Erratum LncRNA-MALAT1, as a biomarker of neonatal BPD, exacerbates the pathogenesis of BPD by targeting miR-206: Am J Transl Res. 2021; 13(2): 462-479

Limin Zhang, Xueyan Bai, Wenpeng Yan

Neonatal Intensive Care Unit, Zhoukou Central Hospital, Zhoukou 466000, Henan, China Received March 9, 2023; Accepted April 2, 2023; Epub May 15, 2023; Published May 30, 2023

In this article, we found three mistakes caused by our carelessness. (1) Two images (Ctrl+ miR-206 and BPD+miR-206) were mistakenly repeated, resulting in incorrect images shown in **Figure 7**. (2) **Figure 13D** and **13E** were mistakenly repeated, resulting in incorrect images shown in **Figure 13**. (3) We need to delete the words "serum of" in the legends of **Figures 11**, **13** and **15**, because there was no serum in the cells. Hence, we would like to publish this Erratum to replace the wrong figures and descriptions. We apologize for these mistakes. The corrected **Figures 7**, **11**, **13** and **15** are as follows.

Address correspondence to: Limin Zhang, Neonatal Intensive Care Unit, Zhoukou Central Hospital, No. 26, Renmin East Road, Chuanhui District, Zhoukou 466000, Henan, China. Tel: +86-0394-8269300; E-mail: zhanglimin2005@163.com

Figure 7. HE staining was used to evaluate the effect of miR-206 on lung tissue of BPD model in vivo. Scale: 15 μ m; Magnification: 400. BPD, bronchopulmonary dysplasia.

Diagnosis and regulation of LncRNA-MALAT1 in neonatal BPD

Figure 11. Effect of knocking down MALAT1 on BPD in vivo model. At first, we tested the transfection efficiency of MALAT1 by RT-PCR (A), and successfully realized the knock-down model of MALAT1 by transfecting si-MALAT1 to BPD in vivo model. Then, seven days after the intervention of si-MALAT1, we measured (B) MLI, (C) RAC and (D) LW/BW of each group, and the inflammatory indexes such as (E) TNF- α , (F) IL-1 β and (G) MCP-1 in each group by ELISA. (H) MDA, (I) SOD and other oxidative stress indexes were detected by the corresponding detection kit, and the apoptosis level was measured by (J) TUNEL. Note: * indicates compared with Ctrl, P<0.05; ** indicates P<0.01; a indicates compared with BPD, P<0.05.

Diagnosis and regulation of LncRNA-MALAT1 in neonatal BPD

Figure 13. Effect of knocking down MALAT1 on BPD model in vitro. We also tested the transfection efficiency of MALAT1 in BPD in vitro model by RT-PCR (A), and successfully down-regulated MALAT1 in BPD in vitro model by transfection of si-MALAT1. Then, we measured the inflammatory indexes such as (B) TNF- α , (C) IL-1 β and (D) MCP-1 in each group by ELISA, detected the oxidative stress indexes such as (E) MDA and (F) SOD by corresponding detection kits, and analyzed the apoptosis level by flow cytometry (G). Note: * indicates compared with si-NC/Con, P<0.05; ** indicates P<0.01; a indicates compared with Hyperoxia, P<0.05.

Am J Transl Res 2023;15(5):3800-3805

Figure 15. Effect of down-regulating miR-206 on the anti-BPD effect of knocking down MALAT1. We detected the transfection efficiency of miR-206 and MALAT1 in BPD in vitro model by RT-PCR (A), and successfully down-regulated miR-206 in BPD in vitro model by transfection of inhibitor. Then, we measured the inflammatory indexes such as (B) TNF- α , (C) IL-1 β and (D) MCP-1 in each group by ELISA, detected the oxidative stress indexes such as (E) MDA and (F) SOD by corresponding detection kits, and analyzed the apoptosis level by flow cytometry (G). Note: * indicates compared with inhibitor-NC/Con, P<0.05; ** indicates P<0.01; a indicates compared with inhibitor.