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Abstract: Recent data have revealed various effector functions of FcγRs in immune responses against challenges 
with SARS-CoV-2 virus. FcγRs act as a bridge between antibody specificity and effector cells. In many cases, IgG/
FcγR interactions generate cell-mediated immune protection from infection via ADCP or ADCC. These responses are 
beneficial, as they may participate in virus elimination and persist longer than neutralizing anti-Spike antibodies. In 
contrast, these interactions may sometimes prove beneficial to the virus by enhancing viral uptake into phagocytic 
cells via ADE and causing excessive inflammation. Here, we summarize key features of FcγRs, discuss effector 
functions, clinical relevance, and factors influencing FcγR-mediated immune responses in COVID-19 and vaccine 
responses, and consider IVIg and kinase inhibitors for targeting FcγRs signaling in COVID-19.

Keywords: SARS-CoV-2, vaccination, FcγR, Fc glycosylation, ADCP, ADCC, ADE

Introduction

Coronavirus disease 2019 (COVID-19) is a 
febrile respiratory disease triggered by severe 
acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) and its different variants of con-
cern (VOCs) or interest (VOIs) that lead to a 
spectrum of symptoms ranging from mild and 
moderate to severe or even critical. At this  
time, the primary prophylaxis measure against 
severe COVID-19 or death is the vaccination [1], 
which is designed to induce T helper (Th) lym-
phocytes, cytotoxic T lymphocytes (CTLs), and 
potent neutralizing antibody (Nab) responses 
[2-4]. Nabs act through fragment antigen-bind-
ing domain (Fab), by preventing the interaction 
between the spike (S) glycoprotein and human 
angiotensin-converting enzyme 2 (ACE2) on  
the host cell membrane. Although neutraliza-
tion of newly emerging VOCs was significantly 
decreased in vaccine and convalescent sera 
[5-7], several vaccines maintain effectiveness 
against severe COVID-19 illness caused by 
these variants [1, 8]. These data suggest an 
important role for antibody-mediated effector 
activities in SARS-CoV-2 control and disease 
outcome [8, 9]. Most of these functions are ini-

tiated by the fragment crystallizable domain 
(Fc) of IgG Abs that bind Fc gamma Receptors 
(FcγRs) on immune cells [8]. SARS-CoV-2 Fc 
antibody signatures associated with the en- 
hanced engagement of the high-affinity FcγRs 
can also influence the occurrence of the infec-
tion [10]. Along with enhancing FcγR-mediated 
effector activities, Fc arm can augment neutral-
izing human monoclonal Abs-mediated protec-
tion from SARS-CoV2 infection and lung disease 
in vivo, indicating a synergy between the Fab 
and Fc domains to optimize antibody effector 
function and therapeutic efficacy [11, 12]. Dis- 
rupt FcγRs binding of nAbs by introducing leu-
cine-to-alanine substitutions (L234A/L235A or 
LALA) in their Fc regions significantly decreased 
the protection from lethal challenge with SARS-
CoV-2 virus [13]. Traditionally, humans respond 
similarly to IgG-FcγR interactions, but that bind-
ing strength can differ between individuals due 
to e.g., different glycosylation and subsequently 
influence the Fc-mediated functions. Here, we 
summarize key features of FcγRs, discuss ef- 
fector functions, clinical relevance, and factors 
influencing FcγR-mediated immune responses 
in COVID-19 and vaccine responses, and con-
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macrophages, DCs, neutrophils, basophils, and 
eosinophils [17]. FcγRIIa is encoded by the 
FCGR2A gene as two alleles that generate two 
variants differing at aa131: (H131 and R131) 
[19]. As a result, the FCGR2A-H131 allele 
increase FcγRIIa binding affinity for IgG2 than 
the R131 variant [20]. FcγRIIc is closely link- 
ed to, but distributed more restrictedly than, 
FcγRIIa. The FcγRIIIa comprises two extracellu-
lar domains and a very short intracytoplasmic 
region. NK cells, neutrophils, monocytes and 
macrophages express cell surface FcγRIIIa [21, 
22]. The presence of the common γ-chain 
homodimer and CD3 ζ-chain containing ITAM 
sequences are crucial for maintaining stable 
FcγRIIIa expression and targeting this receptor 
at the cell membrane [23]. As with FCGR2A, 
FCGR3A exist as two alleles that generate two 
variants differing at aa 158: Phenylalanine (F) 
158 and valine (V) 158 [24]. It is worth noting 
that the F158 variant decrease FcγRIIIa binding 
for IgG1 and IgG3 than the V158 allele [25]. 

Inhibitory FcγRIIb

FcγRIIb (a member of the CD32 cluster) is sin-
gle-chain inhibitory receptor that is constitu-
tively expressed on the B lymphocytes and 
interacts only with complexes aggregated IgG 
[26]. It is the only FcγR containing an immuno-
receptor tyrosine inhibitory motif (ITIM) in its 
cytoplasmic domain that is responsible for the 
inhibitory activity toward ITAM-containing re- 
ceptors in almost all immune cells, including B 
cells and platelets. It binds less efficiently to 
IgG1, IgG3, and IgG2 than all other FcγRs [25]. 
In the context of SARS-CoV-2 infection, it has 
been shown that Abs in the sera of lethal 
COVID-19 individuals antagonized interferons 
(IFN)-alpha (α) and -beta (β) signaling receptor 
by impacting FcγRIIb signaling (Figure 1) [27].

IgG subclasses

Four isoforms of IgG have been identified in 
human: IgG1 (66%), IgG2 (23%), IgG3 (7%) and 
IgG4 (4%). These isoforms differ in their upper 
CH2 domains and hinge region. CH2 domain is 
implicated in binding to FcγRs. Consequently, 
the different IgG subclasses bind with varying 
affinity to different FcγRs on innate immune 
cells, resulting in different Fc effector func-
tions. Bruhns P and colleagues [25], found that 
IgG1 and IgG3 bind to all FcγRs, that IgG2 binds 

sider IVIg and kinase inhibitors for targeting 
FcγRs signaling in COVID-19.

Fcγ receptors and IgG subclasses

Fcγ receptors

FcγRs are a group of cell surface receptors 
belonging to the immunoglobulin superfamily 
that interact with the Fc arm of IgG and serve 
as a link between humoral and innate immuni-
ty. There are three broad subfamilies of FcγRs 
in humans: the high-affinity FcγRI and low-affin-
ity receptors FcγRII and FcγRIII. These cell sur-
face glycoproteins are encoded by different 
genes on the 1q21.1-24 region of chromosome 
1. They can also be defined based on their 
function as either activating receptors such as 
FcγRI, FcγRIIa, FcγRIIc, and FcγRIIIa or as in- 
hibitory receptors (FcγRIIb). The FcγRIIIb is the 
only receptor that does not trigger intracellular 
signaling cascades.

Activating FcγRs

An early and essential event in the signaling 
cascade initiated upon FcγRs cross-linking by 
monomeric IgG or immune complexe (IC) is 
phosphorylation of the tyrosine residues with- 
in immunoreceptor tyrosine-based activation 
motif (ITAM) by Src-family kinases, leading to 
the recruitment and activation of Spleen tyro-
sine kinase (Syk) and Bruton tyrosine kinase 
(Btk) [14-16] that induce downstream signaling 
and cellular responses of which cytokine pro-
duction is an example (Figure 1) [17]. ITAM sig-
naling is either on the same ligand-binding 
α-chain as for FcγRIIa and FcγRIIc or on the 
associated γ-chain for FcγRI and FcγRIIIa. The 
FcγRI subfamily is composed of three extracel-
lular domains and a very short intracytoplas- 
mic region. The extracellular region of FcγRI 
can bind significant fractions of monomeric IgG 
at physiological concentrations. It is expressed 
mainly on macrophages, neutrophils, eosino-
phils and dendritic cells (DCs) [18]. The pres-
ence of the common γ-chain subunit is indis-
pensable for its stable expression. Within the 
three isoforms of FcγRII, FcγRIIa and FcγRIIc 
are both single α-chain activating receptors 
that are very similar in structure. Both FcγRIIa 
and FcγRIIc contain an ITAM within their larger 
cytoplasmic tails. However, they differ in ex- 
pression and function. FcγRIIa is a widely 
expressed receptor detected on monocytes, 
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Figure 1. FcγRs signaling (LEFT), the cross-linking by anti-SARS-CoV-2 IC of activating FcγRs induces phosphorylation of the tyrosine residues within ITAM motif by 
Src-family kinases, leading to the activation of Syk and recruitment of Btk and PLCγ that induce downstream signaling and cellular activation (RIGHT), Abs present 
in serum from severe COVID-19 patients induce inhibitory FcγRIIb signaling through phosphorylation of the tyrosine present within the ITIM motif by Lyn responsible 
for the recruitment of inositol phosphatases (SHP), which inhibits ISGs expression following IFNAR engagement. Syk: Spleen tyrosine kinase; PLCγ: Phospholipase 
C gamma 1; Btk: Bruton’s tyrosine kinase; PI3K: phosphoinositide 3-kinase; PKC: protein kinase C; IFNAR: Interferon-α/β receptor; ISGs: IFN-stimulated genes.
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to FcγRIIaH131, FcγRIIaR131 and FcγRIIIaV- 
158, and that IgG4 binds to FcγRI, FcγRII, and 
FcγRIIIaV158. In general, IgG1 and IgG3 are the 
predominant subclasses produced in response 
to viral infections [28]. In addition, IgG3 is pri-
marily characterized by increased hinge re- 
gion, extensive polymorphisms and improved 
Fc effector functions [29].

Fcγ receptor effector activities during SARS-
CoV-2

Binding of FcγRs by monomeric IgG and IC re- 
gulate diverse protective Fc effector functions 
involved in host defense, such as antibody-
dependent cellular cytotoxicity (ADCC), anti-
body-dependent cellular phagocytosis (ADCP) 
and the release of inflammatory cytokines [30, 
31]. However, these FcγRs intended to protect 
the host may sometimes prove beneficial to  
the virus by facilitating antibody-dependent 
enhancement of infection (ADE) [32] (Figure 2).

ADCC

ADCC activity is triggered when FcγR (e.g., 
FcγRIIIa, FcγRIIa) on immune cells is engaged 
by the Fc tail of specific IgG Abs bound to virus-
infected cells (Figure 1). This process has been 
shown to form a determining component of 
effective humoral immunity against diverse 
clinically relevant viral infections such as HIV-1 
[33], Ebola [34] and influenza [35]. Most ADCC 
assays have relied on NK cells isolated from 
peripheral blood mononuclear cells (PBMC) of 
normal donors or semi-purified NK cells. Spe- 
cifically, it has been demonstrated that ADCC 
may contribute to SARS-CoV-2 control and 
clearance in vitro [36]. Additionally, Tso FY and 
colleagues showed that both serum specific-
SARS-CoV-2 non-neutralizing and Nabs from 
recovered COVID-19 individuals are capable of 
eliciting ADCC via NK cells in vitro [30]. The pre-
formed cytoplasmic granules containing toxins 
such as perforins and granzymes liberated by 
NK cells are essential for this process. A recent 
study characterized ADCC against SARS-CoV-2 
by analyzing degranulation marker CD107a in 
activated NK cells [37]. The authors showed 
that natural infection and vaccination induce  
a robust ADCC activity via NK cells [37]. Like 
neutralization, the sequence of the infecting  
S sequence affects the breadth of the ADCC 
activity. A recent study by Hagemann et al. 

showed that previous exposure to one or more 
endemic human coronaviruses can elicit ADCC 
Abs that can cross-react with SARS-CoV-2 S  
glycoproteins in some rare individuals [37]. An 
extensive analysis of antibody-mediated func-
tions in convalescent sera and after vaccina-
tion revealed that B.1.351 can trigger signifi-
cant cross-reactive ADCC-activity against a 
panel of global VOCs [38].

The level of ADCC measured in vitro was also 
associated with clinical course, suggesting that 
this activity is a key factor in the varying clinical 
outcomes of COVID-19 [39]. Recovery from 
severe COVID-19 is associated with more ro- 
bust ADCC responses [39]. Further, Abs direct-
ed against viral variants can efficiently induce 
ADCC activity in vaccinated mice and patients, 
highlighting the relevance of ADCC in lethal 
COVID-19, and particularly in the context of 
emerging neutralization-resistant VOCs [39]. In 
contrast, patients with severe COVID-19 re- 
quiring intensive care unit (ICU) treatment had 
reduced levels of ADCC activity [40]. Since low 
levels and functional exhaustion of CD16-
expressing cells, such as NK cells, CD8γδ+ T 
cells and eosinophils have been associated 
with severe COVID-19 [41-43], it can be as- 
sumed that reduced levels of these cells may 
be linked to decreased ADCC activity observed 
in the PBMCs of individuals with poor COVID-19 
progression. 

Taken together, ADCC levels could effectively 
assess disease severity and predict outcome  
in COVID-19 individuals. 

ADCP

Phagocytosis is the mechanism whereby Abs 
bind to extracellular pathogens to promote their 
Fc receptor-mediated ingestion and subse-
quent intracellular killing by phagocytes (e.g., 
monocytes, macrophages, neutrophils, and 
DCs). Already in 2014 Yasui et al. investigated 
the key role of ADCP activity during the first 
days of SARS-CoV-1 infection by using phago-
cytes-depleted mice [44]. They showed that 
mice were highly vulnerable to pulmonary 
SARS-CoV-1 infection, even in the presence of 
neutralizing anti-S protein Abs. Complement 
and NK lymphocytes were not required for Ab 
mediated protection, but infiltrating and tiss- 
ue-resident macrophages, but not neutrophils, 
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Figure 2. Fcγ receptors effector activities during SARS-CoV-2. Abs against SARS-CoV-2 are able to deploy a plethora of FcγRs effector activities over the course of 
Covid-19. These include but are not limited to the following: 1) The stimulation of NK cell degranulation to kill infected cells by ADCC. 2) The stimulation of mac-
rophage opsonophagocytosis by ADCP. 3) The ADE by enhanced viral uptake via FcγRIII-mediated endocytosis into CD16+ monocytes causing overstimulation of 
inflammasome without net viral replication. FcγRs: Fc gamma Receptors; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2 virus; Nab: neutralizing-
antibody; ACE2: angiotensin-converting enzyme 2; ADCP: antibody-dependent cellular phagocytosis; ADCC: antibody-dependent cellular cytotoxicity; DCs: dendritic 
cells; ADE: antibody-dependent enhancement.
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could actively take up opsonized virus particles 
indicating that ADCP can be of major impor-
tance in clearing off SARS-CoV-infected lung 
cells in mice models. Further indications for a 
role of ADCP activity in SARS-CoV-2 came from 
studies in which purified plasma IgG Abs were 
analyzed for their ability to mediate phagocyto-
sis of S1 and RBD antigen-coated beads [31]. 
Adeniji OS et al. found that these Abs were 
demonstrated to block infection by pseudovi-
ruses and mediate robust ADCP of both S1- 
protein-coated beads and fluorescently-labeled 
RBD. A similar mechanism has been described 
in other infections such as HIV-1 [45, 46] and 
human papillomavirus [47]. The substantial dif-
ferences in the FcγR binding in the different 
phagocytes may affect their functions. The 
RBD-specific antibody-dependent monocyte 
phagocytosis was lower in non-survivor individ-
uals of severe illness but was comparable in 
non-survivor and survivor individuals suffering 
from moderate disease [48]. By contrast, high-
er levels of S-specific neutrophil-mediated 
ADCP activity were reported in critically ill pa- 
tients compared to those with moderate dis-
ease [48]. By comparing clinical phenotypes  
of circulating phagocytic cells from COVID-19 
patients and healthy controls, Peyneau and col-
laborators showed that phagocytosis activity 
was significantly lower in non-survivor patients 
as compared to survivors [49]. They also found 
that CD13low and CD10low immature neutrophil 
populations were significantly increased in criti-
cally ill individuals as compared to both non-
ICU individuals and healthy controls. It is like- 
ly that in non-survivors with COVID-19, SARS-
CoV-2 may trigger overstimulation of the phago-
cytic cells, and delayed evolution of high-affini-
ty FcγR binding Abs, resulting in the apparition 
of abnormal subpopulations and exhaustion of 
ADCP.

ADE

ADE is the mechanism whereby sub-neutraliz-
ing or cross-reactive Abs enhance the infectivi-
ty and the pathophysiology of some viral dis-
eases [50-53], and the SARS-CoV-2 virus is no 
exception. It can be categorized into at least 
two distinct pathways: by enhanced viral uptake 
via FcγRIIa-mediated endocytosis into phago-
cytic cells causing viral replication and further 
dissemination, or by excessive FcγR effector 

functions and IC formation causing leading to 
enhanced inflammation and immunopathology 
[54]. The current dogma and results gathered 
so far seem to clearly indicate that SARS-CoV-2 
uptake in macropahges/monocytes goes th- 
rough mainly FcγRIII in the CD16+ monocytes 
only [55]. This leads to enhanced viral uptake, 
but actually is detrimental to functional replica-
tion of SARS-CoV-2, as the monocytes undergo 
pyroptosis mediated by overstimulation of the 
inflammasome, resulting in net non-prolifera-
tive replication of the virus in those cells [55, 
56]. Shimizu et al. [57] further show that sera 
from severe COVID-19 patients had the poten-
tial to cause ADE and to induce the secretion of 
inflammatory cytokines in vitro. In addition to 
cytokines from infected macrophages, mast 
cell stimulation and degranulation with Fc 
receptor-bound SARS-CoV-2 Abs are likely to 
participate in the escalated production of 
inflammatory mediators which can promote 
vascular leakage in predisposed children [58, 
59]. Anti-SARS-CoV2 monoclonal Abs with high 
neutralization potency also enhanced viral 
uptake in Raji and Daudi B cells [60]. En- 
hancement is typically mediated by bivalent 
interaction of Nabs-virus complexes that could 
induce formation of IC and more stronger  
cross-linking of FcγRIIb on B cells [60]. The 
same mechanism has also been found in SARS-
CoV [61].

There is no preclinical or clinical evidence that 
COVID-19 vaccination increases the risk of ADE 
[62, 63]. One reason is that vaccines focused 
on eliciting nAbs to the S-glycoprotein reliably 
protect animals from SARS-CoV-1 challenge 
without proof of ADE [64, 65]. Another is that 
neither mRNA nor inactivated COVID-19 vac-
cines generate Abs responses with FcγR-de- 
pendent ADE activity in vitro [62, 63]. Thus, 
COVID-19 vaccination strategies that elicit 
highly nAbs are believed to have a high chance 
of success without the risk of ADE [66]. 

Factors influencing FcγR-mediated effector 
functions in COVID-19 and vaccine response

Several factors govern the host immunological 
response to SARS-CoV-2 infection and to vac-
cination, including the antibody isotype and 
subclass selection, the antibody Fc glycosyl-
ation, polymorphism of FcγRs, vaccine regimen, 
and host-related factors (Figure 3).
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Figure 3. Factors that may affect FcγR-mediated effector functions in COVID-19 and vaccine responses. The ability of binding between IgG Abs and FcγRs to result in 
FcγR-mediated effector functions is affected by several factors, including the antibody isotype and subclass selection, the antibody Fc glycosylation, genetic varia-
tion of FcγRs, vaccine regimen (antigen, adjuvant and doses) and age. These factors dictate the likelihood of producing either a protective response to vaccination 
and infection or an undesirable excessive inflammatory reaction.
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Table 1. Clinical relevance of IgG subclasses in SARS-CoV-2 infection
IgG subclasses Clinical relevance
Total IgG High titer: 

• Recovery after critical illness
IgG1 Afucosylated anti-SARS-CoV-2 IgG1:

• Increased susceptibility to severe forms of SARS-CoV-2 infection
• Increased binding capacity to FcγRIII

IgG2 Least functional potency 
IgG3 High titer IgG3:

• Increased susceptibility to severe forms of SARS-CoV-2 infection
• Increased binding capacity to FcγRIIIa (158V allele)
• Increased ADCC (FCGR3A-158V/V)
• Overstimulation: proinflammatory cytokines

IgG4 High titer IgG4: 
• Increased mortality to SARS-CoV-2
• Low affinity for the SARS-CoV-2

Specific characteristics of the antibody Fc 
region during COVID-19

Antibody isotype and subclass selection

The complexity in the FcγR engagement is mir-
rored by the presence of four IgG subclasses, 
which bind with varying affinity to different 
FcγRs (Table 1). IgG1 and IgG3 Abs are far  
more commonly found after exposure to SARS-
CoV-2 than IgG2 and IgG4, however, these 
could elicit both pro- and anti-inflammatory 
functions [67-70]. The distribution and levels of 
IgG isoforms are primarily controlled by the 
nature of the antigen and Th cells. It is worth 
noting that IgG1 Abs are the dominant IgG sub-
classes formed in response to receptor-binding 
domain (RBD), S1 subunit and nucleocapsid  
(N) antigens [71], whereas IgG3 is predomi-
nantly reactive with the S2 subunit [71]. The 
importance of IgG levels as factors influencing 
COVID-19 outcomes is highlighted by the asso-
ciation of higher level of Ab titers, particularly 
for N-specific IgG1 and RBD-specific IgG1 and 
IgG3 with severe COVID-19 [72]. Additionally, 
increased levels of almost all the S-specific Ab 
classes and subclasses, and increased levels 
across all SARS-CoV-2 antigens, were also 
reported after the second week of infection in 
survivors of severe disease compared to those 
with moderate disease and those who died 
[48]. Yan et al. [73] also found that persis- 
tence and relatively higher titer of virus-specific 
IgG were correlated with recovery from severe 
COVID-19 [73]. This severity-associated IgG 

increase has been postulated to be caused  
by a disproportionate IgG subclass response 
dominated by IgG3 and elevated FcγRIIIa bind-
ing [71]. Although increased IgG3 level was  
mirrored by elevated binding for FcγRIIIa, other 
factors such as increased hinge length of IgG3 
and IgG3 variants also may potentially contrib-
ute to this effect. Curiously, elevated serum 
IgG4 concentration and tissue infiltration by 
IgG4-secreting plasma cells have also been 
found to be correlated with mortality and se- 
vere COVID-19 [74, 75]. The molecular mecha-
nisms that drive class switching are not fu- 
lly understood. Because IgG4 induction is con-
trolled mainly by Th2 cells [76], it is possible 
that the increased Th2 response, induced by 
severe SARS-CoV-2 infections [77], triggers in 
some patients a clonal expansion of relatively 
non-neutralizing IgG4-switched B cells, leading 
to further and further proliferation without 
clearing the bug, which may end up in increas- 
ed serum concentration of IgG4. It is likely that 
the mortality-associated IgG4 increase may be 
associated with a low affinity of IgG4 for the 
SARS-CoV-2.

Antibody Fc glycosylation

Beyond antibody isotype, the glycosylation 
diversity of the N-linked sugars in the constant 
CH2 domain within the IgG Abs can impact their 
ability to interact with FcγRs on effector cells 
and, consequently, alter antibody functionality 
(Figure 3). The N297-linked Glycan of IgG is a 
complex-type oligosaccharide composed of a 
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constant part with a core consisting of two con-
secutive N-acetylglucosamine (GlcNAc) mole-
cules, followed by a mannose, followed by two 
additional mannose antennae, each with a sin-
gle GlcNAc attached [78] and can be found in 
plasma with variable numbers of fucose, ga- 
lactose, terminal sialic acid, and sometimes 
bisecting GlcNAc [79]. Of the FcγRs, FcγRIIIa 
binding is mainly controlled by fucosylation of 
IgG1, and when afucosylated, hyper-galactosyl-
ation also influences binding, resulting in en- 
hanced NK cell-mediated ADCC [80-86]. 

Afucosylation of IgG: It has been known that 
any deviation from 100% fucosylation in the Fc 
domain of all IgG subclasses affects their bind-
ing affinity toward human activating FcγRIIIa 
and FcγRIIIb as well as their Fc effector activi-
ties, such as ADCC [84, 85], phagocytosis [87] 
and inflammation [88]. Specifically, the lack of 
core fucosylation of anti-S/-RBD-specific IgG1 
from severe COVID-19 patients increases IgG 
Fc affinity to FcγRIII and leads to enhanced 
ADCC activity of NK cells as well as secretion of 
pro-inflammatory cytokines by engagement of 
INF dependent pathway on lung myeloid cells  
in vitro (Table 1) [80, 82]. The positive binding 
effects were primarily caused by the lack of 
fucose, which was further strengthened by 
additional galactose [81]. The reasons for this 
additional effect are unknown but may be 
linked primarily to conformational changes in 
the CH2 domain of IgG1 Abs that stabilize and 
increase FcγRIIIa binding [89-91]. However, low 
IgG1 fucosylation is not necessarily associated 
with high secretion of inflammatory cytokines 
in all critically ill patients with COVID-19, sug-
gesting a different regulation and/or the tempo-
ral resolution of fucosylation on anti-S IgG1 and 
cytokine secretion dynamics in vivo [92, 93]. 
The increased level of inflammatory cytokines 
is also found to be mediated by a cross-talk of 
different toll-like receptors (TLRs), like TLR3, 
recognizing replicates double-stranded RNA 
SARS-CoV-2, with activating FcγRIIa and FcγRIII 
[80]. Additionally, whilst low IgG1 fucosylation 
is associated with FcγRIIIa-mediated protection 
in HIV-1 elite controllers [94], it clearly marks 
high disease severity in COVID-19 [81] and  
dengue [95]. Thus, the capacity of Fc fucosyl-
ation to engage FcγRs with distinct Fc effector 
responses is a dynamic process that is modu-
lated by multiple layers of regulation.

Galactosylation and sialylation: Unlike Fc fu- 
cosylation, the respective effects of galactosyl-
ation or sialylation on FcγR binding and anti-
body function in COVID-19 are still rather am- 
biguous. Tamas Pongracz et al. [93] demon-
strated a large, single center cohort result  
that increased galactosylation and sialylation 
levels on S-specific IgG1 were associated with 
a less severe disease course upon hospitaliza-
tion, and no ICU admission. Similarly, individu-
als with severe COVID-19 change the balance 
of these glycan species largely toward a loss of 
galactosylated and sialylated IgG compared 
with age- and sex-matched healthy controls 
[96]. In parallel, loss of galactosylation and 
sialylation in IgG from patients with a poor prog-
nosis of COVID-19 increases IgG Fc affinity to 
FcγRIII and leads to enhanced NK cell activa-
tion, with the production of pro-inflammatory 
cytokines (IFN-γ and TNF-α) [97]. Bye et al. [83] 
reported an opposite result that increased 
galactosylation and decreased fucosylation of 
anti-S IgG immune complexes were associated 
with thrombosis disorders in severe SARS-CoV-
2-infected individuals, a state which favors  
IgG binding to activating platelet FcγRIIa and 
secreted von Willebrand factor (VWF) in vitro. 
Furthermore, Althaus et al. support the role of 
antibody-mediated platelet FcγRIIa stimulation 
as one of the drivers in thromboembolic com- 
plications in severe COVID-19 [98]. Contrary to 
these, Petrović T et al. [99] have failed to repro-
duce these findings and refuted any associa-
tion between galactose on total IgG and dis-
ease progression or severity, but anti-S and 
anti-RBD IgG galactosylation patterns were not 
measured. These discrepancies are probably 
related to the methodologies and confounding 
host-related factors (age and sex), polymor-
phisms of FcγRs, methods for the assessment 
of antibody glycosylation or to differences be- 
tween populations. 

Genetic variations of FcγRs 

Single nucleotide polymorphisms (SNPs) in hu- 
man FcγRs have been involved in variable 
immune responses and outcome of viral infec-
tions [100, 101]. Recently, two functional vari-
ants in FCGR locus have been identified that 
may affect the progression to critical illness in 
some COVID-19 patients. Vietzen et al. [102] 
reported that FCGR3A-158V/V genotype was 
associated with severe COVID-19. In vitro ex- 
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periments also found that CD56+CD16+ NK 
cells bearing the FCGR3A-158V/V or FCGR3A-
158V/F variants mediate ADCC response more 
effectively [102]. Given that neutrophils, mono-
cytes and macrophages also expressed Fcγ- 
RIIIa, studies investigating ADCC response in 
FcγRIIIa-expressing cells beyond NK cell res- 
ponse are required. Mechanistically, the dis-
ease severity may be best explained by the 
heightened affinity for IgG3 of the high-binding 
158V allele compared to the low-binding 158F, 
which may result in increased activity of ADCC 
by FCGR3A-158V/V (Table 1). Another function-
ally important SNP is located in the extracellu-
lar coding sequence of FcγRIIa (rs1801274).  
It has been reported that patients with the 
FCGR2A-131R/R genotype have a greater risk 
of more severe SARS-CoV-1 infection than indi-
viduals with the H/H genotype [103]. Of inter-
est, in a small single population study per-
formed on DNA obtained from PBMC, FCGR2A- 
131R allele might be also implicated in worse 
outcome and death of COVID-19 [104]. No such 
association was observed for SNP FCGR3A. 
The mechanisms that might link the polymor-
phic allelic forms of FcγRIIa, the binding selec-
tivity of specific IgG subclasses for this recep-
tor, and the antibody-dependent responses 
(ADCP, the release of inflammatory cytokines, 
and clearance of IC) to disease severity are not 
yet known.

COVID-19 vaccination

The antibody glycosylation and FcγR binding 
can be further influenced through vaccination 
and host-related factors (Figure 3). In fact, ele-
vated RBD-specific IgG1 fucosylation was posi-
tively correlated with older populations after  
a third dose of the COVID-19 vaccine [105], 
most likely reflecting the strong correlation 
between COVID-19 mRNA-induced IgG Fc  
structures and age. Vaccine booster shots can 
increase FcγR-binding titers in lactating wo- 
men compared with both pregnant and non-
pregnant women, substantially increasing in 
vivo NK cells ADCC and neutrophil ADCP [106]. 
Like HIV [107], it is thus likely that young in- 
fants can be protected from COVID-19 via  
a high level of breastmilk ADCC activity. 
Additional regulation of IgG-FcγRs interactions 
required for vaccine response occurs via vac-
cine types. Interestingly, a study that investi-
gated correlates of protection following NVX-
CoV2373 immunization in animal models 
reported that high antibody titers bound more 

efficiently to both FcγRIIa and FcγRIIIa plays  
a significant role in controlling several VOCs 
[108, 109], but the exact contribution of IgG-
FcγRIIa/RIIIa interactions in protection against 
these variants was not measured. These 
results indicate that select adjuvanted, recom-
binant S glycoprotein nanoparticle vaccine is 
able to modulate both FcγRIIa and FcγRIIIa 
binding. Overall, these factors may directly 
impact antibody production or modify expres-
sion of some glycogenes that encode IgG Fc 
glycosylation associated enzymes. 

Many studies have revealed that the risk of 
excessive inflammation and thrombotic disor-
ders following COVID-19 vaccination is relative-
ly higher in some individuals, and this has been 
proposed to be linked to host factors such as 
some human leukocyte antigen genes [110, 
111] and selective FcγRs expression in effec- 
tor immune cells [112, 113]. Huynh A et al. 
[113] indicate that vaccine induced thrombotic 
thrombocytopenia (VITT) Abs may exert similar 
effects of heparin through recognition of the 
same epitope on platelet factor 4 (PF4)-polya- 
nion complexes; this enables PF4 tetramers  
to form ICs, which in turn stimulates platelets 
through FcγRIIa. However, the anti-PF4/polyan-
ion glycosylation patterns were not measured. 
A similar mechanism for thrombosis induced  
by heparin has been found in heparin-induced 
thrombocytopenia, whereby IgG Abs against 
heparin/PF4 complexes activate monocytes 
[114] and neutrophils [115] via FcγRIIa.

Targeting FcγRs for immunomodulation

Intravenous immunoglobulin (IVIg)

IVIg contains polyclonal IgG Abs from donors. 
Known for its immunomodulatory effects at 
high-dose, it has been used to treat patients 
with acute inflammatory and thrombosis dis-
eases [116-118]. Xiang et al. [119] reported a 
meta-analysis study that IVIg were correlated 
with a lower risk of death in critically ill individu-
als with COVID-19 compared with healthy con-
trol subjects. The use of IVIg therapy within two 
days of admission to the ICU led to a decrease 
in mortality and shorter length of hospital dura-
tion in severe COVID-19 patients [120, 121]. 
Early administration of high-dose IVIg has  
also the potential to become an important 
treatment adjunct for VITT, particularly in pa- 
tients with severe thromboembolic complica-
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tions [122, 123] and Guillain-Barré syndrome 
(GBS) related to COVID-19 [124]. According to 
these results, IVIg can be an effective thera-
peutic intervention when administered early for 
covid-19 patients especially for severe or criti-
cally ill patients. 

The mechanism of IVIg is not completely unrav-
eled yet, but it may modulate inflammatory 
responses observed in severe COVID-19 via 
multiple mechanisms. For example, Bohländer 
et al. [125] demonstrated that Ig preparations 
such as IVIg and trimodulin suppress COVID- 
19 associated hyperinflammation by induction 
of inhibitory ITAM (ITAMi) signaling via IgG-Fcγ- 
RIIa-axis in vitro, potentially increasing ADCP of 
viral-like particles. Other mechanisms mediat-
ed by the Fc fragment have platelet as their tar-
get. IVIG allow the inhibition of serum-induced 
platelet stimulation and aggregation in VITT by 
saturation as a result of high IgG concentra-
tions; high-dose IVIg probably competitively 
inhibits the binding of PF4/polyanion ICs with 
the platelet FcγRIIa, thus decreasing platelet 
activation [126, 127].

Kinase inhibitors for COVID-19 therapy

As detailed above, signaling from multiple 
FcγRs converges on a few kinases such as  
Syk and Btk, which has made protein kinases 
potential targets to modulate hyperinflamma-
tory response in a targeted fashion in COVID- 
19 (Figure 1) [128, 129]. Fostamatinib is a 
small prodrug inhibitor of Syk that is approved 
for the second-line therapy of immunological 
diseases such as chronic immune thrombocy-
topenia [130]. Hoepel et al. [80] reported that 
fostamatinib potently inhibits excessive inflam-
mation caused by anti-S IgG on alveolar macro-
phages from severely ill individuals. Within 
severe cases of COVID-19, NETosis and, in turn, 
excessive neutrophil extracellular traps (NETs) 
production may contribute to microvascular th- 
rombosis, tissue damage, and organ failure 
[131-133]. Also, fostamatinib can inhibit NETs 
formation among healthy donor neutrophils sti- 
mulated with COVID-19 patient plasma [134]. 
This finding supports the hypothesis that ICs 
can stimulate FcγRIIa on neutrophils to induce 
NETs formation in COVID-19 via Syk activation 
and downstream signaling [135].

Another study that investigated platelet stimu-
lation mediated by serum samples from sub-

jects suffering from severe COVID-19 disorders 
also reported that kinase inhibitors such as fos-
tamatinib or acalabrutinib targeting Btk may be 
effective not only in limiting the excessive  
host inflammation, but also in reducing plate-
let-mediated thrombosis caused by IgG with 
low fucosylation and high galactosylation [83, 
112, 136]. 

Taken together, targeting SYK and Btk kinases 
has implications in various Fc effector func-
tions that these pathways modulate, such as 
cytokine secretion, NETosis and platelet ac- 
tivation.

Concluding remarks

The FcγR-IgG interactions and signaling out-
comes in COVID-19 and vaccination are modu-
lated in complex ways according to multiple 
mechanisms. While anti-S/-RBD IgG with low 
fucosylation, low sialylation and high galacto-
sylation have an active role in COVID-19 associ-
ated inflammation, Fc fucosylation is regulated 
to drive appropriate anti-inflammatory effector 
cell functions following SARS-CoV-2 vaccina-
tion. The particular circumstances of patients 
and vaccinees such as age, lactation and spe-
cific FcγR variants may affect whether the over-
all influence of the glycosylation in FcγR-IgG 
interactions is more beneficial or not. Altoge- 
ther, experimental models are needed to an- 
swer question about the linkage between FcγR-
IgG interactions and variability of clinical out-
comes following infection with SARS-CoV-2.

While Fc effector mechanisms will result in an 
increased efficacy against infection, this could 
also mean that the overall immune reaction is 
increased, which is not necessarily beneficial in 
COVID-19. Understanding this will be neces-
sary to tune the interaction between Fc arm of 
IgG Abs and their FcγRs for therapeutic benefit, 
which could potentially be done to treat exces-
sive host inflammation and thrombosis in 
severe COVID-19 to IVIg therapy and kinase 
inhibitors, to enhance the quality of Abs gener-
ated during vaccination or to reduce the mortal-
ity associated with disease.
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