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Abstract: Background: Previously reported breast invasive carcinoma (BRIC) biomarkers have compromised utility 
because of their heterogeneity-specific behaviors. The goal of this study was to find BRIC biomarkers that could be 
used in spite of the heterogeneity barrier. Methods: Previously reported BRIC-linked hub genes were obtained from 
the literature via a search technique. A protein-protein interaction (PPI) network of the extracted hub genes was 
constructed, visualized, and analyzed to explore the top six real hub genes. Following this, real hub genes’ expres-
sion profiling was carried out using various TCGA data sources and RNA sequencing (RNA-seq) of BT 20 and HMEC 
cell lines to uncover the tumor-driver roles of the real hub genes. Results: In total, 124 BRIC-linked hub genes were 
collected from the literature via the search technique. From these collected hub genes, a total of 6 genes, including 
Centrosomal protein of 55 kDa (CEP55), Kinesin Family Member 2C (KIF2C), kinesin family member 20A (KIF20A), 
Ribonucleotide Reductase Regulatory Subunit M2 (RRM2), Aurora A Kinase (AURKA), and Protein Regulator of cy-
tokinesis 1 (PRC1) were determined to be the real hub genes. Via expression profiling and validation analyses, 
we documented the overexpression of CEP55, KIF2C, KIF20A, RRM2, AURKA, and PRC1 real hub genes in BRIC 
patients with different clinical variables. Further correlational analyses showed diverse associations among real 
hub genes’ expression and other important parameters, including promoter methylation status, genetic alteration, 
overall survival (OS), relapse-free survival (RFS), tumor purity, CD8+ T, CD4+ T immune cell infiltration, and different 
mutant genes across BRIC samples. Finally, in this work, we investigated several transcription factors (TFS), microR-
NAs, and therapeutic medicines related to the real hub genes that have great therapeutic potential. Conclusion: 
In conclusion, we discovered six real hub genes, which may be employed as novel potential biomarkers for BRIC 
patients with different clinical parameters.
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Introduction

Breast invasive carcinoma (BRIC) is the most 
common women’s malignancy and leads to a 
large number of cancer-related deaths every 
year around the globe [1]. According to recent 
reports, about 3.45 million cancer cases are 
annually reported in Europe [1]. As a result of 
ongoing efforts by researchers, the availability 
of modern technologies has greatly helped to 

reduce the BRIC-related mortality rate by iden- 
tifying reliable potential biomarkers for the 
timely detection, treatment, and monitoring of 
prognosis. However, due to the heterogeneity-
associated nature of the reported BRIC bio-
markers [2], the management of disease in 
BRIC patients of different cancer stages, races, 
genders, ages, and subclasses has not been 
addressed completely and remains a major 
clinical treatment obstacle [2].

http://www.ajtr.org
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With the help of microarray techniques, vario- 
us disease-associated differentially expressed 
genes can be recognized simultaneously [3, 4]. 
Besides, this technique also enables research-
ers to carry out a detailed analysis of specified 
key genes to explore their potential as mole- 
cular biomarkers. Gene Expression Omnibus 
(GEO) database is a free online available micro-
array and RNA sequencing-based platform 
maintained by the National Center for Bio- 
technology Information (NCBI) [5]. This data-
base is one of the most specialized platforms 
for researchers to submit, re-evaluate, and re-
analyze the already submitted microarray data-
sets for the identification of disease-specific 
molecular biomarkers [6].

In this work, we re-analyzed multiple GEO data-
sets to find a few BRIC-associated biomarkers 
that could be used to overcome the heteroge-
neity barrier. The current work may be useful in 
developing a unique system of biomarkers that 
can be applied to BRIC patients with various 
clinical characteristics across the heterogene-
ity-specific barrier.

Methods

Mining of hub genes

Relevant studies that dealt with the BRIC GEO 
expression datasets, in order to explore hub 
genes, until June 2022 were searched via 
“PubMed”. For search purposes, the two se- 
lected keywords were “Hub genes AND Breast 
cancer” and “Hub genes AND Breast neopla-
sia” with the “Research article” filter. By doing 
so, a total of 108 studies appeared at the end 
of the search process. Those studies were fur-
ther shortlisted to only 24 studies that collec-
tively used 31 BRIC GEO datasets. Following 
the search process, all collected hub genes 
were compiled into a single pool.

Gene enrichment analysis

The GO “(Gene Ontology)” and KEGG “(Kyoto 
Encyclopedia of Genes and Genomes)” analy-
ses were performed via the DAVID 9th tool [7]. 
This is an online platform that is publicly avail-
able for GO and KEGG analysis of any given 
gene list. In these analyses, a p-value <0.05 
was regarded as significant.

Real hub genes screening

In this study, STRING “Search Tool for the 
Retrieval of Interacting Genes/Proteins” [8] 
analysis was conducted for constructing the 
protein-protein interaction (PPI) network of  
the hub genes. Later on, Cytoscape [9] plugin 
applications, including MCODE and Cytohubba, 
were used to determine the significant mo- 
dule and the top six real hub genes. Based on 
the 4 different scoring algorithms, “the maxi-
mum neighborhood component (MNC), the 
density of the maximum neighborhood compo-
nent (DMNC), the maximal clique centrality 
(MCC), and the Degree of the Cytohubba” [10], 
the shared top six genes by these 4 algorithms 
were selected as real hub genes.

GEPIA-based mRNA expression analysis

The TCGA “(Cancer Genome Atlas)” expression 
data is used to create gene expression plots 
based on various pathological factors in the 
GEPIA “(Gene Expression Profiling Interactive 
Analysis)” database, a new online web-based 
tool that enables users to perform interactive 
and customizable analyses between normal-v-
normal cancer samples [11]. In this work, we 
utilized the TCGA BRIC dataset from GEPIA to 
analyze real hub genes’ expression. The p-val-
ue cutoff was selected as 0.05.

mRNA and translation expression validation 
analysis by other databases

The bc-GenExMiner “(Breast Cancer Gene-
Expression Miner)” [12], GENT2 [13], and the 
UALCAN “(University of ALabama at Birming- 
ham CANcer)” [14] were utilized in this study  
for the mRNA and translational expression vali-
dation of the real hub genes using new inde-
pendent cohorts of BRIC patients. All these 
online databases are cancer microarray-based 
expression analysis platforms, which provide 
expression analysis results in the form of box 
plots. Additionally, the UALCAN database was 
also utilized to measure the expression of real 
hub genes targeting TFS and miRNAs. The 
p-value cutoff was selected as 0.05.

Promoter methylation analysis

In this study, the correlations among the real 
hub genes expression and their promoter me- 
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thylation levels in BRIC were examined via 
MEXPRESS through the Pearson correlation 
method [15]. MEXPRESS database highlight 
associations among patient clinical informa- 
tion and promoter methylation levels across 
TCGA datasets. The p-value cutoff was select-
ed as 0.05.

cBioPortal analyses

Multidimensional cancer genomic analysis on 
TCGA cancer datasets is carried out using the 
cBioPortal, which is an online open-access 
platform [16]. In this study, this database was 
used for analyzing genetic mutations in real 
hub genes across BIRC samples.

Survival analysis

The Kaplan-Meier plotter [17] tool was used to 
compute the relapse-free survival (RFS) and 
overall survival (OS) of real hub genes. To do 
this, BRIC patient samples were divided into 2 
different cohorts in accordance with the medi-
an expression of the real hub gene (high vs. 
low). The p-value cutoff was selected as 0.05.

Hub genes and immune cells infiltration

The TIMER “(Tumor Immune Estimation Re- 
source TIMER)” database [18] was used in this 
study to find associations between tumor puri-
ty, CD8+ T, CD4+ T immune cell infiltration, and 
real hub gene expression. A variety of algo-
rithms are used in this database to estimate 
the abundance of immune cells across differ-
ent cancers.

TFS-miRNA-mRNA network

To construct the TFS-miRNA-mRNA network, 
The ENCORI “(Encyclopedia of RNA Interacto- 
mes)” and transcriptional regulatory relation-
ships unraveled by sentence-based text-min- 
ing (TRRUST) were conducted in the present 
study [19]. These databases are widely utilized 
for exploring miRNA-ncRNA and mRNA-miRNA 
interactions from CLIP-seq interactome data.

MuTarget analysis

The MuTarget [20] analysis was conducted in 
this study with default setting to identify the 
mutant genes causing expressional changes in 
the real hub genes across BRIC. The p-value 
cutoff was selected as 0.05.

Real hub gene associated drugs

The CTD “(Comparative Toxicogenomics Da- 
tabase)” (CTD) database [21] was used in the 
current work to identify real hub gene-associat-
ed different drugs in the current study. Because 
we believe that the identified real hub genes 
can be interesting therapeutic targets. This 
database offers information on drugs that tar-
get hub genes from numerous trustworthy 
sources [21].

In vitro validation of the hub gene expression

Cell lines: One BRIC cell line (BT 20), as well as 
one normal mammary gland cell line (HMEC) 
were purchased from the American Type Cul- 
ture Collection (ATCC, USA) and cultivated in 
accordance with the manufacturer’s instruc- 
tions.

Total RNA extraction: Total RNA extraction from 
both BRIC and normal cell lines was done by 
isopycnic centrifugation as described previous-
ly [22]. The extracted RNA was then process- 
ed for DNA digestion step of incubation with 
RNase-free DNase I (Roche, Germany) at 37°C 
for 15 minutes. The quality of the extracted 
RNA was checked by a 2100 Bioanalyzer 
(Agilent Technologies, Germany). 

RNA-Seq analysis: RNA samples were sent to 
Macrogen, Korea company for RNA-seq analy-
sis. Following RNA-seq analysis, the gene 
expression values of the hub genes were nor-
malized using reads per kilo base million reads 
(RPKM) and fragments per kilo base million 
reads (FPKM). The obtained FPKM values ag- 
ainst real hub genes in BIRC and normal con- 
trol cell line were compared to identify differ-
ences in the expression level.

Statistics details

For GO and KEGG enrichment analysis, we used 
Fisher’s Exact test for computing statistical dif-
ference [23]. Correlational analyses were car-
ried out using the Pearson method. For com-
parisons, a student t-test was adopted in the 
current study. All the analyses were carried out 
in R version 3.6.3 software.

Results

Hub genes collection from the literature

We selected 24 molecular studies that explor- 
ed hub genes in BRIC GEO datasets. We then 
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Table 1. Detail of BRIC datasets and hub genes obtained from the literature
BRIC Dataset samples C/N Hub genes Reference
GSE10797
GSE15852 
GSE92697
GSE102484
GSE65212
GSE43837
GSE23988
GSE20194 
GSE42568
GSE75333
GSE5847
GSE22035 
GSE3744 
GSE5764 
GSE21422 
GSE26910
GSE41970
GSE8977
GSE45827
GSE71142
GSE86945 
GSE86946 
GSE29431 
GSE65194
GSE22093 
GSE31192
GSE9014
GSE10780
GSE29431 
GSE61304
GSE10810

28/5
43/43
26/0
683/0
130/11
19/0
61/0
230/0
104/17
6/3
95/0
43/0
47/0
10/20
14/5
12/12
270/59
7/15
144/11
10/0
100/0
58/0
66/0
167/11
103/0
22/0
123/0
143/62
54/12
59/3
31/27

RPS9, RPL11, RPS14, RPL10A, EPCAM, MELK, KRT8, KRT19, 
KPNA2, ECT2, TPX2, KIF2C, CDCA8, BUB1B, CCNA2, TOP2A, 
PCNA, CCNB1, CDC20, BIRC5, PHLPP1, UBC, ACACB, TGFB1, 
ACTB, CASC5, FAM83D, TFAP2C, KIF23, GINS1, CDCA5, CCNE1, 
KRT16, MYBL2, AGO2, MCM10, TTK, KIF18B, CDKN2A, MME, 
IGFBP3, CKAP2L, TGM2, ACTA2, PDGFRβ, SUMO1, FYN, CAV1, 
COL5A1, SKA1, MMP2, CDK1, NDC80, KRT18, STAMBP, JUN, 
MCM6, FOS, ATF3, STAT1, COL1A1, FN1, TP53, GAPDH, CCND1, 
HRAS, CAPG, SPI1, LEF1, PBX3, TCF7L2, VCAM1, PLAGL1, PBX1, 
EGFR, IGF1, LEP, PTEN, FOXO1, FGF2, PPARG, AURKA, IK3CA, 
CDH1, CDK1, NOTCH1, MAPK14, SRC, HSPA8, ESR1, PPP2CA, 
RPL4
RAC1, KIF20A, RRM2, ASPM, NUSAP1, CEP55
PGR, GATA3, ABLIM3, MYC, IL18, CD274, ITGB1, ITGB3, ITGA2B, 
CXCR4, COL1A2, EGR1, HMOX1, NR3C1, STAT5A, TFF1, FOXA1, 
HSP90AA1, KIF11, CCNB2, CDKN3, CENPF, PRC1, PTTG1, 
UBE2C, ZWINT

[59-82]

Total = 31 Total = 2908/313 Total = 124
C = Cancerous, N = Normal.

performed the extraction of hub genes from 
these studies and pooled these hub genes 
after normalizing the duplicated hub genes. 
Ultimately, a pool of 124 hub genes from 31 
GEO BRIC datasets containing 2908 BRIC and 
313 normal samples was further explored 
(Table 1). Original data (without normalization) 
can be seen in the Supplementary Material.

GO and KEGG analysis

The GO and KEGG enrichment analysis reveal- 
ed hub the genes that were enriched in differ-
ent GO and KEGG terms, including “cell divi-
sion, mitotic nuclear division, and response to 
drug” biological processes GO terms, and path-
ways in “cancer, cell cycle, focal adhesion, and 
proteoglycans in cancer” KEGG terms (Figure  
1 and Tables 2, 3).

Screening of real hub genes 

A PPI network of the 124 hub genes was creat-
ed with the help of STRING. The obtained PPI 
consisted of 124 nodes and 2110 edges 
(Figure 2A). Then, the MCODE and Cytohubba 
analyses via Cytoscape software were perfor- 
med to identify the most significant module in 
the PPI and a few more closely BRIC relevant 
genes (real hub genes) via the degree method. 
The most significant identified module consist-
ed of 43 hub genes (Figure 2B), and based on 
the degree method, the screened six real hub 
genes were CEP55, KIF2C, KIF20A, RRM2, 
AURKA, and PRC1 (Figure 2C and Table 4).

Expression analysis and validation 

For analyzing and validating real hub gene 
expression at the mRNA as well as protein lev-
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Table 2. Details of the GO analysis
Biological 
process ID Biological process Gene 

count P-value Gene name

GO:0051301 cell division 24 2.8E-16 UBE2C, CDCA5, CDCA8, BUB1B, KIF11, NR3C1, NDC80, 
SKA1, ZWINT, AURKA, CCNA2, CDC20, CCNB2, TPX2, 
CENPF, CCNB1, KIF18B, PTTG1, CCND1, CCNE1, CDK1, 
BIRC5, KIF2C, FAM83D

GO:0045944 positive regulation 
of transcription from 
RNA polymerase II 
promoter 

36 3.5E-16 FOXA1, TOP2A, SPI1, NOTCH1, LEF1, GATA3, NR3C1, 
FGF2, FOXO1, EGFR, ABLIM3, EPCAM, MYC, PLAGL1, 
UBC, MYBL2, HRAS, TCF7L2, EGR1, JUN, TFAP2C, TGFB1, 
CDKN2A, STAT1, IL18, PBX3, IGF1, FOS, MAPK14, ESR1, 
PBX1, AGO2, PPARG, PGR, TP53, ATF3

GO:0007067 mitotic nuclear  
division

19 1.3E-13 CDCA5, BUB1B, KIF11, NR3C1, NDC80, SKA1, AURKA, 
CCNA2, CDC20, ASPM, CCNB2, TPX2, CENPF, PTTG1, 
CDK1, BIRC5, KIF2C, FAM83D, CEP55

GO:0042493 response to drug 18 4.2E-11 JUN, HSP90AA1, TGFB1, STAT1, SRC, PTEN, GATA3, FOS, 
ACACB, COL1A1, CENPF, CCNB1, CCND1, CDH1, MYC, 
CDK1, FYN, PPARG

05166 HTLV-I infection 19 6.7E-11 EGR1, HRAS, STAT5A, TP53, SPI1, CDC20, PTTG1, 
TGFB1, VCAM1, FOS, CCND1, ATF3, CDKN2A, JUN, PCNA, 
BUB1B, PDGFRB, MYC, TP53INP1

GO:0045893 positive regulation of 
transcription, DNA-
templated

22 8.1E-11 EGR1, JUN, SPI1, TGFB1, NOTCH1, CDKN2A, STAT1, SRC, 
LEF1, GATA3, FOS, IGF1, FGF2, ESR1, FOXO1, CCNA2, 
COL1A1, CCNE1, CDH1, MYC, PPARG, TP53

GO:0008284 positive regulation of 
cell proliferation 

21 8.8E-11 ITGB1, RPS9, TGFB1, NOTCH1, LEF1, PTEN, FN1, TTK, 
IGF1, FGF2, EGFR, PBX1, CDC20, EPCAM, PRC1, MYC, 
LEP, BIRC5, STAMBP, HRAS, ATF3

GO:0008283 cell proliferation 19 1.1E-9 TCF7L2, PCNA, SRC, PTEN, BUB1B, MCM10, IGF1, EGFR, 
TPX2, CENPF, MELK, KRT16, MYC, CDK1, KIF2C, RAC1, 
FAM83D, HRAS, TP53

GO:0051726 regulation of cell 
cycle

12 2.5E-9 ITGB1, HSPA8, CCNB2, CENPF, CCNB1, JUN, CCNE1, 
SRC, LEP, PTEN, MYBL2, FGF2

GO:0000082 G1/S transition of 
mitotic cell cycle

11 3.7E-9 ITGB1, RRM2, PCNA, CCND1, CCNE1, CDKN2A, CDCA5, 
CDK1, MCM10, MCM6, CDKN3

Figure 1. A heatmap representing the GO and KEGG terms across identified hub genes related with BRIC. (A) A 
heatmap of GO terms across identified hub genes, and (B) a heatmap of KEGG terms across identified hub genes.

els across BRIC patients of different clinico-
pathological variables, we utilized four different 

reliable platforms, including GEPIA, bc-GenEx-
Miner, and UALCAN. Taking together the results 
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Table 3. Details of the KEGG analysis

ID Pathway Genes 
involved P-value Genes

05200 Pathways in 
cancer

30 4.9E-15 HRAS, STAT5A, PPARG, SPI1, FOXO1, CDH1, ITGB1, TCF7L2, PTEN, MMP2, 
TGFB1, CCNE1, FOS, CDKN2A, CXCR4, RAC1, FGF2, MYC, FN1, EGFR, 
HSP90AA1, TP53, LEF1, IGF1, BIRC5, STAT1, CCND1, JUN, PDGFRB, ITGA2B

04110 Cell cycle 16 1.5E-11 CDK1, TP53, TTK, CDC20, PTTG1, TGFB1, MCM6, CCNB1, CCNE1, CCND1, 
CDKN2A, CCNB2, PCNA, BUB1B, MYC, CCNA2

04510 Focal adhesion 19 2.8E-10 ACTB, EGFR, HRAS, CAV1, IGF1, ITGB3, PTEN, ITGB1, SRC, COL5A1, CCND1, 
FYN, JUN, RAC1, COL1A2, PDGFRB, COL1A1, FN1, ITGA2B

05205 Proteoglycans in 
cancer

18 1.8E-10 ACTB, EGFR, HRAS, CAV1, TP53, ESR1, IGF1, ITGB3, ITGB1, MMP2, SRC, 
TGFB1, CCND1, MAPK14, RAC1, FGF2, MYC, FN1

05166 HTLV-I infection 19 5.0E-9 EGR1, HRAS, STAT5A, TP53, SPI1, CDC20, PTTG1, TGFB1, VCAM1, FOS, 
CCND1, ATF3, CDKN2A, JUN, PCNA, BUB1B, PDGFRB, MYC, TP53INP1

05161 Hepatitis B 15 1.6E-9 HRAS, STAT5A, TP53, BIRC5, STAT1, PTEN, SRC, TGFB1, CCNE1, FOS, CCND1, 
JUN, PCNA, MYC, CCNA2

04151 PI3K-Akt  
signaling  
pathway

21 2.0E-8 PHLPP1, EGFR, HRAS, HSP90AA1, TP53, IGF1, ITGB3, PTEN, ITGB1, COL5A1, 
CCNE1, CCND1, PPP2CA, RAC1, COL1A2, PDGFRB, COL1A1, FGF2, MYC, FN1, 
ITGA2B

04115 p53 signaling 
pathway

11 6.0E-8 CCNB1, CCNE1, CDK1, CCND1, CDKN2A, CCNB2, RRM2, TP53, IGF1, 
IGFBP3, PTEN

05215 Prostate cancer 12 8.9E-8 EGFR, CCNE1, HRAS, CCND1, HSP90AA1, TP53, PDGFRB, FOXO1, LEF1, IGF1, 
PTEN, TCF7L2

05219 Bladder cancer 9 2.4E-7 EGFR, HRAS, CCND1, CDKN2A, TP53, CDH1, MYC, MMP2, SRC

of expression analysis and validation, we  
confirmed the significant up-regulation of the 
CEP55, KIF2C, KIF20A, RRM2, AURKA, and 
PRC1 genes at both mRNA and protein levels  
in BRIC patients with different cancer stages, 
races, genders, age groups, and menopause 
status relative to controls (Figures 3-5).

Promoter methylation level 

Promoter methylation participates in the ex- 
pression regulation and is closely linked with 
cancer development and progression [24]. We 
analyzed the promoter methylation level of the 
real hub genes in BRIC patients relative to con-
trols via the UALCAN platform. Our results 
revealed that CEP55, RRM2, and PRC1 we- 
re significantly hypomethylated, while KIF2C, 
KIF20A, and AURKA were significantly hyper-
methylated in BRIC patients relative to controls 
(Figure 6). 

Genetic changes in real hub genes

Information related to genetic alterations and 
mutational hotspots in the six real hub genes 
was obtained from three different TCGA BRIC 
datasets, Breast Invasive Carcinoma (TCGA, 
firehose legacy) = 1108 samples, Breast In- 
vasive Carcinoma (TCGA, Nature 2012) = 825 
samples, and Breast Invasive Carcinoma (TCGA 

PanCancer Atlas) = 1984 samples, available 
via the cBioPortal platform. We have observed 
a varying degree of genetic variation in the real 
hub genes, out of which AURKA has shown the 
highest incidence rate (6%) of genetic varia-
tions, followed by PRC1, which has shown the 
second highest genetic variation rate of 2.5%. 
While other real hub genes, including RRM2, 
KIF2C, KIF20A, and CEP55, have shown the 
genetic variation rates of 1.5%, 1.1%, 0.7%, 
0.6% in BRIC samples, respectively. In all the 
real hub genes, the most frequently observ- 
ed genetic alteration was deep amplification 
(Figure 7A). Additionally, we have also observed 
that mutations in the CEP55 gene, including 
the most commonly reported Q446Pfs*6 mu- 
tation, lie outside the EABR domain (Figure  
6B). Similarly, in AURKA, the mutations were 
also found outside of its most important 
Pkinase domain (Figure 6B). However, on the 
other side of the coin, the most important 
domains, including Kinesen of KI2C and KIF- 
20, and Ribonuc-red-sm and MAP65-ASE1 of 
AURKA and PRC1, are the major hotspots of the 
reported mutations (Figure 7B).

Survival analysis 

Correlations between OS, RFS, and mRNA 
expression of real hub genes across BRIC 
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Figure 2. (A) A STRING based PPI network 
of the 124 extracted hub genes associated 
with BRIC. (B) MCODE based identified most 
significant module, and (C) degree method 
based identified real hub genes.
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patients were explored via KM plotter. We 
observed that the higher mRNA expressions  
of CEP55, KIF2C, KIF20A, RRM2, AURKA, and 
PRC1 were significantly (P<0.05) linked with 
the reduced OS and RFS duration of the BRIC 
patients, therefore, these genes are supposed 
to be the good prognostic biomarkers in BRIC 
patients (Figure 8).

Tumor purity, immune cells, and gene expres-
sion 

Spearman correlations among tumor purity, 
CD8+ T, and CD4+ T cell infiltration, and real 
hub gene expression across BRIC were evalu-
ated via TIMER. Results showed notable posi-
tive correlations among CEP55, KIF2C, KIF- 
20A, RRM2, AURKA, and PRC1 gene expres-
sion and tumor purity, and CD8+ T immune cell 
infiltration level across BRIC (Figure 9). More- 
over, notable (P<0.05) negative correlations 
among CEP55, KIF2C, KIF20A, RRM2, AURKA, 
and PRC1 gene expression and CD4+ T im- 
mune cell infiltration level were also document-
ed across BRIC samples. 

Co-expression network

In this study, TRRUST and ENCORI were used to 
construct the TFS-miRNA-nRNA co-regulatory 
network. In the obtained network, the total 
numbers of TFS, miRNAs, and mRNAs were 60, 
95, and 6, respectively. In addition, based on 
the p-value for TFS and degree of centrality for 
miRNAs, we have identified one TF (E2F1) and 
one miRNA (hsa-mir-16-5p) that target all the 6 
real hub genes. Previous studies reported that 
the PVT1-miR-16-5p/VEGFA/VEGFR1/AKT TFS-
miRNA-hub genes axis, and miR-216-5p-Cx43, 
and miR-16-1-3p/PGK1 miRNA-hub gene axis 
are the critical modulators of colorectal and 
BRIC [25]. However, the identified TFS-miRNAs-
mRNA co-regulatory network in the current 

Table 4. List of real hub genes

Sr. No Gene Degree 
Score

Node 
count

Centrality 
score

1 CEP55 41 41 1
2 KIF2C 41 41 1
3 KIF20A 41 41 1
4 RRM2 41 41 1
5 AURKA 41 41 1
6 PRC1 41 41 1

study has highlighted that the E2F1-has-miR-
16-5p/CEP55/KIF2C/KIF20A/RRM2/AURKA/
PRC1 axis can also be the potential inducer of 
the BRIC. To further confirm the participation of 
identified TF and miRNA in BRIC development 
via up-regulating real hub genes, we further 
checked the expression of E2F1 and has-mir-
16-5p in BRIC patients via UALCAN. In view of 
our results, a significant up-regulation of E2F1 
and hsa-mir-16-5p was also observed in BRIC 
samples relative to controls. Finally, we sug-
gested that up-regulated E2F1 and has-miR-
16-5p may also exert BRIC-inducing effects by 
overexpressing their target genes, i.e., CEP55, 
KIF2C, KIF20A, RRM2, AURKA, and PRC1 
(Figure 10).

Real hub genes-associated mutant genes

To identify crucial mutant genes associated 
with real hub genes, the MuTarget analysis was 
conducted to recognize mutant genes correlat-
ed with real hub gene expression. We selected 
the top 3 mutant genes for each real hub gene. 
As shown in Figure 11, the top 3 mutant gen- 
es that positively correlate with the expres- 
sion of each real hub gene are TP53, PIK3CA, 
and RELN with CEP55, CYFIP1, ZMYM3, and 
CCDC66 with KIF2C, TP53, DYNC2H1, and 
FAT3 with KIF20A, TP53, BIRC, and DYNC2H1 
with RRM2, TP53, ITSN2, and CFAP44 with 
AURKA, and TP53, DYNC2H1, and SPTA1 with 
PRC1.

CEP55, KIF2C, KIF20A, RRM2, AURKA, and 
PRC1 gene-associated drugs

To identify relationships among CEP55, KIF2C, 
KIF20A, RRM2, AURKA, and PRC1 and dif- 
ferent therapeutic drugs, a gene-drug interac-
tion network was created with the help of CTD 
and Cytoscape. The expression of identified 
real hub gene including CEP55, KIF2C, KIF20A, 
RRM2, AURKA, and PRC1 can potentially be 
regulated by a variety of drugs. For example, 
Allyl sulfide and Arsenic trioxide can elevate  
the expression level of CEP55 while imetidine 
and bisphenol A can reduce the KIF2C expres-
sion level (Figure 12).

Experimental in vitro validation of the hub 
gene expression and methylation status

In this work, by performing RNA-seq analysis of 
one BRIC cell line (BT 20), as well as one normal 
mammary gland cell line (HMEC), the expres-
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Figure 3. Transcription expression of CEP55, KIF2C, KIF20A, RRM2, AURKA, and PRC1 in control and BRIC samples via GEPIA, bc-GenExMiner, and UALCAN 
databases. (A) Via GEPIA, (B) via bc-GenExMiner, and (C) via UALCAN.
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Figure 4. Transcription expression of CEP55, KIF2C, KIF20A, RRM2, AURKA, and PRC1 across BRIC patients of different clinicopathological features. (A) Expression 
across different cancer stages, (B) Expression across different races, (C) Expression across different genders, (D) Expression across different age groups and, (E) 
Expression across different menopause statuses.
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Figure 5. Translation expression of CEP55, KIF2C, KIF20A, RRM2, AURKA, and PRC1 in BRIC patients relative to controls. (A) CEP55, (B) KIF2C, (C) KIF20A, (D) 
RRM2, (E) AURKA, and (F) PRC1.
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Figure 6. CEP55, KIF2C, KIF20A, RRM2, AURKA, and PRC1 promoter methylation level in control and BRIC patients. (A) CEP55, (B) KIF2C, (C) KIF20A, (D) RRM2, 
(E) AURKA, and (F) PRC1.
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sion levels of the hub gene were validated.  
The expression levels of the CEP55, KIF2C, 
KIF20A, RRM2, AURKA, and PRC1 genes were 
validated using FPKM values. The FPKM is a 
quantitative value with widespread use in RNA-
seq analysis. As shown in Figure 13, it was 
noticed that hub genes express in both normal 
and BRIC cell lines, and FPKM values of the  
hub genes were notably higher in BRIC cell line 
(BT 20) as compared to a normal cell line 
(HMEC) (Figure 13).

Discussion

This study was launched to discover the BRIC 
biomarkers that could be employed over the 
heterogeneity barrier. To do so, initially we 
extracted 124 hub genes from the literature. 
Later, the creation of a PPI network of the hub 
genes and a significant module identification 
from this network have helped us to obtain  
six real hub genes, including CEP55, KIF2C, 
KIF20A, RRM2, AURKA, and PRC1.

Figure 7. Frequencies of the genetic alterations and mutational hotspots identification CEP55, KIF2C, KIF20A, 
RRM2, AURKA, and PRC1 across BRIC samples. (A) A view of the CEP55, KIF2C, KIF20A, RRM2, AURKA, and PRC1 
gene-associated genetic alterations frequencies in BRIC samples, and (B) A view of the CEP55, KIF2C, KIF20A, 
RRM2, AURKA, and PRC1 gene-associated mutational hotspots in BRIC samples.
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Figure 8. The prognostic information of the CEP55, KIF2C, KIF20A, RRM2, AURKA, and PRC1 in BRIC patients via KM plotter. (A) The calculated RFS values of CEP55, 
KIF2C, KIF20A, RRM2, AURKA, and PRC1, and (B) The calculated OS values of CEP55, KIF2C, KIF20A, RRM2, AURKA, and PRC1. Blue color indicates this low expres-
sion while red color indicates the high expression of a gene.



BRIC signature genes

3081 Am J Transl Res 2023;15(5):3067-3091

Figure 9. TIMER based Spearman correlational analysis between tumor purity, CD8+ T immune cells infiltration, CD4+ T immune cells infiltration, and CEP55, KIF2C, 
KIF20A, RRM2, AURKA, and PRC1 gene expression across BRIC samples. (A) Between CD8+ T immune cells infiltration and CEP55, KIF2C, KIF20A, RRM2, AURKA, 
and PRC1gene expression, (B) Between CD4+ T immune cells infiltration and CEP55, KIF2C, KIF20A, RRM2, AURKA, and PRC1 gene expression, and (C) Between 
tumor purity and CEP55, KIF2C, KIF20A, RRM2, AURKA, and PRC1 gene expression.
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Figure 10. Identification of the CEP55, KIF2C, KIF20A, RRM2, AURKA, and PRC1 targeted potential TFS, miRNAs, and their expression analysis in BRIC. (A) A net-
work of the CEP55, KIF2C, KIF20A, RRM2, AURKA, and PRC1 targeted miRNAs, (B) A network of has-mir-16-5p miRNA and CEP55, KIF2C, KIF20A, RRM2, AURKA, 
and PRC1, (C) CEP55, KIF2C, KIF20A, RRM2, AURKA, and PRC1 gene targeted TFS, (D) A network of E2F1 and CEP55, KIF2C, KIF20A, RRM2, AURKA, and PRC1, 
(E) expression analysis of the E2F1 and hsa-mir-16-5p in BRIC samples paired with controls. The red nodes represent the real hub gene, grey nodes represent the 
miRNAs, while purple node represent the TFS.
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Figure 11. CEP55, KIF2C, KIF20A, RRM2, AURKA, and PRC1 positively correlated mutant genes in BRIC from MuTarget. (A) Top 3 correlated genes with CEP55, (B) 
Top 3 correlated genes with KIF2C, (C) Top 3 correlated genes with KIF20A, (D) Top 3 correlated genes with RRM2, (E) Top 3 correlated genes with AURKA, and (F) 
Top 3 correlated genes with PRC1.
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Figure 12. Gene-drug interaction network of the CEP55, KIF2C, KIF20A, RRM2, AURKA, and PRC1. (A) CEP55, (B) KIF2C, (C) KIF20A, (D) RRM2, (E) AURKA, and (F) 
PRC1. Red arrows: drugs that increase the real hub genes expression, Green arrows: drug that decrease the real hub genes expression while the numbers of arrows 
represent the supported numbers of studies by literature.
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Figure 13. Validating CEP55, KIF2C, KIF20A, RRM2, AURKA, and PRC1 gene expression using BT 20 and HMEC cell lines via RNA-seq analysis.
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The CEP55 gene encodes a 55 kDa protein 
consisting of 464 amino acids, which is initially 
described as a midbody-related protein. CEP55 
is a key regulator of physical cytokinesis [26]. 
The overexpression of CEP55 was earlier link- 
ed to the pathogenesis and poor prognosis of 
lung [27], oral [28], cervical [29], breast can-
cers [28], and osteosarcoma [30]. In addition, 
CEP55 knockdown was also found to inhibit 
tumor cell proliferation [31]. In sum, the CEP55 
up-regulation can result in disordered cytokine-
sis and lead to the enhancement in multinucle-
ated cells, which is a key phenomenon of 
tumorigenesis [32].

The KIF2C belongs to the kinesin-13 family, 
which plays key roles in cell cycle regulation 
and progression [33]. Thus, KIF2C is supposed 
to be involved in tumorigenesis. However, the 
KIF2C role in tumorigenesis has not been ex- 
plored deeply so far. Previously, Nakamura et 
al. have shown that KIF2C overexpression is 
linked to nodal metastasis and poor prognosis 
in gastric cancer [34]. Wei et al. have revealed 
the significant up-regulation of KIF2C in hepa-
tocellular carcinoma promoting cell prolifera-
tion, cell migration, cell invasion, and metasta-
sis [35]. Moreover, a study by Abdel-Fatah et al. 
has also reported the overexpression of KIF2C 
across BRIC patients and associated this over-
expression with unfavorable clinicopathologi-
cal variables [36]. 

KIF20A is another important member of the 
kinesin-13 family and is involved in chromo-
some segregation and mitosis. Previous stud-
ies have implicated KIF20A overexpression in 
different human cancers including pancreatic 
cancer [37], bladder cancer [38], gastric can-
cer [39], head and neck cancer [40], lung can-
cer [41], melanoma [42], and breast cancer 
[43]. However, to date, only a few studies have 
explored the KIF20A role in breast cancer. 
Moreover, a decreased level of KIF20A has also 
been documented in pancreatic ductal adeno-
carcinoma [44]. 

Ribonucleotide reductase (RR) is a key enzyme, 
mainly involved in DNA replication and repair 
processes [45]. RRM2 is an important subunit 
of RR, and it has recently gained much atten-
tion in cancer research because of its signifi-
cant dysregulation in different human cancers, 
including BRIC [46]. It was earlier reported that 

cancer patients with overexpressed RRM2 suf-
fer from poor prognoses and tumor recurrence 
in different cancers such as BRIC, lung cancer, 
and cancers of the colorectum and crevices 
[47]. Furthermore, it is also observed that 
RRM2 overexpression enhances BRIC cell pro-
liferation and inhibits apoptosis [48]. However, 
the mechanisms behind the involvement of 
RRM2 in BRIC development and progression 
are not completely understood. 

AURKA is a member of the serine/threonine 
kinase family, which is very important for acti-
vating cell division processes through mitosis 
regulation [49]. Apart from these functions, 
when AURKA is differentially expressed, it could 
act as an oncogene and participate in cancer 
development and progression [49]. The aber-
rant expression of AURKA across human can-
cers was previously reported by various stud-
ies. For example, the overexpression of AURKA 
was revealed in colon, breast, and lung cancer 
patients [50].

The PRC1 gene, also known as MAP65, is the 
substrate of cyclin-dependent kinases (CDKs). 
PRC1 up-regulation has already been seen in 
different human cancers, including the cancers 
of the breast [51], bladder [52], and kidney 
[53]. Additionally, a study by Kanehira et al.  
has reported that knockdown of PRC1 using 
siRNA can inhibit the proliferation of breast 
cancer cells [52]. Recently, a study by Chen et 
al. explored that PRC1 promotes metastasis 
and tumorigenesis of hepatocellular carcinoma 
by dysregulating the Wnt signaling pathway 
[54]. In our study, we found that CEP55, KIF2C, 
KIF20A, RRM2, AURKA, and PRC1 were sig- 
nificantly overexpressed in BRIC patients with 
diverse clinical parameters compared to non-
cancer samples. Taken together, the expres-
sion profiling of CEP55, KIF2C, KIF20A, RRM2, 
AURKA, and PRC1, it was spectated that over-
expression of these real hub genes may serve 
as potential biomarkers of BRIC regardless of 
different clinical parameters.

Moreover, the identified real hub genes were 
found to be altered in a minor proportion of  
the BRIC patients. Additionally, it was also 
explored in the current study that genetic muta-
tions can alter amino acids at different posi-
tions in the resultant proteins from the real  
hub genes. Furthermore, this study document-
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ed significant negative correlations among real 
hub gene promoter methylation levels and 
expressions. This study also revealed that real 
hub gene overexpression was associated with 
worse prognosis of BRIC patients.

We also documented correlations among tumor 
purity, CD8+ T, CD4+ T immune cell infiltration 
levels, and the expression of real hub genes 
across BRIC. Results showed that real hub 
genes have positive correlations with the tumor 
purity in BRIC, which further confirmed that a 
higher proportion of tumor cells in BRIC is 
linked with the real hub gene overexpression. 
The CD8+ T and CD4+ T immune cells are  
the core constituents of immunotherapy [55]. 
Earlier, Trojan et al. in their trial study success-
fully used CD8+ T immune and CD4+ T immune 
cells infiltration levels for the immunotherapy  
of LSCC patients [56]. In the current study, our 
results showed positive correlations among 
real hub genes (CEP55, KIF2C, KIF20A, RRM2, 
AURKA, and PRC1) expressions at mRNA level 
and CD8+ T immune cells infiltration in BRIC. In 
addition to this, in the current study, we also 
explored the significant negative correlations 
among real hub genes (CEP55, KIF2C, KIF20A, 
RRM2, AURKA, and PRC1) expressions at the 
mRNA level and CD4+ T immune cell infiltration 
in BRIC. Collectively, the observed correlations 
shed light on the new possible aspects of the 
real hub genes in BRIC tumorigenesis by regu-
lating CD8+ T and CD4+ T immune cells. To the 
best of our knowledge, we are the first to 
explore such correlations among real hub gen- 
es (CEP55, KIF2C, KIF20A, RRM2, AURKA, and 
PRC1) and CD8+ T and CD4+ T immune cells 
across BRIC. 

By constructing a TFS-miRNA-real hub genes 
co-regulatory network, it was observed that 
one TF (E2F1) and one miRNA (miR-16-5p) tar-
get all six real hub genes for regulating their 
expressions. It is noted by previous studies th- 
at PVT1-miR-16-5p/VEGFA/VEGFR1/AKT TFS-
miRNA-hub genes axis, and miR-216-5p-Cx43, 
miR-16-1-3p/PGK1 miRNA-hub genes axis are 
the critical modulators of colorectal cancer  
and BRIC [25, 57, 58]. In view of our results,  
we suggested that E2F1-has-miR-16-5p/CEP- 
55/KIF2C/KIF20A/RRM2/AURKA/PRC1 TFS-
miRNAsmRNA co-regulatory networks can also 
be used as novel therapeutic targets for treat-
ing BRIC.

Conclusion

This detailed, systematic study has led us to 
the identification of six real hub genes (CEP55, 
KIF2C, KIF20A, RRM2, AURKA, and PRC1), that 
may be utilized as a novel diagnostic and prog-
nostic biomarkers, and therapeutic targets for 
the precise treatment of BRIC.

Acknowledgements

The authors extend their appreciation to the 
Researchers Supporting Project number (RS- 
PD2023R725) King Saud University, Riyadh, 
Saudi Arabia.

Disclosure of conflict of interest

None.

Address correspondence to: Mostafa A Abdel-
Maksoud, Department of Botany and Microbiology, 
College of Science, King Saud University Riyadh,  
P.O. 2455, Riyadh 11451, Saudi Arabia. E-mail: 
Mabdelmaksoud@ksu.edu.sa; Sikandar Zia, Depart- 
ment of Biochemistry, Gajju Khan Medical College, 
Swabi, Pakistan. E-mail: sikandarzia91@gmail.com; 
Jaweria Gul, Department of Biotechnology, Shaheed 
Benazir Bhutto University, Sheringal, Dir Upper, 
Pakistan. E-mail: jaweria_hassan16@yahoo.com; 
Muhammad Jamil, PARC Arid Zone Research Center, 
Dera Ismail Khan, Pakistan. E-mail: jamilmatrah@
parc.gov.pk

References

[1] Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, 
Rosso S, Coebergh JW, Comber H, Forman D 
and Bray F. Cancer incidence and mortality 
patterns in Europe: estimates for 40 countries 
in 2012. Eur J Cancer 2013; 49: 1374-1403.

[2] Rivenbark AG, O’Connor SM and Coleman WB. 
Molecular and cellular heterogeneity in breast 
cancer: challenges for personalized medicine. 
Am J Pathol 2013; 183: 1113-1124.

[3] Chen YJ, Guo YN, Shi K, Huang HM, Huang SP, 
Xu WQ, Li ZY, Wei KL, Gan TQ and Chen G. 
Down-regulation of microRNA-144-3p and its 
clinical value in non-small cell lung cancer: a 
comprehensive analysis based on microarray, 
miRNA-sequencing, and quantitative real-time 
PCR data. Respir Res 2019; 20: 48.

[4] Chen DL, Lu YX, Zhang JX, Wei XL, Wang F, 
Zeng ZL, Pan ZZ, Yuan YF, Wang FH, Pelicano 
H, Chiao PJ, Huang P, Xie D, Li YH, Ju HQ and Xu 
RH. Long non-coding RNA UICLM promotes 
colorectal cancer liver metastasis by acting as 



BRIC signature genes

3088 Am J Transl Res 2023;15(5):3067-3091

a ceRNA for microRNA-215 to regulate ZEB2 
expression. Theranostics 2017; 7: 4836-4849.

[5] Barrett T and Edgar R. Mining microarray data 
at NCBI’s gene expression omnibus (GEO)*. 
Methods Mol Biol 2006; 338: 175-190.

[6] Liu Y, Gu HY, Zhu J, Niu YM, Zhang C and Guo 
GL. Identification of hub genes and key path-
ways associated with bipolar disorder based 
on weighted gene co-expression network anal-
ysis. Front Physiol 2019; 10: 1081.

[7] Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, 
Lane HC, Imamichi T and Chang W. DAVID: a 
web server for functional enrichment analysis 
and functional annotation of gene lists (2021 
update). Nucleic Acid Res 2022; 50: W216-
W221.

[8] Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder 
S, Huerta-Cepas J, Simonovic M, Doncheva NT, 
Morris JH, Bork P, Jensen LJ and Mering CV. 
STRING v11: protein-protein association net-
works with increased coverage, supporting 
functional discovery in genome-wide experi-
mental datasets. Nucleic Acids Res 2019; 47: 
D607-D613.

[9] Shannon P, Markiel A, Ozier O, Baliga NS, 
Wang JT, Ramage D, Amin N, Schwikowski B 
and Ideker T. Cytoscape: a software environ-
ment for integrated models of biomolecular 
interaction networks. Genome Res 2003; 13: 
2498-2504.

[10] Pan X, Chen S, Chen X, Ren Q, Yue L, Niu S, Li 
Z, Zhu R, Chen X, Jia Z, Zhen R and Ban J. UT-
P14A, DKC1, DDX10, PinX1, and ESF1 modu-
late cardiac angiogenesis leading to obesity-
induced cardiac injury. J Diabetes Res 2022; 
2022: 2923291.

[11] Tang Z, Li C, Kang B, Gao G, Li C and Zhang Z. 
GEPIA: a web server for cancer and normal 
gene expression profiling and interactive anal-
yses. Nucleic Acids Res 2017; 45: W98-W102.

[12] Jézéquel P, Campone M, Gouraud W, Guérin-
Charbonnel C, Leux C, Ricolleau G and Campi-
on L. bc-GenExMiner: an easy-to-use online 
platform for gene prognostic analyses in breast 
cancer. Breast Cancer Res Treat 2012; 131: 
765-775.

[13] Park SJ, Yoon BH, Kim SK and Kim SY. GENT2: 
an updated gene expression database for nor-
mal and tumor tissues. BMC Med Genomics 
2019; 12 Suppl 5: 101.

[14] Chandrashekar DS, Bashel B, Balasubraman-
ya SAH, Creighton CJ, Ponce-Rodriguez I, 
Chakravarthi B and Varambally S. UALCAN: a 
portal for facilitating tumor subgroup gene ex-
pression and survival analyses. Neoplasia 
2017; 19: 649-658.

[15] Koch A, De Meyer T, Jeschke J and Van 
Criekinge W. MEXPRESS: visualizing expres-

sion, DNA methylation and clinical TCGA data. 
BMC Genomics 2015; 16: 636.

[16] Gao J, Aksoy BA, Dogrusoz U, Dresdner G, 
Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha 
R, Larsson E, Cerami E, Sander C and Schultz 
N. Integrative analysis of complex cancer ge-
nomics and clinical profiles using the cBioPor-
tal. Sci Signal 2013; 6: pl1.

[17] Szász AM, Lánczky A, Nagy Á, Förster S, Hark 
K, Green JE, Boussioutas A, Busuttil R, Szabó A 
and Győrffy B. Cross-validation of survival as-
sociated biomarkers in gastric cancer using 
transcriptomic data of 1,065 patients. Onco-
target 2016; 7: 49322-49333.

[18] Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, Li B 
and Liu XS. TIMER2.0 for analysis of tumor-in-
filtrating immune cells. Nucleic Acids Res 
2020; 48: W509-W514.

[19] Han H, Cho JW, Lee S, Yun A, Kim H, Bae D, 
Yang S, Kim CY, Lee M, Kim E, Lee S, Kang B, 
Jeong D, Kim Y, Jeon HN, Jung H, Nam S, 
Chung M, Kim JH and Lee I. TRRUST v2: an ex-
panded reference database of human and 
mouse transcriptional regulatory interactions. 
Nucleic Acids Res 2018; 46: D380-D386.

[20] Nagy Á and Győrffy B. muTarget: a platform 
linking gene expression changes and mutation 
status in solid tumors. Int J Cancer 2021; 148: 
502-511.

[21] Mattingly CJ, Colby GT, Forrest JN and Boyer JL. 
The comparative toxicogenomics database 
(CTD). Environ Health Perspect 2003; 111: 
793-795.

[22] Tong D, Schneeberger C, Leodolter S and Zeil-
linger R. Quantitative determination of gene 
expression by competitive reverse transcrip-
tion-polymerase chain reaction in degraded 
RNA samples. Anal Biochem 1997; 251: 173-
177.

[23] Kim HY. Statistical notes for clinical research-
ers: Chi-squared test and fisher’s exact test. 
Restor Dent Endod 2017; 42: 152-155.

[24] Kurkjian C, Kummar S and Murgo AJ. DNA 
methylation: its role in cancer development 
and therapy. Curr Probl Cancer 2008; 32: 187-
235.

[25] Wu H, Wei M, Jiang X, Tan J, Xu W, Fan X, Zhang 
R, Ding C, Zhao F, Shao X, Zhang Z, Shi R, 
Zhang W and Wu G. lncRNA PVT1 promotes tu-
morigenesis of colorectal cancer by stabilizing 
miR-16-5p and interacting with the VEGFA/
VEGFR1/AKT axis. Mol Ther Nucleic Acids 
2020; 20: 438-450.

[26] Fabbro M, Zhou BB, Takahashi M, Sarcevic B, 
Lal P, Graham ME, Gabrielli BG, Robinson PJ, 
Nigg EA, Ono Y and Khanna KK. Cdk1/Erk2-
and Plk1-dependent phosphorylation of a cen-
trosome protein, Cep55, is required for its re-



BRIC signature genes

3089 Am J Transl Res 2023;15(5):3067-3091

cruitment to midbody and cytokinesis. Dev Cell 
2005; 9: 477-488.

[27] Liu L, Mei Q, Zhao J, Dai Y and Fu Q. Suppres-
sion of CEP55 reduces cell viability and induc-
es apoptosis in human lung cancer. Oncol Rep 
2016; 36: 1939-1945.

[28] Kalimutho M, Sinha D, Jeffery J, Nones K, Sri-
hari S, Fernando WC, Duijf PH, Vennin C, Ran-
inga P, Nanayakkara D, Mittal D, Saunus JM, 
Lakhani SR, López JA, Spring KJ, Timpson P, 
Gabrielli B, Waddell N and Khanna KK. CEP 55 
is a determinant of cell fate during perturbed 
mitosis in breast cancer. EMBO Mol Med 2018; 
10: e8566.

[29] Qi J, Liu G and Wang F. High levels of centro-
somal protein 55 expression is associated with 
poor clinical prognosis in patients with cervical 
cancer. Oncol Lett 2018; 15: 9347-9352.

[30] Xu L, Xia C, Sheng F, Sun Q, Xiong J and Wang 
S. CEP55 promotes the proliferation and inva-
sion of tumour cells via the AKT signalling 
pathway in osteosarcoma. Carcinogenesis 
2018; 39: 623-631.

[31] Wang Y, Jin T, Dai X and Xu J. Lentivirus-medi-
ated knockdown of CEP55 suppresses cell pro-
liferation of breast cancer cells. Biosci Trends 
2016; 10: 67-73.

[32] Xu ZY, Ma XS, Qi ST, Wang ZB, Guo L, Schatten 
H, Sun QY and Sun YP. Cep55 regulates spin-
dle organization and cell cycle progression in 
meiotic oocyte. Sci Rep 2015; 5: 16978.

[33] Ritter A, Kreis NN, Louwen F, Wordeman L and 
Yuan J. Molecular insight into the regulation 
and function of MCAK. Crit Rev Biochem Mol 
Biol 2015; 51: 228-245.

[34] Nakamura Y, Tanaka F, Haraguchi N, Mimori K, 
Matsumoto T, Inoue H, Yanaga K and Mori M. 
Clinicopathological and biological significance 
of mitotic centromere-associated kinesin over-
expression in human gastric cancer. Br J Can-
cer 2007; 97: 543-549.

[35] Wei S, Dai M, Zhang C, Teng K, Wang F, Li H, 
Sun W, Feng Z, Kang T, Guan X, Xu R, Cai M 
and Xie D. KIF2C: a novel link between Wnt/β-
catenin and mTORC1 signaling in the patho-
genesis of hepatocellular carcinoma. Protein 
Cell 2021; 12: 788-809.

[36] Abdel-Fatah TMA, Green AR, Lemetre C, Mose-
ley P, Chan S, Ellis IO and Balls G. P4-09-11: 
kinesin family member 2C (KIF2C) is a new 
surrogate prognostic marker in breast cancer 
(BC). Cancer Res 2011; 71: P4-09-11.

[37] Taniuchi K, Furihata M and Saibara T. KIF20A-
mediated RNA granule transport system pro-
motes the invasiveness of pancreatic cancer 
cells. Neoplasia 2014; 16: 1082-1093.

[38] Lu Y, Liu P, Wen W, Grubbs CJ, Townsend RR, 
Malone JP, Lubet RA and You M. Cross-species 
comparison of orthologous gene expression  

in human bladder cancer and carcinogen-in-
duced rodent models. Am J Transl Res 2010; 
3: 8-27.

[39] Claerhout S, Lim JY, Choi W, Park YY, Kim K, 
Kim SB, Lee JS, Mills GB and Cho JY. Gene ex-
pression signature analysis identifies vorino-
stat as a candidate therapy for gastric cancer. 
PLoS One 2011; 6: e24662.

[40] Tomita Y, Yuno A, Tsukamoto H, Senju S, Kuro-
da Y, Hirayama M, Irie A, Kawahara K, Yatsuda 
J and Hamada A. Identification of promiscuous 
KIF20A long peptides bearing both CD4+ and 
CD8+ T-cell epitopes: KIF20A-specific CD4+ T-
cell immunity in patients with malignant tumor. 
Clin Cancer Res 2013; 19: 4508-4520.

[41] Yew P, Alachkar H, Yamaguchi R, Kiyotani K, 
Fang H, Yap K, Liu H, Wickrema A, Artz A, Van 
Besien K, Imoto S, Miyano S, Bishop MR, Stock 
W and Nakamura Y. Quantitative characteriza-
tion of T-cell repertoire in allogeneic hemato-
poietic stem cell transplant recipients. Bone 
Marrow Transplant 2015; 50: 1227-1234.

[42] Yamashita J, Fukushima S, Jinnin M, Honda N, 
Makino K, Sakai K, Masuguchi S, Inoue Y and 
Ihn H. Kinesin family member 20A is a novel 
melanoma-associated antigen. Acta Derm Ve-
nereol 2012; 92: 593-597.

[43] Wonsey DR and Follettie MT. Loss of the fork-
head transcription factor FoxM1 causes cen-
trosome amplification and mitotic catastrophe. 
Cancer Res 2005; 65: 5181-5189.

[44] Imai K, Hirata S, Irie A, Senju S, Ikuta Y, Yoko-
mine K, Harao M, Inoue M, Tomita Y, Tsunoda 
T, Nakagawa H, Nakamura Y, Baba H and 
Nishimura Y. Identification of HLA-A2-restrict-
ed CTL epitopes of a novel tumour-associated 
antigen, KIF20A, overexpressed in pancreatic 
cancer. Br J Cancer 2011; 104: 300-307.

[45] Torrents E. Ribonucleotide reductases: essen-
tial enzymes for bacterial life. Front Cell Infect 
Microbiol 2014; 4: 52.

[46] Zhang H, Liu X, Warden CD, Huang Y, Loera S, 
Xue L, Zhang S, Chu P, Zheng S and Yen Y. 
Prognostic and therapeutic significance of ri-
bonucleotide reductase small subunit M2 in 
estrogen-negative breast cancers. BMC Can-
cer 2014; 14: 664.

[47] Chang CC, Lin CC, Wang CH, Huang CC, Ke TW, 
Wei PL, Yeh KT, Hsu KC, Hsu NY and Cheng YW. 
miR-211 regulates the expression of RRM2 in 
tumoral metastasis and recurrence in colorec-
tal cancer patients with a k-ras gene mutation. 
Oncology Lett 2018; 15: 8107-8117.

[48] Liang WH, Li N, Yuan ZQ, Qian XL and Wang ZH. 
DSCAM-AS1 promotes tumor growth of breast 
cancer by reducing miR-204-5p and up-regu-
lating RRM2. Mol Carcinog 2019; 58: 461-
473.



BRIC signature genes

3090 Am J Transl Res 2023;15(5):3067-3091

[49] Du R, Huang C, Liu K, Li X and Dong Z. Target-
ing AURKA in cancer: molecular mechanisms 
and opportunities for cancer therapy. Mol Can-
cer 2021; 20: 15.

[50] Twu NF, Yuan CC, Yen MS, Lai CR, Chao KC, 
Wang PH, Wu HH and Chen YJ. Expression of 
aurora kinase A and B in normal and malig-
nant cervical tissue: high aurora A kinase ex-
pression in squamous cervical cancer. Eur J 
Obstet Gynecol Reprod Biol 2009; 142: 57-63.

[51] Subramanian R, Wilson-Kubalek EM, Arthur 
CP, Bick MJ, Campbell EA, Darst SA, Milligan 
RA and Kapoor TM. Insights into antiparallel 
microtubule crosslinking by PRC1, a conserved 
nonmotor microtubule binding protein. Cell 
2010; 142: 433-443.

[52] Kanehira M, Katagiri T, Shimo A, Takata R, 
Shuin T, Miki T, Fujioka T and Nakamura Y. On-
cogenic role of MPHOSPH1, a cancer-testis an-
tigen specific to human bladder cancer. Can-
cer Res 2007; 67: 3276-3285.

[53] Wang SM, Ooi LLP and Hui KM. Upregulation  
of Rac GTPase-activating protein 1 is signifi-
cantly associated with the early recurrence of 
human hepatocellular carcinoma. Clin Cancer 
Res 2011; 17: 6040-6051.

[54] Chen J, Rajasekaran M, Xia H, Zhang X, Kong 
SN, Sekar K, Seshachalam VP, Deivasigamani 
A, Goh BK, Ooi LL, Hong W and Hui KM. The 
microtubule-associated protein PRC1 pro-
motes early recurrence of hepatocellular carci-
noma in association with the Wnt/β-catenin 
signalling pathway. Gut 2016; 65: 1522-1534.

[55] Xia A, Zhang Y, Xu J, Yin T and Lu XJ. T cell dys-
function in cancer immunity and immunother-
apy. Front Immunol 2019; 10: 1719.

[56] Trojan A, Urosevic M, Dummer R, Giger R, Wed-
er W and Stahel RA. Immune activation status 
of CD8+ T cells infiltrating non-small cell lung 
cancer. Lung Cancer 2004; 44: 143-147.

[57] Xia C, Jiang H, Ye F and Zhuang Z. The multi-
function of miR-218-5p-Cx43 axis in breast 
cancer. OncoTargets Ther 2019; 12: 8319-
8328.

[58] Ye T, Liang Y, Zhang D and Zhang X. MicroRNA-
16-1-3p represses breast tumor growth and 
metastasis by inhibiting PGK1-mediated war-
burg effect. Front Cell Dev Biol 2020; 8: 
615154.

[59] Fang E and Zhang X. Identification of breast 
cancer hub genes and analysis of prognostic 
values using integrated bioinformatics analy-
sis. Cancer Biomark 2017; 21: 373-381.

[60] Qiu J, Du Z, Wang Y, Zhou Y, Zhang Y, Xie Y and 
Lv Q. Weighted gene co-expression network 
analysis reveals modules and hub genes as-
sociated with the development of breast can-
cer. Medicine (Baltimore) 2019; 98: e14345.

[61] Cai Y, Mei J, Xiao Z, Xu B, Jiang X, Zhang Y and 
Zhu Y. Identification of five hub genes as moni-
toring biomarkers for breast cancer metastasis 
in silico. Hereditas 2019; 156: 20.

[62] Liu F, Wu Y, Mi Y, Gu L, Sang M and Geng C. 
Identification of core genes and potential mo-
lecular mechanisms in breast cancer using 
bioinformatics analysis. Pathol Res Pract 
2019; 215: 152436.

[63] Lu X, Gao C, Liu C, Zhuang J, Su P, Li H, Wang X 
and Sun C. Identification of the key pathways 
and genes involved in HER2-positive breast 
cancer with brain metastasis. Pathol Res Pract 
2019; 215: 152475.

[64] Fu Y, Zhou QZ, Zhang XL, Wang ZZ and Wang P. 
Identification of hub genes using co-expres-
sion network analysis in breast cancer as a 
tool to predict different stages. Med Sci Monit 
2019; 25: 8873-8890.

[65] Shao N, Yuan K, Zhang Y, Yun Cheang T, Li J 
and Lin Y. Identification of key candidate 
genes, pathways and related prognostic values 
in ER-negative/HER2-negative breast cancer 
by bioinformatics analysis. J BUON 2018; 23: 
891-901.

[66] Zhou Q, Ren J, Hou J, Wang G, Ju L, Xiao Y and 
Gong Y. Co-expression network analysis identi-
fied candidate biomarkers in association with 
progression and prognosis of breast cancer. J 
Cancer Res Clin Oncol 2019; 145: 2383-2396.

[67] Vastrad B, Vastrad C, Tengli A and Iliger S. Iden-
tification of differentially expressed genes reg-
ulated by molecular signature in breast can-
cer-associated fibroblasts by bioinformatics 
analysis. Arch Gynecol Obstet 2018; 297: 161-
183.

[68] Chai F, Liang Y, Zhang F, Wang M, Zhong L and 
Jiang J. Systematically identify key genes in in-
flammatory and non-inflammatory breast can-
cer. Gene 2016; 575: 600-614.

[69] Wang Y, Zhang Y, Huang Q and Li C. Integrated 
bioinformatics analysis reveals key candidate 
genes and pathways in breast cancer. Mol Med 
Rep 2018; 17: 8091-8100.

[70] Wang Y, Xu H, Zhu B, Qiu Z and Lin Z. System-
atic identification of the key candidate genes 
in breast cancer stroma. Cell Mol Biol Lett 
2018; 23: 44.

[71] Peng C, Ma W, Xia W and Zheng W. Integrated 
analysis of differentially expressed genes and 
pathways in triple-negative breast cancer. Mol 
Med Rep 2017; 15: 1087-1094.

[72] Zheng T, Wang A, Hu D and Wang Y. Molecular 
mechanisms of breast cancer metastasis by 
gene expression profile analysis. Mol Med Rep 
2017; 16: 4671-4677.

[73] Liu Z, Liang G, Tan L, Su AN, Jiang W and Gong 
C. High-efficient screening method for identifi-
cation of key genes in breast cancer through 



BRIC signature genes

3091 Am J Transl Res 2023;15(5):3067-3091

microarray and bioinformatics. Anticancer Res 
2017; 37: 4329-4335.

[74] Wang YW, Zhang W and Ma R. Bioinformatic 
identification of chemoresistance-associated 
microRNAs in breast cancer based on microar-
ray data. Oncology Rep 2018; 39: 1003-1010.

[75] Chen J, Liu C, Cen J, Liang T, Xue J, Zeng H, 
Zhang Z, Xu G, Yu C, Lu Z, Wang Z, Jiang J, Zhan 
X and Zeng J. KEGG-expressed genes and 
pathways in triple negative breast cancer: pro-
tocol for a systematic review and data mining. 
Medicine (Baltimore) 2020; 99: e19986.

[76] Lin Y, Fu F, Lv J, Wang M, Li Y, Zhang J and 
Wang C. Identification of potential key genes 
for HER-2 positive breast cancer based on  
bioinformatics analysis. Medicine (Baltimore) 
2020; 99: e18445.

[77] Wu JR, Zhao Y, Zhou XP and Qin X. Estrogen 
receptor 1 and progesterone receptor are dis-
tinct biomarkers and prognostic factors in es-
trogen receptor-positive breast cancer: evi-
dence from a bioinformatic analysis. Biomed 
Pharmacother 2020; 121: 109647.

[78] Zhou Q, Sun E, Ling L, Liu X, Zhang M, Yin H 
and Lu C. Bioinformatic analysis of computa-
tional identified differentially expressed genes 
in tumor stoma of pregnancy-associated 
breast cancer. Mol Med Rep 2017; 16: 3345-
3350.

[79] He L, Wang D, Wei N and Guo Z. Integrated bio-
informatics approach reveals crosstalk be-
tween tumor stroma and peripheral blood 
mononuclear cells in breast cancer. Asian Pac 
J Cancer Prev 2016; 17: 1003-1008.

[80] Zhang BH, Liu J, Zhou QX, Zuo D and Wang Y. 
Analysis of differentially expressed genes in 
ductal carcinoma with DNA microarray. Eur Rev 
Med Pharmacol Sci 2013; 17: 758-766.

[81] Deng JL, Xu YH and Wang G. Identification of 
potential crucial genes and key pathways in 
breast cancer using bioinformatic analysis. 
Front Genet 2019; 10: 695.

[82] Jin H, Huang X, Shao K, Li G, Wang J, Yang H 
and Hou Y. Integrated bioinformatics analysis 
to identify 15 hub genes in breast cancer. On-
cology Lett 2019; 18: 1023-1034.



BRIC signature genes

1 

Supplementary Table 1. List of the BRIC-associated hub genes extracted from previous studies

Datasets Name of hub genes No. hub 
genes Reference

GSE10797 RPS9, RPL11, RPS14, RPL10A 4 [1-24]
GSE15852 GSE92697 EPCAM, MELK, KRT8, KRT19, KPNA2, ECT2 6
GSE102484 TPX2, KIF2C, CDCA8, BUB1B, and CCNA2 5
GSE65212 TOP2A, PCNA, CCNB1, CDC20, BIRC5, CCNA2 6
GSE43837 PHLPP1, UBC, ACACB, TGFB1, ACTB 5
GSE102484 CASC5, CKAP2L, FAM83D, KIF18B, KIF23, SKA1, GINS1, 

CDCA5, MCM6
9

GSE20194 GSE23988 CCNE1, KRT16, MYBL2 3
GSE42568 AGO2, CDC20, CDCA5, MCM10, MYBL2, TTK 6
GSE75333 CDKN2A, MME, PBX1, IGFBP3, TFAP2C, VCAM1, KRT18, 

TGM2, ACTA2, STAMBP
10

GSE5847 PDGFRβ, SUMO1, COL1A1, FYN, CAV1, COL5A1, MMP2 7
GSE22035 GSE3744 GSE5764 
GSE21422 GSE26910

TOP2A, BIRC5, CDK1, CCNB1, NDC80 5

GSE26910 GSE10797 JUN, FOS, ATF3, STAT1, COL1A1, FN1 6
GSE41970 TP53, GAPDH, CCND1, HRAS, PCNA 5
GSE8977 CAPG, TP53INP1, SPI1, LEF1, PBX3, TCF7L2, PLAGL1, EGFR 8
GSE21422 GSE42568 GSE45827 IGF1, LEP, KIF11, PTEN, FOXO1, FGF2, CCNB1, PPARG, 

AURKA, IK3CA, CDH1, CDK1 
15

GSE71142 NOTCH1 and MAPK14 2
GSE86945 GSE86946 GSE102088 HSP90AA1, SRC, HSPA8, ESR1, ACTB, PPP2CA, RPL4 7
GSE29431 GSE45827 GSE65194 CCNB1, RAC1, TOP2A, KIF20A, RRM2, ASPM, NUSAP1, BIRC5, 

BUB1B, CEP55
10

GSE22093 GSE23988 PGR, ESR1, GATA3, ABLIM3 4
GSE31192 FOS, MYC, ACTA2, IL18, CD274 5
GSE9014 ITGB1, ITGB3, ITGA2B, CXCR4 4
GSE10780 FOS, COL1A2, EGR1, HMOX1, GATA3, CDK1, NR3C1, PPARG, 

STAT5A, TFF1, FOXA1
11

GSE21422 GSE29431 GSE42568 
GSE61304

CDK1, CCNA2, TOP2A, CCNB1, KIF11, MELK 6

GSE10810 AURKA, BIRC5, BUB1B, CCNB1, CCNB2, CDC20, CDK1, 
CDKN3, CENPF, PRC1, PTTG1, TOP2A, TPX2, UBE2C, ZWINT

15
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