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Abstract: Background: Stanford type A aortic dissection (STAAD) is a serious cardiovascular disease with a high mor-
tality rate. Ferroptosis is closely associated with various diseases, including cardiovascular disease. However, the
role of ferroptosis in the progression of STAAD remains unclear. Methods: Gene expression profiles of GSE52093,
GSE98770, and GSE153434 datasets were downloaded from the Gene Expression Omnibus (GEO) database.
Weighted gene co-expression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO),
and support vector machine-recursive feature elimination (SVM-RFE) were performed to determine the ferroptosis-
associated characteristic genes in STAAD. Receiver operating characteristic (ROC) curve analysis was performed
to evaluate the diagnostic efficacy. Furthermore, immune cell infiltrations were analyzed using the CIBERSORT
algorithm. Drug sensitivity analysis was conducted based on the CellMiner database. Results: A total of 65 differen-
tially expressed ferroptosis-associated genes were screened. DAZAP1 and GABARAPL2 were identified as valuable
diagnostic biomarkers for STAAD. A nomogram with high accuracy and reliability was constructed as a diagnostic
tool for STAAD. Furthermore, immune infiltration analysis suggested that monocytes were higher in the STAAD group
compared with the control group. DAZAP1 was positively correlated with monocytes, whereas GABARAPL2 was
negatively correlated with monocytes. Pan-cancer analysis showed that DAZAP1 and GABARAPL2 were closely asso-
ciated with the prognosis of various cancers. In addition, some antitumor drugs might be useful for the treatment of
STAAD. Conclusion: DAZAP1 and GABARAPL2 might serve as potential diagnostic biomarkers for STAAD. Meanwhile,
DAZAP1 and GABARAPL2 might be related to cancer and STAAD in terms of ferroptosis, which provides insights into
developing new therapeutic approaches for STAAD.

Keywords: Stanford type A aortic dissection, ferroptosis, immune infiltration, characteristic genes, pan-cancer
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Introduction rate [6]. Currently, open surgical repair is the
most effective treatment strategy for STAAD,
but it requires a high level of technology and an

experienced center [7]. Despite improvements

Aortic dissection (AD) is a life-threatening car-
diovascular disease with an incidence of 3.5-

7.2 per 100,000 people annually [1, 2]. AD is
characterized by tears of the intimal and medial
layers of the aortic wall, resulting in the forma-
tion of true and false lumens [3]. The most
common type of AD is Stanford type A AD
(STAAD), which accounts for almost 75% of all
cases of AD and has a high mortality rate of
90%, if left untreated [4, 5]. Early diagnosis and
treatment as well as close follow-up of AD
patients are essential to improve their survival

in diagnostic methods, operative approaches,
and perioperative care, these patients still have
a high in-hospital mortality rate of 22% and an
operative mortality rate of 18% [8, 9]. The main
pathological mechanisms underlying AD include
smooth muscle cell (SMC) alteration, extracel-
lular matrix degradation, and inflammatory cell
infiltration [10]. However, the potential molecu-
lar mechanisms underlying AD remain poorly
understood. Therefore, exploring the pathogen-
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esis of AD at the gene expression levels may
provide new insights into diagnosis and thera-
py, thereby improving the clinical outcomes.

With the development of high-throughput se-
quencing and DNA microarray, studies based
on bioinformatics analysis have revealed that
immune-, necroptosis-, and N6-methyladeno-
sine (m6A)-related characteristic genes and
their potential molecular pathways are closely
related to the progression of STAAD [7, 11, 12].
Ferroptosis is a non-apoptotic and iron-depen-
dent programmed cell death process, which is
characterized by the production of free radicals
and excessive accumulation of lipid peroxides
[13]. Emerging evidence suggests that ferrop-
tosis might be involved in AD progression by
promoting SMC dysfunction [14]. Chen et al.
revealed that BRD4770 prevents aortic dilation
and AD occurrence in a mouse model by inhibit-
ing SMC ferroptosis and inflammatory response
[15]. Li et al. found that ferroptosis was acti-
vated during AD progression and ferroptosis of
SMCs was regulated via the METTL3-SLC7A11/
FSP1 axis [16]. Moreover, liproxstatin-1 was
found to attenuate aortic degeneration and
AD development by inhibiting ferroptosis in
mice [16]. These findings indicate that targeting
ferroptosis might alleviate or treat AD. In addi-
tion, the immune-inflammatory response was
reported to be involved in the progression of
STAAD [5]. Several bioinformatic analyses have
revealed that the proportion of immune cell
infiltration was different between STTAD and
healthy controls [17, 18]. Dysregulated ferrop-
tosis is involved in an increasing number of
physiological and pathophysiological process-
es, including immune responses [19]. However,
the relationship between ferroptosis and the
immune-inflammatory response in STAAD pro-
gression is unclear.

Herein, we performed a comprehensive bioin-
formatics analysis based on weighted gene co-
expression network analysis (WGCNA), least
absolute shrinkage and selection operator
(LASSO), and support vector machine-recursive
feature elimination (SVM-RFE) to identify the
ferroptosis-associated characteristic genes in-
volved in STAAD, which were expected to serve
as diagnostic biomarkers and therapeutic tar-
gets. Moreover, we explored the relationship
between ferroptosis-associated characteristic
genes and immune infiltrating cells to further
understand the relationship between ferrop-
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tosis and immune-inflammatory response in
STAAD progression. Finally, we explored the
roles of characteristic genes in pan-cancer
analysis to provide new insights into the poten-
tial relationship between STAAD and cancer.

Materials and methods
Datasets and data preprocessing

The gene expression profiles of STAAD patients
were obtained from GSE52093, GSE98770,
and GSE153434 datasets of the Gene Ex-
pression Omnibus (GEO) database (https://
www.ncbi.nim.nih.gov/gds/). The GSE52093
dataset included seven STAAD samples and
five control samples, which were analyzed
using the GPL10558 platform (lllumina
HumanHT-12 V4.0 expression beadchip). The
GSE153434 dataset included 10 STAAD sam-
ples and 10 control samples, which were ana-
lyzed using the GPL20795 platform (HiSeq X
Ten). The mRNA expression profile of the
GSE98770 dataset included six STAAD sam-
ples and five control samples, which were ana-
lyzed using the GPL14550 platform (Agilent-
028004 SurePrint G3 Human GE 8x60K
Microarray). The microRNA (miRNA) expression
profile of the GSE98770 dataset included six
STAAD samples and five control samples, which
were analyzed using the GPL17660 platform
(Agilent-031181 Unrestricted_Human_miRNA_
V16.0_Microarray 030840). After normaliza-
tion and batch effect correction using “limma”
and “sva” R packages, the gene expression
profiles of GSE52093 and GSE98770 were
merged into a single file as a discovery dataset
for subsequent analysis. The GSE153434 were
log2-transformed and normalized as a valida-
tion dataset using the “limma” R package.

Screening of ferroptosis-associated differen-
tially expressed genes (FDEGS)

The list of ferroptosis-associated genes was
extracted from the FerrDb V2 database (http://
www.zhounan.org/ferrdb). Using the “limma” R
package, FDEGs and differentially expressed
miRNAs (DEmiRNAs) were screened using a
threshold of P < 0.05. The top 50 FDEGs and
DEmiRNAs were visualized in a heatmap using
the “pheatmap” R package. The significant
FDEGs and DEmiRNAs were visualized in the
volcano plot using “dplyr”, “ggplot2”, and “ggre-
pel” R packages.

Am J Transl Res 2023;15(5):3092-3114



Ferroptosis-associated biomarkers in STAAD

Functional enrichment analysis

To gain further insight into the biological func-
tions and pathways of FDEGs, Gene Ontology
(GO) enrichment and Kyoto Encyclopedia of
Genes and Genomes (KEGQG) pathway analyses
were performed using the “clusterProfiler”,
“org.Hs.eg.db”, and “enrichplot” R packages.
P < 0.05 was considered statistically signifi-
cant. In addition, gene set enrichment analysis
(GSEA) was performed based on the gene
set “c2.cp.kegg.v7.5.1.symbols.gmt” from the
Molecular Signatures Database.

Selection of characteristic genes by WGCNA,
LASSO, and SVYM-RFE

WGCNA is a comprehensive biological algo-
rithm used for constructing the co-expressed
gene modules with high biological significance.
The gene co-expression network of ferroptosis-
related genes was constructed using the
“WGCNA” R package. The “pickSoftTreshold”
(WGCNA package) function was used to calcu-
late the soft power B value (range: 1-20) based
on the criterion of scale-free network. The adja-
cency matrix was constructed based on the
most appropriate soft power [ value. Then, the
adjacency matrix was transformed into a topo-
logical overlap matrix, and a hierarchical clus-
tering dendrogram was constructed to divide
the modules. Finally, the correlation between
each module and traits was calculated by
Pearson correlation analysis. Then, we identi-
fied the most significant module that correlated
with STAAD, of which the genes were obtained
for subsequent analysis.

LASSO is a regression analysis method used
for variable selection and regularization to
improve the predictive accuracy and interpret-
ability. The optimal hub genes in STAAD patients
were determined by LASSO analysis using the
“glmnet” R package.

SVM-RFE is a feature selection algorithm that
sorts gene features using sequential backward
feature elimination. SVM-RFE was performed to
identify the optimal variables by deleting fea-
ture vectors using “el1071”, “kernlab”, and
“caret” R packages. The intersection of hub
genes obtained by WGCNA, LASSO, SVM-RFE
analyses and FDEGs was conducted to de-
termine the overlapped genes using the
“VennDiagram” R package. Receiver operating
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characteristic (ROC) diagnostic curves were
constructed and the area under the curve (AUC)
was calculated to evaluate the diagnostic accu-
racy using the “pROC” R package.

Construction of miRNA-mRNA regulatory net-
work

The miRNAs targeted by characteristic genes
were predicted using the StarBase database
(https://starbase.sysu.edu.cn/). The miRNAs
predicted by at least two databases were con-
sidered target miRNAs. DEmiRNAs were inter-
sected with target miRNAs to identify the over-
lapped miRNAs. The miRNA-mRNA regulatory
network was constructed using Cytoscape soft-
ware (version 3.8.2). The top 25 genes inter-
acted with characteristic genes were identifi-
ed through the STRING interacting network
(https://cn.string-db.org/). Then, Bayesian net-
work was constructed to infer the gene regula-
tory network using the “CBNplot” R packages.

Establishment of a nomogram

A nomogram incorporating the characteristic
genes was constructed using the “rms” R pack-
age. The diagnostic accuracy and reliability of
the nomogram were evaluated using the cali-
bration curve. Decision curve analysis was per-
formed to evaluate the clinical usefulness of
the nomogram.

Analysis of immune cell infiltrations

CIBERSORT is a deconvolution algorithm that
calculates the relative proportions of 22 types
of immune infiltrating cells in tissues. The rela-
tive proportions of immune cells in each sam-
ple were visualized as a bar plot. The difference
in immune cells between STAAD samples and
control samples was visualized as a violin plot.
The correlations between characteristic genes
and immune infiltrating cells were analyzed
using Spearman’s correlation analysis and visu-
alized as a lollipop plot.

Pan-cancer analysis of characteristic genes

Because ferroptosis is closely associated with
various cancers, we used the ferroptosis-asso-
ciated characteristic genes to explore the
potential relationships between cancers and
STAAD. We compared the expression of charac-
teristic genes between normal samples and
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various cancers, which was visualized in a box-
plot. Furthermore, we explored the prognostic
value of characteristic genes in pan-cancer
analysis using a forest plot. In addition, the
correlations between the characteristic genes
and immune cells in all The Cancer Genome
Atlas (TCGA) cancers were explored using
CIBERSORT, EPIC, MCPCOUNTER, QUANTISEQ,
TIMER and XCELL algorithms based on the
TIMER 2.0 database (http://timer.cistrome.

org/).

Drug sensitivity analysis

To develop new drugs to better treat STAAD,
drug sensitivity analysis was performed based
on the CellMiner database (version 2022.1,
database 2.8.1). Pearson correlation analysis
between characteristic genes and antitumor
drug sensitivity was performed using the
“impute”, “limma”, “ggplot2”, and “ggpubr” R
packages.

Statistical analysis

The statistical analyses were performed using
the Perl software (version 5.32.1.1) and R soft-
ware (version 4.2.0). Wilcoxon test was used to
compare the differences between the two
groups. Spearman or Pearson’s correlation
analysis was used to analyze the correlation
between the variables. Cox regression model
analysis was used for survival analysis in vari-
ous cancers. P < 0.05 was considered statisti-
cally significant.

Results
Data preprocessing and FDEGs screening

After eliminating the batch effects and normal-
ization, GSE52093 and GSE98770 datasets,
including 13 STAAD samples and 10 normal
samples, were merged into a single gene
expression profile for analysis. As shown in
Figure 1A and 1B, principal component analy-
sis was performed to evaluate the performance
of normalization and batch effect correction.
The expression profile of 453 ferroptosis-asso-
ciated genes was extracted and a total of 65
FDEGs were screened, which included 24
upregulated genes and 41 downregulated
genes (Table S1). The top 50 FDEGs were
shown in a heatmap (Figure 1C), and the FDEGs
were visualized as a volcano plot (Figure 1D).
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GO and KEGG pathway enrichment analyses

The GO function terms comprised biological
processes, molecular functions, and cellular
components. As expected, the top 10 GO terms
were mainly enriched in the cellular responses
to chemical stress, iron ion, extracellular stimu-
lus, cellular response to extracellular stimulus,
iron ion homeostasis, and transition metal ion
homeostasis (Figure 2A). The KEGG pathways
were mainly enriched in autophagy, ferroptosis,
cellular senescence, HIF-1 signaling pathway,
mTOR signaling pathway, and NOD-like receptor
signaling pathway (Figure 2B).

Identification of characteristic genes

First, the most significant module correlated
with STAAD was identified using WGCNA. We
identified B = 7 (R2 = 0.88) as the most appro-
priate soft power value to construct the scale-
free network (Figure 3A). A total of three mod-
ules were identified, and their hierarchical clus-
tering dendrogram was constructed (Figure
30C). Finally, the correlation between STAAD and
modules was shown in a heatmap. The blue
module (cor = 0.53, P = 0.009) was most sig-
nificantly correlated with STAAD (Figure 3B).
The 166 genes in the blue module were se-
lected for further analysis. Then, LASSO regres-
sion analysis was performed to identify the
optimal A = 0.244 using ten-fold cross-valida-
tion, and the five candidate genes were select-
ed based on the optimal A (Figure 3D and 3E).
Subsequently, SVM-RFE analysis showed a
minimum error when the feature number was 8,
at which point eight genes were identified as
candidate genes (Figure 3F). Finally, two char-
acteristic genes (DAZAP1 and GABARAPL2)
shared by FDEGs, WGCNA, LASSO, and SVM-
RFE were identified using the intersection
(Figure 3G). Compared with normal samples,
we discovered that the expression of DAZAP1
was higher (P = 5.44e-04) but the expression
of GABARAPL2 (P = 9.14e-04) was lower in
STAAD samples (Table S1).

Validation and evaluation of diagnostic efficacy
of characteristic genes in predicting STAAD

In the GSE153434 dataset, we found that
DAZAP1 (P = 3.2e-04, Figure 4A) was signifi-
cantly upregulated but GABARAPL2 (P = 7.6e-
05, Figure 4B) was significantly downregulated
in STAAD samples compared with the control
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Figure 1. PCA and FDEGs analyses. A. PCA shows the distribution of the two datasets before normalization and
batch effect correction. B. PCA shows the distribution of the two datasets after normalization and batch effect cor-
rection. C. Heatmap of the top 50 FDEGs between STAAD samples and control samples. The red represents upregu-
lated genes, but the blue represents downregulated genes. D. Volcano plots of FDEGs between STAAD samples and
control samples. The red dots represent upregulated genes, the green dots represent downregulated genes and the
black dots represent genes with no significant difference. PCA, principal component analysis; FDEGs, ferroptosis-
associated differentially expressed genes; STAAD, Stanford type A aortic dissection.

samples, which was consistent with the results
of the discovery dataset. Subsequently, ROC
diagnostic curves of DAZAP1 and GABARAPL2
were constructed to evaluate the diagnostic
efficacy for STAAD. In the discovery dataset,
DAZAP1 (AUC: 0.923, 95% confidence interval
[CI]: 0.785-1.000; Figure 4C) and GABARAPL2
(AUC: 0.900, 95% Cl: 0.738-1.000; Figure 4D)
had a good diagnostic ability for STAAD. In addi-
tion, we verified the diagnostic efficacy of char-
acteristic genes in the GSE153434 dataset.
ROC curves of DAZAP1 (AUC: 0.940, 95% CI:
0.810-1.000; Figure 4E) and GABARAPL2 (AUC:
0.970, 95% CI: 0.880-1.000; Figure 4F) showed
a robust diagnostic power.

GSEA of characteristic genes

To better illustrate the potential mechanisms of
characteristic genes in STAAD, GSEA was per-
formed to compare the biological processes
between the low- and high-expression groups
that were classified based on the median
expressions of characteristic genes. We discov-
ered that the high DAZAP1 expression sub-
group was mainly enriched in DNA replication
and ribosome, whereas the low DAZAP1 expres-
sion subgroup was mainly enriched in bladder
cancer, Huntington’s disease, oxidative phos-
phorylation, Parkinson’s disease, and protea-
some and RIG-I-like receptor signaling pathway
(Figure S1A). The high GABARAPL2 expression
subgroup was mainly enriched in ABC trans-
porters, gap junctions, tight junctions, trypto-
phan metabolism, and Wnt signaling pathway,
whereas the low GABARAPL2 expression sub-
group was mainly enriched in cysteine and
methionine metabolism, Parkinson’s disease,
and Notch signaling pathway (Eigure S1B).

miRNA-mRNA regulatory network

After normalization, 183 DEmiRNAs, including
138 upregulated DEmiRNAs and 45 downregu-
lated DEmiRNAs, were identified using the
“limma” R package (Figure S2). In total, 46 miR-
NAs targeted by DAZAP1 and 39 miRNAs tar-
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geted by GABARAPL2 were predicted by the
StarBase database (Table S2). Based on the
negative correlation between miRNA and
MRNA, the downregulated DEmiRNAs and
upregulated DEmiRNAs were intersected wi-
th the miRNAs targeted by DAZAP1 and
GABARAPL2, respectively. Finally, two miRNAs
(hsa-miR-10b-5p and hsa-miR-199b-5p) tar-
geted by DAZAP1 and seven miRNAs (has-
miR-34a-5p, hsa-miR-145-5p, hsa-miR-186-
5p, hsa-miR-374a-5p, hsa-miR-374b-5p, hsa-
miR-374c¢-5p, and has-miR-495-3p) targeted by
GABARAPL2 were identified to construct the
regulatory network using the Cytoscape soft-
ware (Figure BA).

Furthermore, Bayesian network was construct-
ed to further explore the potential regulatory
relationships of DAZAP1 and GABARAPL2
(Figure 5B). The regulatory network revealed
that DAZAP1 could regulate the expression of
ATG4B and TP53INP1, while GABARAPL2 might
be involved in the regulation of ATG5, ATG7, and
CALCOCO2. In addition, we also discovered that
GABARAPL2 might interact with DAZAP1 by tar-
geted ATGD.

Construction of the characteristic gene-based
nomogram

Anomogram based on DAZAP1 and GABARAPL2
was constructed as a diagnostic tool for STAAD
(Figure 5C). The calibration curve demonstrat-
ed that the nomogram might be accurate and
reliable for diagnosing STAAD (Figure 5D). The
decision curve analysis further indicated that
the nomogram model could provide a robust
clinical benefit for patients (Figure 5E).

Immune infiltration analysis

The abundances of immune cells in each sam-
ple were analyzed using the CIBERSORT algo-
rithm, which was displayed as a bar plot (Figure
6A). Furthermore, the violin plot showed that
the STAAD group had lower infiltration levels of
Tregs and gamma delta T cells, and higher infil-
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Figure 2. Functional enrichment analysis of FDEGs. A. GO enrichment analysis. B. KEGG enrichment analysis.
FDEGs, ferroptosis-associated differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of

Genes and Genomes.

tration levels of resting NK cells and mono-
cytes, compared with the control group (Figure
6B). Moreover, the correlation of the two char-
acteristic genes with immune infiltration cells
was explored. We found that DAZAP1 was posi-
tively correlated with resting NK cells, mono-
cytes, and memory B cells, but negatively cor-
related with gamma delta T cells (Figure 7A).
GABARAPL2 was positively correlated with CD8
T cells, gamma delta T cells, and Tfh cells, while
it was negatively correlated with resting NK
cells and monocytes (Figure 7B).

Pan-cancer analysis of DAZAP1 and
GABARAPL2

Based on the TCGA data, differential analysis
showed that the expression of DAZAP1 was
high in BLCA, BRCA, CESC, CHOL, COAD, DLBC,
HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC,
PRAD, READ, STAD, THCA, and UCEC, while the
expression of GABARAPL2 was low in BRCA,
CESC, COAD, KICH, KIRC, LUAD, LUSC, READ,
and UCEC (Figure 8A and 8B). Furthermore, we
explored the correlation between DAZAP1/
GABARAPL2 and prognosis, including overall
survival (0S) and progression-free survival
(PFS) based on the TCGA data. Univariate
cox regression analysis for OS revealed that
DAZAP1 expression was significantly associat-
ed with OS in 10 cancers: ACC, KIRC, LGG,
LIHC, MESO, and SARC as a risk factor, where-
as BLCA, READ, STAD, and THYM as a protec-
tive factor (Figure 9A). GABARAPL2 expression
was significantly associated with OS in 11 can-
cers: ACC, KICH, KIRC, LGG, MESO, PAAD, and
SKCM as a protective factor, whereas BRCA,
ESCA, HNSC, and STAD as a risk factor (Figure
9B). Univariate cox regression analysis for PFS
revealed that DAZAP1 expression was signifi-
cantly associated with PFS in seven cancers as
a risk factor in ACC, KIRC, LGG, LIHC, PCPG,
PRAD, and SARC (Figure 9C). GABARAPL2
expression was significantly associated with
PFS in seven cancers a as protective factor in
KICH, KIRC, LGG, and PAAD, and a risk factor in
ESCA, HNSC, and STAD (Figure 9D).

Furthermore, pan-cancer analysis of immune
cell infiltration using CIBERSORT, EPIC, MCP-
COUNTER, QUANTISEQ, TIMER and XCELL algo-
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rithms showed that differentimmune cells such
as CD8+ T cell, CD4+ T cell, macrophages, neu-
trophil and B cells were strongly correlated with
DAZAP1 (Figure 10) and GABARAPL2 (Figure
11) in various cancers.

Correlation between characteristic genes and
drug sensitivity

The drug sensitivity analysis showed that
DAZAP1 and GABARAPL2 were significantly
associated with the sensitivity of various anti-
cancer drugs (Figure 12). DAZAP1 was positive-
ly correlated with some drugs, including nelara-
bine, hydroxyurea, and cladribine, but negative-
ly correlated with depsipeptide and ARRY-162.
GABARAPL2 was positively correlated with LEE-
011, palbociclib, and ifosfamide.

Discussion

AD is a devastating disease with a high mortal-
ity rate, which is characterized by tears in the
aortic wall [17]. Poorly controlled hypertension,
inherited connective tissue lesions, vascular
inflammation, history of cardiac surgery, and
trauma are the primary pathological causes of
aortic wall damage and contribute to AD [20-
22]. The increased oxidative stress and expres-
sion of inflammatory factors and matrix metal-
loproteinases caused by immune cell infiltra-
tion in the aortic wall contribute to vascular
SMC apoptosis and aortic remodeling, which
play a crucial role in AD pathogenesis [10].
However, the identification of potential molecu-
lar pathways underlying STAAD is difficult.
Ferroptosis, a recently identified form of regu-
lated cell death, is distinct from apoptosis,
autophagy, pyroptosis, and necroptosis. It plays
a critical role in regulating immune cell function
[23]. Ferroptosis is closely associated with the
biological processes of cancers, blood diseas-
es, ischemia-reperfusion injury, and cardiovas-
cular diseases [24-27]. Recent studies have
shown that glutathione peroxidase 4, glutathi-
one, and iron accumulation play critical roles in
cardiovascular diseases [28, 29]. Nonetheless,
studies of the ferroptosis-associated biomark-
ers and pathways in the progression of STAAD
are scarce.

Am J Transl Res 2023;15(5):3092-3114
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Figure 3. Construction of WGCNA co-expression network and identification of characteristic genes by LASSO and
SVM-RFE. A. Determination of most appropriate soft power B value. B. Heatmap of correlation between modules
and occurrence of STAAD. C. Gene co-expression modules represented by different colors under the clustering den-
drogram. D, E. Identification of the optimal A and selection of candidate genes in the LASSO model. F. Identification
of candidate genes by SVM-RFE algorithm. G. Venn diagram of the characteristic genes shared by FDEGs, WGCNA,
LASSO, and SVM-RFE. WGCNA, weighted gene co-expression network analysis; LASSO, least absolute shrinkage and
selection operator; SVM-RFE, support vector machine-recursive feature elimination; STAAD, Stanford type A aortic
dissection; FDEGs, ferroptosis-associated differentially expressed genes.
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Figure 4. Validation and evaluation of expression and diagnostic efficacy of characteristic genes. A, B. Comparison of DAZAP1 and GABARAPL2 expression between
control samples and STAAD samples in the GSE153434 dataset. C, D. ROC diagnostic curves of DAZAP1 and GABARAPL2 in discovery dataset. E, F. ROC diagnostic
curves of DAZAP1 and GABARAPL2 in the GSE153434 dataset. STAAD, Stanford type A aortic dissection; ROC, receiver operating characteristic.
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Figure 5. A. A miRNA-mRNA regulatory network based on

DAZAP1 and GABARAPL2. B. Bayesian regulatory network

of DAZAP1 and GABARAPL2. C. A nomogram based on DAZAP1 and GABARAPL2. D. The calibration curve of the
nomogram. E. The decision curve analysis of the nomogram. miRNA, microRNA; STAAD, Stanford type A aortic dis-

section.
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including alternative splicing,
nucleocytoplasmic transport,
and translation [30-32]. Hu-
ang et al. found that DAZAP1
was significantly upregulated
in synovitis of osteoarthritis
by bioinformatics analysis
[33]. Wang et al. revealed that
higher expression of DAZAP1
was significantly correlated
with larger tumor size, higher
incidence of vascular inva-
sion, and worse prognosis
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in hepatocellular carcinoma
[34]. Meanwhile, DAZAP1 co-
uld regulate ferroptosis in
hepatocellular carcinoma ce-
lls by targeting SLC7A11 [34].
GABARAPL2, which was ini-
tially identified for its involve-
ment in protein transport and
membrane fusion events, is
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Figure 6. Immune infiltration analysis. A. The abundance of 22 types of im-
mune cells in each sample evaluated by CIBERSORT algorithm. B. The differ-
ences in immune cells between control samples and STAAD samples. STAAD,

Stanford type A aortic dissection.

Herein, we screened 24 upregulated and 41
downregulated ferroptosis-associated genes in
STAAD compared with the control samples.
Subsequently, GO and KEGG enrichment analy-
ses showed that the FDEGs were mainly
enriched in pathways highly associated with
ferroptosis and immune-inflammatory respons-
es. On the basis of WGCNA, SVM-REF, and
LASSO regression analyses, upregulated DA-
ZAP1 and downregulated GABARAPL2 were
identified as characteristic genes. ROC analysis
revealed that both of them were helpful for the
early diagnosis of STAAD.

DAZAP1, which is a widely and abundantly
expressed RNA-binding protein, plays a criti-
cal role in posttranscriptional modifications,

3104

RAPL2 was associated with
better OS in renal cancer but
worse OS in head and neck
cancer [36]. In mice, exces-
sive activation of caspase-11
inflammasomes and a des-
tructive immune response were caused by a
lack of GABARAPL2 [37, 38]. A bioinformatics
analysis revealed that GABARAPL2 is one of the
ferroptosis-associated hub genes in sepsis and
had a robust diagnosis power for sepsis [39].
However, no previous studies have reported
the potential roles of DAZAP1 and GABARAPL2
in the field of STAAD. Our study is the first to
suggest that dysregulation of DAZAP1 and
GABARAPL2 may play crucial roles in STAAD
progression.

MiRNAs negatively regulate the expression of
protein-coding genes through direct binding to
the target mRNAs [40]. Previous studies have
confirmed that miRNAs play an important role
in cardiovascular diseases [41]. Our miRNA-
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Furthermore, GSEA showed
that DAZAP1 was associated
with DNA replication, oxida-
tive phosphorylation, and
RIG-I-like receptor signaling
pathway, while GABARAPL2
was associated with ABC
transporters, Notch signaling
pathway, and Wnt signaling
. pathway. For example, iron
plays a critical role in many
cellular functions, including

GABARAPL2 expression
B
Ll ..
-
¢—{T1 }——. "
[] .

DNA replication and repair
[42]. Jang et al. revealed th-
at suppression of oxidative
phosphorylation could sig-
nificantly aggravate RSL3-
induced ferroptosis in cardio-
myocytes [43]. The activation
of the Wnt/B-catenin signal-
ing pathway leads to weak-
ened cellular lipid ROS pro-
duction, thereby suppressing
ferroptosis in gastric cancer

Figure 8. The expression of characteristic genes in pan-cancer analysis. Pan-
caner expression levels of (A) DAZAP1 and (B) GABARAPL2 in the TCGA da-
taset ("P < 0.05, ""P < 0.01, "P < 0.001). TCGA, The Cancer Genome Atlas.

MRNA regulatory network indicated that dys-
regulation of DAZAP1 and GABARAPL2 in
STAAD might be regulated by miRNAs.

3105

cells [44]. Shan et al. discov-
ered that the potential mech-
anism of heme-induced fer-
roptosis in human nucleus
pulposus cells might involve
the Notch signaling pathway
[45]. Hence, we speculated
that DAZAP1 and GABARAPL2 might be
involved in STAAD progression through these
ferroptosis-related pathways.
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Figure 9. The correlation between characteristic genes and prognosis in pan-cancer. Univariate cox regression anal-
ysis of the correlation between (A) DAZAP1 and (B) GABARAPL2 expression and OS in various tumors. Univariate
cox regression analysis of the correlation between (C) DAZAP1 and (D) GABARAPL2 expression and PFS in various
tumors. Red represents a risk factor and green represents a protective factor. OS, overall survival; PFS, progression-

free survival.

Accumulating evidence suggests that dysregu-
lation of monocytes is closely associated with
STAAD progression [46-49]. Li et al. revealed
that a specific decrease in monocytes and mac-
rophages significantly prevented AD occur-
rence [50]. Shen et al. revealed that the level of
M2-like monocytes was downregulated, indicat-
ing that monocytes are prone to the inflamma-
tory response in STAAD [51]. They also found
that monocyte-derived proBDNF was involved
in the inflammatory response in STAAD pro-
gression [51]. Besides, macrophages were
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found to play a crucial role in STAAD [47, 52].
However, Liu et al. revealed that expanded
macrophages originated primarily from circulat-
ing monocytes in AD [53]. Herein, immune infil-
tration analysis suggested that monocytes
were higher in the STAAD group compared with
the control group, indicating that monocytes
might play a major role in the immune-inflam-
matory response of STAAD. Ferroptosis plays a
critical role in regulating immune cell function.
On the one hand, ferroptosis of immune cells
could affect the number and function of
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Figure 10. The correlation between DAZAP1 and immune cells in all TCGA cancers by CIBERSORT (A), XCELL (B), EPIC (C), MCPCOUNTER (D), QUANTISEQ (E) and
TIMER (F) algorithms. TCGA, The Cancer Genome Atlas.
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Figure 11. The correlation between GABARAPL2 and immune cells in all TCGA cancers by CIBERSORT (A), XCELL (B), EPIC (C), MCPCOUNTER (D), QUANTISEQ (E) and
TIMER (F) algorithms. TCGA, The Cancer Genome Atlas.
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Figure 12. Drug sensitivity analysis of DAZAP1 and GABARAPL2 with various antitumor drugs.
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immune cells [19]. On the other hand, ferropto-
sis of non-immune cells could also be recog-
nized by immune cells, thereby initiating a
range of immune-inflammatory responses [19].
In our study, upregulated DAZAP1 was positive-
ly correlated with monocytes, whereas down-
regulated GABARAPL2 was negatively correlat-
ed with monocytes. Consequently, we sup-
posed that DAZAP1 and GABARAPL2 might
contribute to STAAD progression via the
immune-inflammatory response activated by
monocytes. Furthermore, Bayesian network
revealed that DAZAP1 could regulate the
expression of ATG4B and TP53INP1, while
GABARAPL2 might be involved in the regulation
of ATG5, ATG7, and CALCOCO2. Previous stud-
ies have demonstrated that ATG4B, ATG5, ATG7
and TP53INP1 played vital roles in autophagy
process [54-56]. The induction of autophagy
has been reported to be essential for survival
and differentiation of monocytes [57]. There-
fore, DAZAP1 and GABARAPL2 might regulate
monocytes infiltration through activating auto-
phagy process.

Interestingly, there are shared potential biologi-
cal pathways between the epidemiology and
risk factors in cancer progression and cardio-
vascular disease [58]. In addition, chemothera-
peutic drugs used in cancers can cause cardio-
vascular diseases that affect the long-term
prognosis and quality of life of patients [59].
DAZAP1 and GABARAPL2 are closely associat-
ed with several cancers [34, 36]. In our study,
pan-cancer analysis revealed that DAZAP1 was
a risk factor for ACC, KIRC, LGG, LIHC, MESO,
and SARC, and a protective factor for BLCA,
READ, STAD, and THYM. GABARAPL2 was a pro-
tective factor for ACC, KICH, KIRC, LGG, MESO,
PAAD, and SKCM, and a risk factor for BRCA,
ESCA, HNSC, and STAD. The results suggest
that DAZAP1 and GABARAPL2 might play an
important role in multiple cancers and STAAD
via shared ferroptosis-associated pathways.
Furthermore, we performed drug sensitivity
analysis and found that some antitumor drugs
might be useful for the treatment of STAAD.

This is the first comprehensive bioinformatics
analysis based on WGCNA, LASSO, and SVM-
REF to explore the characteristic genes and
potential signaling pathways in STAAD patients,
even in pan-cancer analysis. Compared with
the method of gene selection using Cytohubba
used in the study of Zou et al. [60], WGCNA,
LASSO, and SVM-REF have a more robust
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power in identifying characteristic genes.
However, there were several limitations to our
study. First, although two datasets were merged
into one dataset for analysis, the sample size
was not adequately large. Second, only public
datasets were utilized in our study; further in
vivo and in vitro experiments are needed to vali-
date our results.

Taken together, ferroptosis-associated DAZAP1
and GABARAPL2 might serve as potential diag-
nostic biomarkers for STAAD. Meanwhile,
DAZAP1 and GABARAPL2 might be related to
cancer and STAAD in terms of ferroptosis,
which provides insights into developing new
therapeutic approaches for STAAD.
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Table S1. Identification of FDEGs

Gene logFC AveExpr t P.Value adj.P.val B
HELLS 0.8359227 2.3882317 4.2032991 0.0003223 0.0495268 0.3367139
CD82 0.8311592 3.5081326 4.0440796 0.0004814 0.0495268 -0.024288
FANCD2 1.5211429 1.5744555 4.0070706 0.0005284 0.0495268 -0.108005
DAZAP1 0.5841334 3.755147 3.9957799 0.0005436 0.0495268 -0.133528
YWHAE 0.5317648 4.0273574 3.9935344 0.0005467 0.0495268 -0.138602
ZEB1 -0.717438 3.308456 -3.788143 0.0009145 0.0602939 -0.601072
GABARAPL2 -0.439363 5.2581049 -3.779734 0.0009339 0.0602939 -0.619921
SUV39H1 0.569327 3.4076179 3.7271003 0.0010648 0.0602939 -0.737731
ISCU -0.451527 5.3855562 -3.32635 0.0028592 0.1237945 -1.621868
AURKA 1.2970392 2.7740385 3.3008098 0.0030425 0.1237945 -1.67726
SAT1 0.6746701 6.0828358 3.2657087 0.003313 0.1237945 -1.753164
NUPR1 -0.520274 4.9016981 -3.263101 0.003334 0.1237945 -1.758792
EZH2 1.1887329 2.3752931 3.2368701 0.0035526 0.1237945 -1.815325
CDC25A 1.4102887 1.1530665 3.1448243 0.0044346 0.1371875 -2.012452
METTL14 -0.424355 3.1447146 -3.134785 0.0045426 0.1371875 -2.033829
VLDLR -0.662363 3.2775932 -3.093318 0.0050166 0.142031 -2.121858
SLC1A5 0.8520257 3.453116 3.0291441 0.0058449 0.1535532 -2.257204
KIF20A 1.8871973 2.6303238 3.0025433 0.0062254 0.1535532 -2.312976
PIR -0.48806 4.168239 -2.984791 0.0064923 0.1535532 -2.350084
YTHDC2 -0.394997 3.1741704 -2.928752 0.0074089 0.1535532 -2.466624
AKT1S1 0.4446406 2.5436438 2.9253345 0.0074686 0.1535532 -2.473702
MEF2C -0.573616 4.6565821 -2.911467 0.0077156 0.1535532 -2.502383
FZD7 -0.780211 3.5889364 -2.880585 0.0082941 0.1535532 -2.566038
PEX12 -0.622923 0.1671568 -2.862361 0.0086546 0.1535532 -2.603461
MIB1 -0.581861 3.433729 -2.861224 0.0086775 0.1535532 -2.605791
MAPKAP1 0.4600786 3.1131903 2.8545675 0.0088132 0.1535532 -2.619432
NRAS 0.5215214 3.2160485 2.8074997 0.0098317 0.1625362 -2.715469
SLC2A12 -0.854204 3.1356008 -2.749284 0.0112459 0.1625362 -2.833222
CDKN1A 0.8167442 5.408044 2.7303563 0.0117457 0.1625362 -2.871252
PARP1 0.6034819 5.1446969 2.7054948 0.012434 0.1625362 -2.921011
SLC2A1 -0.758322 4.2254184 -2.697138 0.0126738 0.1625362 -2.937686
ATG5 -0.379667 3.810515 -2.68492 0.0130323 0.1625362 -2.96202
SLC2A6 0.7002498 2.9642501 2.6839341 0.0130616 0.1625362 -2.963981
LCN2 0.9567785 1.7915761 2.6774836 0.0132551 0.1625362 -2.976803
PGD 0.7133895 4.2249522 2.6730037 0.013391 0.1625362 -2.985699
AEBP2 -0.588874 4.3603838 -2.672196 0.0134157 0.1625362 -2.987302
CDCA3 1.8007431 1.3592944 2.6624556 0.0137163 0.1625362 -3.006616
TMSB4Y -1.09534 1.676318 -2.662352 0.0137195 0.1625362 -3.006822
CAPG 0.6573162 2.9703705 2.6479065 0.0141771 0.1625362 -3.035398
G6PD 0.5827004 3.9427675 2.6425024 0.014352 0.1625362 -3.046068
IL6 2.539577 3.4433129 2.6278096 0.0148377 0.163938 -3.075022
SLC39A7 0.5114347 2.5801949 2.597423 0.0158913 0.1713993 -3.134636
TFRC 0.8953884 4.5875769 2.5659518 0.0170561 0.1796839 -3.195994
PGRMC1 -0.347977 5.8177972 -2.547228 0.0177864 0.1831189 -3.232309
QSox1 0.4029206 4.6578045 2.4916685 0.0201284 0.1948412 -3.339215
CTSB 0.4146601 5.7563045 2.4909819 0.0201591 0.1948412 -3.340528
RRM2 1.3426324 1.7653906 2.4897247 0.0202153 0.1948412 -3.342932
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NR1D2
TFR2
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PPARA
HIF1A
SIRT1
SLC25A28
NEDD4
ALOX12B
PDK4
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PEBP1
OoTuB1
MLST8
AGPS
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0.3523107
0.5432805
-0.736605
0.7119539
0.8085024
-0.434426
0.6472224
-0.428423
0.2875183
-0.393083
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0.8972811
0.4355689
0.7153367
-0.232076

0.2756531
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0.0218531
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0.0228706
0.0238118
0.02458
0.0252514
0.0286852
0.0292631
0.0318351
0.0321677
0.0322442
0.0336134
0.0350688
0.0392506
0.040136
0.0436911
0.04432
0.0479087

0.2022545
0.2022545
0.2072076
0.2115048
0.2141299
0.215828
0.2406373
0.2410213
0.2518381
0.2518381
0.2518381
0.2580826
0.2647691
0.2914838
0.2932514
0.3137023
0.3137023
0.3338867

-3.410056
-3.411014
-3.449198
-3.483838
-3.51108
-3.534177
-3.643179
-3.660185
-3.731882
-3.740713
-3.742729
-3.778022
-3.813933
-3.909073
-3.927857
-3.999155
-4.011132
-4.076246

Abbreviations: FDEGs, ferroptosis-associated differentially expressed genes; FC, fold change; AveExpr, average expression.
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Figure S1. GSEA analysis of (A) DAZAP1 and (B) GABARAPL2. GSEA, gene set enrichment analysis.
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Figure S2. DEmiRNAs analysis. A. Heatmap of the top 50 DEmiRNAs between STAAD samples and control samples.
The red represents upregulated genes, and the blue represents downregulated genes. B. Volcano plots of DEmiR-
NAs between STAAD samples and control samples. The red dots represent upregulated genes, the green dots
represent downregulated genes and the black dots represent genes with no significant difference. DEmiRNAs, dif-
ferentially expressed miRNAs; STAAD, Stanford type A aortic dissection.

Table S2. miRNAs targeted by DAZAP1 and GABARAPL2 were predicted based on StarBase database

miRNA Name Gene Name PITA RNA22 miRmap microT miRanda PicTar TargetScan
hsa-miR-24-3p DAZAP1 1 0 1 0 1 0 1
hsa-miR-199a-5p DAZAP1 1 0 1 0 1 0 0
hsa-miR-199a-3p DAZAP1 1 0 0 0 0 1 1
hsa-miR-7-5p DAZAP1 1 0 0 0 1 0 0
hsa-miR-10a-5p DAZAP1 0 0 1 1 0 0 0
hsa-miR-10a-5p DAZAP1 1 0 1 1 1 1 1
hsa-miR-10b-5p DAZAP1 0 0 1 1 0 0 0
hsa-miR-10b-5p DAZAP1 1 0 1 1 1 1 1
hsa-miR-199b-5p DAZAP1 1 0 1 0 1 0 0
hsa-miR-216a-5p DAZAP1 1 0 1 0 1 1 0
hsa-miR-218-5p DAZAP1 1 0 0 0 1 1 1
hsa-miR-219a-5p DAZAP1 1 0 0 0 1 1 1
hsa-miR-9-3p DAZAP1 0 0 1 1 0 1 0
hsa-miR-134-5p DAZAP1 1 0 0 0 1 0 0
hsa-miR-186-5p DAZAP1 1 0 0 0 1 0 0
hsa-miR-186-5p DAZAP1 1 0 0 0 1 0 0
hsa-miR-320a DAZAP1 1 0 1 1 1 1 1
hsa-miR-342-3p DAZAP1 1 0 0 0 1 1 0
hsa-miR-339-5p DAZAP1 0 0 1 1 1 0 0
hsa-miR-339-5p DAZAP1 1 0 1 1 1 0 0
hsa-miR-490-3p DAZAP1 1 0 0 0 1 0 0
hsa-miR-495-3p DAZAP1 1 0 0 1 0 0 0
hsa-miR-508-3p DAZAP1 1 0 0 0 0 1 0
hsa-miR-487b-3p DAZAP1 1 0 0 0 1 0 0
hsa-miR-641 DAZAP1 1 0 1 0 0 0 0
hsa-miR-653-5p DAZAP1 1 0 0 0 1 1 0
hsa-miR-199b-3p DAZAP1 1 0 0 0 0 1 1
hsa-miR-455-3p DAZAP1 1 0 1 0 0 1 0
hsa-miR-582-3p DAZAP1 1 0 1 0 0 1 0
hsa-miR-873-5p DAZAP1 1 0 0 0 1 0 0
hsa-miR-216b-5p DAZAP1 1 0 0 0 1 0 0
hsa-miR-942-5p DAZAP1 1 0 1 0 0 0 0
hsa-miR-513b-5p DAZAP1 1 0 1 1 0 0 0
hsa-miR-513b-5p DAZAP1 1 0 1 1 0 0 0
hsa-miR-320b DAZAP1 1 0 1 1 1 1 1
hsa-miR-320¢c DAZAP1 1 0 1 1 1 1 1
hsa-miR-1249-3p DAZAP1 1 0 1 0 0 0 0
hsa-miR-1249-3p DAZAP1 1 0 1 0 0 0 0
hsa-miR-320d DAZAP1 1 0 1 1 1 1 1
hsa-miR-3129-5p DAZAP1 0 0 0 0 0 1 1
hsa-miR-3164 DAZAP1 0 0 1 1 0 0 0
hsa-miR-4429 DAZAP1 0 0 1 1 0 1 1
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Abbreviations: miRNAs, microRNAs.



