1 1 0 0 0
hsa-miR-4429 DAZAP1 0 0 1 1 0 1 1

Figure S2. DEmiRNAs analysis. A. Heatmap of the top 50 DEmiRNAs between STAAD samples and control samples. 
The red represents upregulated genes, and the blue represents downregulated genes. B. Volcano plots of DEmiR-
NAs between STAAD samples and control samples. The red dots represent upregulated genes, the green dots 
represent downregulated genes and the black dots represent genes with no significant difference. DEmiRNAs, dif-
ferentially expressed miRNAs; STAAD, Stanford type A aortic dissection.
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hsa-miR-4731-5p DAZAP1 0 0 1 2 0 1 0
hsa-miR-3064-5p DAZAP1 0 0 1 1 0 1 0
hsa-miR-3064-5p DAZAP1 0 0 1 1 0 0 0
hsa-miR-4782-3p DAZAP1 0 0 0 0 0 1 1
hsa-miR-105-5p GABARAPL2 1 0 1 0 0 1 0
hsa-miR-34a-5p GABARAPL2 1 0 0 1 1 0 0
hsa-miR-204-5p GABARAPL2 1 0 0 0 1 0 0
hsa-miR-211-5p GABARAPL2 1 0 0 0 1 0 0
hsa-miR-200b-3p GABARAPL2 1 0 0 1 1 0 0
hsa-miR-141-3p GABARAPL2 1 0 0 0 1 1 0
hsa-miR-145-5p GABARAPL2 1 0 1 1 1 1 1
hsa-miR-149-5p GABARAPL2 1 0 0 0 1 0 0
hsa-miR-186-5p GABARAPL2 1 0 0 0 1 0 0
hsa-miR-200c-3p GABARAPL2 1 0 0 1 1 1 0
hsa-miR-200a-3p GABARAPL2 1 0 0 1 1 1 0
hsa-miR-34c-5p GABARAPL2 1 0 0 0 1 0 0
hsa-miR-374a-5p GABARAPL2 1 0 0 0 1 0 0
hsa-miR-328-3p GABARAPL2 0 0 1 0 1 0 0
hsa-miR-429 GABARAPL2 1 0 0 1 1 1 0
hsa-miR-449a GABARAPL2 1 0 0 1 1 0 0
hsa-miR-494-3p GABARAPL2 1 0 0 0 1 0 0
hsa-miR-495-3p GABARAPL2 1 0 0 0 1 0 0
hsa-miR-509-3p GABARAPL2 1 0 0 1 0 0 0
hsa-miR-449b-5p GABARAPL2 1 0 0 0 1 0 0
hsa-miR-655-3p GABARAPL2 1 0 0 0 0 1 0
hsa-miR-656-3p GABARAPL2 1 0 0 0 0 1 0
hsa-miR-371a-5p GABARAPL2 1 0 0 0 1 0 0
hsa-miR-501-3p GABARAPL2 1 0 1 1 0 0 0
hsa-miR-501-3p GABARAPL2 1 0 1 1 0 0 0
hsa-miR-502-3p GABARAPL2 1 0 1 1 0 0 0
hsa-miR-502-3p GABARAPL2 1 0 1 1 0 0 0
hsa-miR-455-3p GABARAPL2 1 0 1 1 0 1 1
hsa-miR-888-5p GABARAPL2 1 0 1 1 0 0 0
hsa-miR-541-5p GABARAPL2 0 0 1 1 0 1 0
hsa-miR-876-5p GABARAPL2 1 0 0 0 1 0 0
hsa-miR-374b-5p GABARAPL2 1 0 0 0 1 0 0
hsa-miR-944 GABARAPL2 1 0 0 1 0 0 0
hsa-miR-1224-5p GABARAPL2 1 0 1 0 0 1 0
hsa-miR-3611 GABARAPL2 0 0 1 1 0 0 0
hsa-miR-374c-5p GABARAPL2 0 0 1 1 0 0 0
hsa-miR-374c-5p GABARAPL2 0 0 1 1 0 1 0
hsa-miR-5195-3p GABARAPL2 0 0 1 1 0 1 1
hsa-miR-374c-3p GABARAPL2 0 0 1 1 0 0 0
Abbreviations: miRNAs, microRNAs.


