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Abstract: Background: Lung adenocarcinoma (LUAD) is the leading histological subtype of lung cancer worldwide, 
causing high annual mortality. Tsvetkov et al. recently found a new form of regulated cell death, termed cuproptosis. 
The prognostic value of cuproptosis-related gene signature in LUAD remains uncertain. Methods: A training cohort 
is identified by the TCGA-LUAD dataset, whereas validation cohorts one and two are identified by GSE72094 and 
GSE68465, respectively. GeneCard and GSEA were used to extract genes related to cuproptosis. Cox regression, 
Kaplan-Meier regression, and LASSO regression were used to construct a gene signature. The model’s applicability 
was evaluated by Kaplan-Meier estimators, Cox models, ROC, and tAUC across two independent validation cohorts. 
We examined the model’s connections with other forms of regulated cell death. The immunotherapy ability of the 
signature was demonstrated by applying TMB, immune relevant signatures, and TIDE. The GSEA and immune infil-
tration analysis offer a better understanding of how the signature functions and the role of immune cells in its prog-
nostic power. Results: A ten-gene signature was built and demonstrated owning prognostic power by being applied 
to the validation cohorts. The GSEA uncovered that the unfolded protein response, glycolysis/gluconeogenesis, and 
MYC were highly related to the gene signature. The ten-gene signature is closely related to related genes of apop-
tosis, necroptosis, pyroptosis, and ferroptosis. Our signature may have utility in predicting immunotherapy efficacy 
in LUADs. Mast cells were identified as key players that support the predicting capacity of the ten-gene signature 
through the immune infiltrating analysis. Conclusions: The novel ten-gene signature associated with apoptosis in 
cuproptosis that we obtained may contribute to improved LUAD management strategies and the ability to predict 
response to LUAD immunotherapy. It is suggested that mast cell infiltration might be related to the prognostic power 
of this signature.
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Introduction

Lung cancer is one of the most life-threatening 
diseases, with significantly high morbidity [1]. 
Most lung cancer cases are adenocarcinoma 
(LUAD), a histological subtype that accounts for 
40% of all lung cancer cases [1]. Commonly 
known prognostic factors of LUAD include TNM 
stage, degree of tumor differentiation, and pa- 
thological subtype [2]. Clinical decision-making 
is still dominated by these factors, but 5-year 
survival rates for lung cancer patients are still 
low, ranging from 4%-17% [2]. For the current 
research on LUAD, finding new, specific, and 
effective prognostic biomarkers or establishing 
a corresponding prognostic signature is very 
important. 

Regulated cell death, which plays a key role in 
organismal development, homeostasis, and 
pathogenesis, is inextricably linked to cancer 
and has been widely reported [3]. Cancer cells 
often respond to their altered state during 
tumor progression by programmed cell death 
[3]. It has been demonstrated in long-term 
studies that regulated cell death aids in cancer 
treatment, but it is a double-edged sword since 
normal cells also die as a result [3]. It is impor-
tant to note that LUAD’s therapeutic response 
is influenced by several regulated cell death 
mechanisms [4-8], including apoptosis, necr- 
optosis, pyroptosis, and ferroptosis. Excitingly, 
Tsvetkov and colleagues published their latest 
study in the journal Science, confirming the 
existence of copper-induced regulated cell de- 
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ath, which is termed cuproptosis [9]. In their 
study, it was shown that cuproptosis is dis- 
tinct from apoptosis, necroptosis, pyroptosis, 
and ferroptosis [9]. Given that some forms of 
regulated cell death may be more immunologi-
cally targeted than others, learning how cupro-
ptosis is initiated, propagated, and ultimately 
performed may have important implications for 
possible combination diagnosis and therapeu-
tic intervention [10].

Many researchers have developed prognostic 
models for LUAD and demonstrated that they 
are more stable and applicable than a single 
prognostic biomarker [7, 8, 11-16]. There is, 
however, little understanding of the relation-
ship between “new” cuproptosis and the pro-
gression mechanism and prognosis of LUAD, 
and cuproptosis has not been used to cons- 
truct a LUAD prognosis model. To fill this gap, 
our study aimed to identify a prognostic signa-
ture for LUAD by integrating multiple datasets. 
We gathered cuproptosis-related genes con-
structing a gene signature having the ability to 
predict LUAD outcomes, and further validated 
its prognostic ability in other independent data-
sets. We also tested the model’s connections 
with other types of regulated cell death. More 
importantly, the immunotherapy potential of 
the model was examined. An analysis of gene 
set enrichment analysis (GSEA) and tumor-infil-
trating immune cells was carried out at the end 
of the study.

Materials and methods

Public database selection

The TCGA-LUAD project contains sequencing 
and clinical data from LUAD samples. We 
obtained TCGA-LUAD dataset from GDC Xena 
Hub (https://gdc.xenahubs.net) [17]. To obtain 
more LUAD samples, we searched the Gene 
Expression Omnibus (GEO) database [18] 
(https://www.ncbi.nlm.nih.gov/geo/) using the 
keyword “lung adenocarcinoma” and selected 
the dataset whose total RNA expression and 
survival data is available, and eliminated the 
datasets with total case numbers less than 
390. In the end, two candidate datasets 
appeared, namely GSE72094 and GSE68465. 
As part of the preprocessing, we removed sam-
ples without gene expression data or samples 
without survival data from the datasets that we 
selected above. This study uses TCGA-LUAD as 

the training cohort, and GSE72094 and GSE- 
68465 as the validation cohorts.

Screening of cuproptosis-related genes

We screened cuproptosis-related genes ac- 
cording to the following criteria: 1) We searched 
GeneCard (https://www.genecards.org/) using 
the keyword “copper”; 2) We searched the 
GSEA (https://www.gsea-msigdb.org/gsea/ms- 
igdb/search.jsp) website using the keyword 
“copper”; 3) We took the unique genes from the 
union of the results obtained above as the 
cuproptosis-related genes.

Construction and validation of the prognosis 
model

A Cox regression model and Kaplan-Meier anal-
ysis were performed in the R language environ-
ment using the “survival” and “survminer” R 
packages to screen cuproptosis-related genes 
with prognostic ability. We applied the LASSO 
analysis performed by the ‘glmnet’ R package 
to minimize the overfitting of the aforemen-
tioned prognostic genes [19-22]. The running 
parameter was set to be 10-fold cross-valida-
tion. A reduced dimensionality coefficient is  
calculated for each gene by LASSO, which is 
used to calculate each patient’s risk score (βi 
denotes the coefficient, Expi represents the 
relative expression level, and n indicates each 
hub gene):

*Risk score Expi i
i

n

= b/

We use the median to stratify and divide 
patients into high- and low-risk groups in the 
partial validation process. We performed se- 
parate validation analyses in all the studied 
cohorts, including Kaplan-Meier analysis, uni-
variate Cox analysis, multivariate Cox analysis, 
ROC analysis, and tAUC analysis [23]. We com-
pleted the above analyses in the R language 
environment with the “timeROC” and “survival” 
packages.

Gene set enrichment analysis (GSEA)

Hallmarked biological differences between 
high-risk and low-risk groups were examined 
using GSEA using hallmark gene sets [24, 25]. 
The analysis was performed using GSEA soft-
ware, and p-values and FDRs were considered 
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statistically significant at 0.05 and 0.25, res- 
pectively.

Correlations between the gene signature and 
apoptosis, necroptosis, pyroptosis, and fer-
roptosis

To better know the interactions between gene 
signature and other forms of regulated cell 
death, we adopted a comprehensive analysis 
that consisted of the Pearson analysis and 
Wilcoxon rank-sum. Apoptosis, necroptosis, 
and pyroptosis-related genes were extracted 
from the GeneCard and GSEA online databas-
es, respectively, by applying the following  
steps: 1) searching the GeneCard using the 
Corresponding keyword; 2) searching the GSEA 
using the Corresponding keyword: 3) merg- 
ing the above results and taking the unique 
genes. In addition, ferroptosis-related genes 
were obtained from the FerrDb online portal 
(http://www.datjar.com:40013/bt2104/) [26]. 

Correlations between the gene signature and 
immunotherapy

TMB - tumor mutational burden - measures the 
immune response by quantifying how frequent-
ly specific mutations occur within tumor genes 
[27]. Our method of calculating the TMB score 
for each patient with LUAD was based on previ-
ously published studies [27]. For the correla-
tion between risk score and TMB, we used the 
Pearson coefficient and Wilcoxon rank-sum. 
Then, we selected CD274 [28], CTLA4 [29], 
HAVCR2 [30], IDO1 [31], LAG3 [32], PDCD1 
[33], CD8A [34], CXCL10 [35], CXCL9 [36], 
GZMA [37], GZMB [38], IFNG [39], PRF1 [40], 
TBX2 [41], and TNF [42] from previous studies 
as immune relevant signatures. Pearson and 
Wilcoxon rank-sum analysis measured the  
correlation between our signature and these 
immune-relevant signatures. To judge whether 
our gene signature has the potential ability to 
guide immunotherapy, we created a Kaplan-
Meier analysis to test the prognostic sensiti- 
vity of individual immune-related signatures in 
high-risk and low-risk patients, respectively. 
The new and widely cited Tumor Immune 
Dysfunction and Exclusion (TIDE) computation-
al framework is capable of modeling tumor 
immune evasion using dysfunctional expres-
sion signatures of T cells and T cell exclusion, 

providing predictability for immunotherapy tre- 
atments [43-45]. As part of this study, we 
applied the TIDE score to examine whether our 
signatures were correlated.

Relationships between the TICs and our signa-
ture

TICs play a crucial role in the initiation and pro-
gression of cancer [46]. Using expression data 
from the training cohort, we estimated the 
abundance of 22 TICs expressed in LUAD. 
Afterward, we first used Pearson and Wil- 
coxon’s rank sum analysis to estimate the cor-
relation of our signature with the 22 TICs. Then 
TICs with LUAD prognostic ability were screen- 
ed out by our Cox model and Kaplan-Meier 
analysis. The intersection of the above positive 
factors was identified by us as candidate TICs 
that may be related to the prognostic ability of 
our signature.

Results

Patient characteristics

Figure 1 shows the flowchart of our study. Table 
1 details the clinical parameters of the patients 
included in each cohort of our study. In our 
research, the training cohort is used to train the 
signature, and the validation cohort is used to 
verify the signatures’ accuracy and applicabili-
ty. According to the screening criteria we set 
500 LUADs from the TCGA-LUAD project that 
were included in the training cohort. Validation 
cohort one consists of 398 LUADs from the 
GSE72094 dataset, and validation cohort two 
consists of 442 LUADs from the GSE68465 
dataset.

A cuproptosis-related ten-gene signature was 
generated

We found 2116 cuproptosis-related genes fol-
lowing our criteria, shown in Table S1. Our previ-
ously described approach led us to screen 45 
cuproptosis-related genes for prognostic poten-
tial in the training cohort (Table S2). After put-
ting these genes into a LASSO analysis for 
dimensionality reduction and refinement, the 
model displayed the highest power when con-
taining ten genes (Figure 2). We present the 
coefficients for each gene in Table 2.

http://www.ajtr.org/files/ajtr0145911suppltab1.xlsx
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Table 1. Clinical characteristics of patients involved in the study

Characteristics Training cohort  
(TCGA-LUAD, n = 500)

Validation cohort one 
(GSE72094, n = 398)

Validation cohort two 
(GSE68465, n = 442)

Age
    < 65 219 (43.8%) 107 (26.88%) 214 (48.42%)
    ≥ 65 271 (54.2%) 291 (73.12%) 228 (51.58%)
    Unknown 10 (2%) 0 0
Gender
    Female 270 (54%) 222 (55.78%) 219 (49.55%)
    Male 230 (46%) 176 (44.22%) 223 (50.45%)
Race
    White 386 (77.2%) 377 (94.72%) 294 (66.52%)
    Non-White 60 (12%) 18 (4.52%) 19 (4.29%)
    Unknown 54 (10.8%) 3 (0.75%) 129 (29.19%)
Ethnicity
    Hispanic or Latino 7 (1.4%) 9 (2.26%) NA
    Non-Hispanic or Latino 381 (76.2%) 381 (95.73%) NA
    Unknown 112 (22.4%) 8 (2.01%) NA

Figure 1. Research design and analysis process. TCGA: The Cancer Genome Atlas; LUAD: lung adenocarcinoma; 
LASSO: least absolute shrinkage and selection operator Cox regression model; ROC: receiver operating characteris-
tic; AUC: Area under the ROC curve; tAUC: time-dependent AUC; GSEA: Gene Set Enrichment Analysis; TICs: tumor-
infiltrating immune cells.
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Tumor stage
    Stage I 268 (53.6%) 254 (63.82%) NA
    Stage II 119 (23.8%) 67 (16.83%) NA
    Stage III 80 (16%) 57 (14.32%) NA
    Stage IV 25 (5%) 15 (3.77%) NA
    Unknown 8 (1.6%) 5 (1.26%) NA
T classification
    T1 167 (33.4%) NA 150 (33.94%)
    T2 267 (53.4%) NA 251 (56.79%)
    T3 45 (9%) NA 28 (6.33%)
    T4 18 (3.6%) NA 11 (2.49%)
    Unknown 3 (0.6%) NA 2 (0.45%)
Prior malignancy
    Yes 79 (15.8%) NA NA
    No 421 (84.2%) NA NA
Tissue origin
    Upper lobe lung 291 (58.2%) NA NA
    Non-upper lobe lung 209 (41.8%) NA NA
Smoking history
    Ever 415 (83%) 300 (75.38%) 300 (67.87%)
    Never 71 (14.2%) 31 (7.79%) 49 (11.09%)
    Unknown 14 (2.8%) 67 (16.83%) 93 (21.04%)
KRAS mutation
    Yes NA 139 (34.92%) NA
    No NA 259 (65.08%) NA
TP53 mutation
    Yes NA 97 (24.37%) NA
    No NA 301 (75.63%) NA
EGFR mutation
    Yes NA 41 (10.3%) NA
    No NA 357 (89.7%) NA
STK11 mutation
    Yes NA 64 (16.08%) NA
    No NA 334 (83.92%) NA
Vital status
    Alive 318 (63.6%) 285 (71.61%) 206 (46.61%)
    Dead 182 (36.4%) 113 (28.39%) 236 (53.39%)
TCGA: The Cancer Genome Atlas; LUAD: lung adenocarcinoma.

The ten-gene signature proved to have stable 
prognostic capacity

We constructed three risk plots roughly repre-
senting our signature between the three 
cohorts (Figure S1). In the upper half of the 
plots, each dot represents a patient, ordered 
from left to right, by increasing risk score. The 
scatterplot in the middle of the plots shows the 
alive and dead status of the LUADs. The gene 

expression heatmap at the bottom of the plots 
shows the relative expression level of each 
gene included in our signature. 

We calculated each LUAD’s risk score using the 
formula described in the methods section, the 
coefficient of signature genes, and the relative 
expression of the relevant genes. In order to 
perform special approaches such as Kaplan-
Meier analysis, patients will be stratified into 
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Table 2. Gene composition and coefficient of the signature ob-
tained from the LASSO
Gene Description Coefficient
GJB3 Gap Junction Protein Beta 3 0.11847901
FKBP4 FKBP Prolyl Isomerase 4 0.099727149
XRCC5 X-Ray Repair Cross Complementing 5 0.097936761
CDKN3 Cyclin Dependent Kinase Inhibitor 3 0.070382376
GOLM1 Golgi Membrane Protein 1 0.058615651
AMT Aminomethyltransferase -0.043480013
RPS6KA1 Ribosomal Protein S6 Kinase A1 -0.071594933
MS4A1 Membrane Spanning 4-Domains A1 -0.095040152
PGPEP1 Pyroglutamyl-Peptidase I -0.153370904
PEBP1 Phosphatidylethanolamine Binding Protein 1 -0.160078504
LASSO: least absolute shrinkage and selection operator.

Figure 2. Development of a gene signature for prognosis prediction. A. LASSO coefficient profiles of 45 prognostic 
genes of LUAD. B. LASSO regression with ten-fold cross-validation obtained 45 prognostic genes using the minimum 
Lambda. LUAD: lung adenocarcinoma; LASSO: least absolute shrinkage and selection operator.

high risk and low risk groups based on their 
median score. High-risk LUAD were less likely 
than low-risk LUAD to gain a better prognosis in 
the training cohort, according to Kaplan-Meier 
analysis (Figure 3). Furthermore, the Kaplan-
Meier analysis results for validation cohort one 
and validation cohort two matched those for 
the training cohort. In addition, in Figure S2A, 
we displayed each of the ten gene’s prognosis 
ability in the form of Kaplan-Meier curves using 
the three cohorts’ data, showing that the GJB3, 
FKBP4, XRCC5, CDKN3, and GOLM1 performed 
stable unfavorable impact on LUAD patients, 
while AMT, RPS6KA1, MS4A1, PGPEP1, and 
PEBP1 helped the prognosis improvement of 
LUADs. 

Our Cox analysis was mainly 
designed to determine whether 
the risk score could be classi-
fied as an independent risk fac-
tor for LUAD patient prognos- 
is. Age, gender, race, ethnicity, 
tumor stage, tumor origin, and 
other clinical characteristics 
were included in the Cox mo- 
del (Figure 3D). Univariate Cox 
regression results showed that 
risk score predicted LUAD out-
come in all cohorts. The multi-
variate Cox analysis results 
showed that the risk score’s 
hazard ratio was 3.837 (95% 
CI: 2.407-6.116, P = 1.59e-08) 

in the training cohort, 4.541 (95% CI: 2.624-
7.861, P = 6.45e-08) in the validation cohort 
one, and 3.631 (95% CI: 2.193-6.011, P = 
5.33e-07) in the validation cohort two. Based 
on these analyses, we found that the signature 
risk score could independently predict the prog-
nosis of LUAD. In addition, the Cox regression 
showed the tumor stage of the training cohort 
and validation cohort one, the gender of valida-
tion cohort one, the age and T classification of 
validation cohort two also showed independent 
prognostic value, however, the risk score was 
stronger than them in terms of the p-value. 
Moreover, as shown in the chart exhibited in 
Figure S2B, the univariate Cox regression dem-
onstrated that GJB3, FKBP4, XRCC5, CDKN3, 
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Figure 3. Validation of the ten-gene signature in three cohorts. A-C. Kaplan-Meier analysis. Patients in each cohort 
were divided into low-risk groups and high-risk groups based on their median risk score. The log-rank test with a 
p-value < 0.05 suggests the survival difference is significant. The bottom part displays the number of patients 
at risk. D. Univariate and multivariable Cox proportional hazards models. *: the variables involved in the studied 
cohorts, explains as follows: Gender: male vs. female; Race: white vs. non-white; Ethnicity: Hispanic or Latino vs. 
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non-Hispanic or Latino; Prior malignancy: yes vs. no; Tumor origin: upper lobe lung vs. non-upper lobe lung; Smok-
ing history: ever vs. never; KRAS mutation: yes vs. no; TP53 mutation: yes vs. no; EGFR mutation: yes vs. no; STK11 
mutation: yes vs. no; T classification: T2-T4 vs. T1. HR: hazard ratio; L95%: 95% confidence interval lower; H95%: 
95% confidence interval higher; vs.: versus. E. ROC curves and tAUC. The ROC curves valued the accuracy for LUAD 
outcome prediction of our signature at 1-, 3-, and 5-year, respectively. The tAUC analyses compared our signature’s 
prognostic ability with other available clinical characteristics. The larger the AUC, the stronger the model’s predictive 
ability. HR: hazard ratio; CI: confidence interval; ROC: receiver operating characteristic; AUC: area under the ROC 
curve; tAUC: time-dependent AUC; LUAD: lung adenocarcinoma.

Figure 4. GSEA analysis with the HALLMARK gene set as the background identified relevant pathways of our signa-
ture. The significance threshold of this analysis was set as: p-value < 0.05, and FDR < 0.25. GSEA: Gene Set Enrich-
ment Analysis; FDR: False Discovery Rate.

and GOLM1 impacted LUAD patients adverse- 
ly, while AMT, RPS6KA1, MS4A1, PGPEP1, and 
PEBP1 contributed positively to LUADs’ out-
comes, which was consistent to the findings in 
the Kaplan-Meier curves.

The subsequent ROC analysis showed that the 
AUC of the signature in the training cohort was 
0.718 at 1-year, 0.696 at 3-year, and 0.717 at 
5-year, showing good predictive ability (Figure 
3E). Our later tAUC results showed that the 
tumor stage surpassed our risk score around 
the 1.5-year time point and around the 5-year 
time point, but otherwise, the risk score per-
formed at the best predictive level (Figure 3E). 
Interestingly, when we took the risk score and 
tumor stage combined, the predictive ability 
was stable beyond all factors at all time points, 
hinting that our signature was a favorable com-
plement for the tumor stage. Notably, when we 
tested the AUC in the validation cohort one and 
two, the risk score showed a continuously bet-
ter ability than any other factors, including 
tumor stage and T classification.

GSEA determined the mechanisms of the prog-
nosis signature

Based on the median risk score, the LUADs 
were divided into high- and low-risk groups,  
and the prognosis of the two groups differed 
significantly. By analyzing the entire gene ex- 
pression profile by GSEA, we explored the 
mechanism of the gene model. The unfolded 
protein response, glycolysis/gluconeogenesis, 
MYC, mTORC1 signaling, G2/M checkpoint, E2F 
transcription factors, DNA repair, protein se- 
cretion, and mitotic spindle assembly were the 
main enriched pathways identified by GSEA 
(Figure 4 and Table S3).

The ten-gene signature’s relationships with 
apoptosis, necroptosis, pyroptosis, and fer-
roptosis

We found apoptosis, necroptosis, pyroptosis, 
and ferroptosis genes followed our criteria, 
shown in Table S4. The Pearson coefficient 
examined the relationships between our prog-
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groups (Figure 5). Incorporating the Wilcoxon 
and Pearson analyses, six genes, including TNF, 
TBX2, GZMB, CXCL10, CTLA4, and CD274, were 
closely connected to the ten-gene signature. 
Subsequently, we focused on the six identified 
immune relevant signatures. We tested these 
six signatures’ prognosis roles in the high and 
low-risk groups to see the “comfort risk score 
zone” for potential immunotherapy. As shown  
in Figure 5E, the gene CD274 did not affect  
the prognosis of high-risk and low-risk LUAD. 
However, according to the p-value, the progno-
sis of the high-risk group may be more sensitive 
to the expression level of CD274, which seems 
to indicate that the high-risk group will have  
a stronger therapeutic response to CD274-
targeted therapy. In subsequent analysis, we 
found that CTLA4 showed the same efficacy in 
protecting LUAD prognosis in high-risk and low-
risk groups. If we observe the p-value more 
finely, we estimate that the high-risk group may 
be more sensitive to CTLA4 expression than 
the low-risk group. Moreover, high expression 
of CXCL10 and GZMB protected LUAD progno-
sis in the low-risk group but had no prognostic 
function in the high-risk group. TNF and TBX2 
expression can affect the LUAD prognosis in 
the high-risk group but not in the low-risk group. 
These results hint that our risk score system 
could potentially guide immunotherapy choices 
based on each immune relevant signature’s 
“comfort risk score zone”, however, more clini-
cal data are needed to support our conclu- 
sions.

It has been proposed that TIDE score can  
serve as a surrogate biomarker in predicting 
response to immune checkpoint blockades, 
such as anti-PD1 and anti-CTLA4 in NSCLC  
[43-45]. A high TIDE score indicates a higher 
likelihood of immune evasion, which means 
that a high TIDE score predicts less benefit 
from immunotherapy, while a low TIDE score 
predicts a greater benefit [43-45]. For our 
study, we analyzed TIDE and risk scores to- 
gether to examine immunotherapy’s potential 
clinical efficacy in subgroups based on risk 
scores. Based on the findings, our high-risk 
patients have a lower TIDE risk score, which 
means that immunotherapy could benefit them 
more (Figure 5F and 5G). The TIDE findings 
here correspond with our “TMB difference” 
result, also are consistent to “comfort risk 
score zone” of CTLA4, CD274, TNF, and TBX2 
mentioned above.

nosis model and apoptosis, necroptosis, pyrop-
tosis, and ferroptosis-related genes, respec-
tively (Table S4 and Figure S3). The analysis 
showed that ANLN, GAPDH, CCNA2, SELEN- 
BP1, PLK1, CEP55, CCNB1, TUBA1C, KIF23, 
and TPX2 were the top ten correlated apopto-
sis-related genes, and overall, 2617/3681 
(71.09%) genes significantly linked with the 
gene signature. FADD, CYLD, RIPK3, IPMK, 
ZBP1, CASP6, TNF, MAP3K7, TLR3, and PG- 
LYRP1 were discovered as the top necroptosis-
related that correlated with the ten-gene sig- 
nature. As a whole, there were 13/20 (65%) 
necroptosis-related genes correlated with the 
signature pronouncedly. Moreover, the Pearson 
test found the top pyroptosis-related genes 
that correlated with our signature are NLRP1, 
CYCS, CARD8, CHMP2B, IL1A, ELANE, CASP3, 
CHMP4A, CHMP4C, and GSDMB. In total, 
34/50 (68%) pyroptosis-related genes corre-
lated with our signature. The examination fo- 
und SLC2A1, RRM2, CDCA3, AURKA, VDAC2, 
EIF2S1, PEBP1, ISCU, EPT1, SIRT3 were top 
ferroptosis-related genes that correlated with 
our signature. To sum up, there were 245/380 
(64.47%) ferroptosis-related genes correlating 
with our signature.

The role of risk score participating in immuno-
therapy

We explored the TMB difference among the risk 
score, and the Pearson coefficient found that 
the TMB was positively correlated with the risk 
score (Figure 5A). We found that the high risk 
score group had a high TMB based on our 
Wilcoxon test (Figure 5B). After receiving 
immune blockade therapy, many studies and 
clinical trials have shown that the higher the 
somatic TMB the patients have, the better 
treatment response, longer survival, and more 
clinical benefit, will present [47]. As our analy-
ses indicate, our risk score may be as effective 
as TMB in determining immunotherapy efficacy 
and deserves further investigation.

The Pearson correlation analysis identified 
eight signatures, TBX2, GZMB, CXCL10, CD274, 
CTLA4, TNF, IFNG, and PRF1, significantly cor-
related with our risk score (Figure 5). As shown 
by a concurrent Wilcoxon analysis, six of 15 
immune-relevant signatures, TNF, TBX2, GZMB, 
CXCL10, CTLA4, and CD274, showed signifi- 
cant differences between high-risk and low-risk 
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Figure 5. Determination of the relationship between the ten-gene signature and immunotherapy. A. The correlation between TMB and the signature tested by the 
Pearson coefficient. B. The TMB difference in the high and low-risk patients tested by the Wilcoxon rank-sum. C. The Wilcoxon rank-sum revealed the distribution 
differences of the immune relevant signatures in high and low-risk patients. ns: P-value > 0.05; *: P-value < 0.05; **: P-value < 0.01. D. The Pearson coefficient 
evaluated the correlations between the signature and the immune relevant signatures. E. The Kaplan-Meier estimator measured the immune relevant signatures’ 
prognosis sensitive zone by testing in high and low-risk groups, respectively. F. The correlation between TIDE and the signature tested by the Pearson coefficient. G. 
The TIDE difference in the high and low-risk patients tested by the Wilcoxon rank-sum. P-value < 0.05 was considered statistically significant; TMB: Tumor mutational 
burden; TIDE: Tumor Immune Dysfunction and Exclusion.
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Mast cells’ vital roles in the ten-gene signa-
ture’s prediction ability

Figure S4A details the distribution of the 22 
TICs in each patient and high and low-risk 
groups. Figure S4B shows the mutual internal 
relationships of the 22 TICs in the LUADs. As 
shown in Figure 6 and Table S5, the Wilcoxon 
rank sum test identified 13 TICs related to the 
risk score, and Pearson coefficient found 16 
TICs closely linked to our signature. In summa-
ry, a total of 12 TICs are significantly related to 
the gene signature, which included Mast cells 
resting, T cells CD4 memory activated, Neu- 
trophils, T cells CD4 memory resting, B cells 
memory, Macrophages M0, T cells CD8, Mast 
cells activated, Monocytes, Macrophages M1, 
T cells regulatory (Tregs), and Plasma cells. 
Specifically, our signature was positively corre-
lated with T cells CD4 memory activated, 
Neutrophils, Macrophages M0, T cells CD8, 
Mast cells activated, and Macrophages M1, 
while it was correlated with the rest negatively.

In Figure S4, we show the portraits of 22 TICs in 
the training cohort and the correlations bet- 
ween them. We found that 13 types of TICs dif-
fered significantly in distribution between high-
risk and low-risk groups based on Wilcoxon 
rank sum tests (Figure 6 and Table S5). The 
results of Pearson coefficient analysis showed 
that there were 16 types of TICs associated 
with the risk score of our studies patients 
(Figure 6 and Table S5). Using a Venn diagram, 
we summarized the above results and found 
that a total of 12 TICs included Mast cells rest-
ing, T cells CD4 memory activated, Neutrophils, 
T cells CD4 memory resting, B cells memory, 
Macrophages M0, T cells CD8, Mast cells acti-
vated, Monocytes, Macrophages M1, T cells 
regulatory (Tregs), and Plasma cells, were 
strongly associated with our signature. We 
found that our signature had a positive correla-
tion with T cells CD4 memory activated, Neu- 
trophils, Macrophages M0, T cells CD8, Mast 
cells activated, and Macrophages M1, and a 
negative correlation with the rest of the cell 
types based on Wilcoxon rank sums and 
Pearson analysis.

Our next step was to determine the survival 
predictive power of each of the 22 TICs using 
Cox regression and Kaplan-Meier curves. As 
shown in Figure 7A, Cox analysis can tell that 

Mast cells resting (HR = 0.764, 95% CI = 0.645-
0.905, P = 1.84e-03) and Mast cells activated 
(HR = 1.141, 95% CI = 1.019-1.279, P = 2.25e-
02) significantly affected the LUAD prognosis. 
LUAD’s survival probability was significantly 
affected by Mast cells resting, Mast cells acti-
vated, and Dendritic cells resting as shown in 
the built Kaplan-Meier analysis (Figure 7B; 
Table S6). On the whole, the survival predictive 
analysis suggested the Mast cells resting and 
Mast cells activated pronounced closely con-
nected to LUAD outcomes.

In summary, we adopted a combined approach 
of multiple analyzes in this section, and finally 
found TICs that were significantly associated 
with our gene signature and could predict the 
prognosis of LUAD, namely Mast cells resting 
and Mast cells activated. Our study suggests 
that mast cell infiltration may be key to the 
prognostic power of our gene signature.

Discussion

With the development of an effective classifier 
for LUAD, patients can be stratified based on 
their risk and prognosis on a targeted basis, 
which can maximize treatment efficacy and 
facilitate timely follow-up. In the present 
research, we innovatively adopting the novel 
cuproptosis concept to establish a cuprop- 
tosis-related ten-gene signature predicting 
LUAD outcomes by analyzing TCGA and GEO 
cohorts. Particularly, our freshness lay in ad- 
opting comprehensive bioinformatics analysis, 
including LASSO regression, Kaplan-Meier 
curves, Cox models, ROC curves, tAUC, and the 
validations in two independent datasets. Most 
importantly, we detailed the role of risk score 
participating in immunotherapy. We demon-
strated at the end of the study that mast cell 
infiltration may have contributed to the prog-
nostic power of the signature.

Regulated cell death is a pervasive process in 
organisms and critical for tissue homeostasis 
or restoring biological homeostasis after st- 
ress; it functions to eliminate useless or poten-
tially dangerous cells [48]. Various heavy met-
als can induce regulated cell death through dif-
ferent subprograms. Tsvetkov and colleagues 
identified cuproptosis, a new form of cell death 
caused by copper accumulation in cells, in a 
recent study in Science [9, 10, 49]. In their 
study, they demonstrated that cuproptosis dif-
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Figure 6. Comprehensive analysis determined the relationship between 22 TICs and the ten-gene signature. A. 
Patients were grouped according to their median risk score, and the Wilcoxon rank-sum was applied to detect the 
difference in TIC distribution between the high and low-risk groups. ns: p-value > 0.05; *: p-value < 0.05; **: p-
value < 0.01; ***: p-value < 0.001; ****: p-value < 0.0001. B. The Pearson coefficient examined the correlations 
between TICs and our signature. Here, we only plotted the TIC correlation with a p-value < 0.05. C. The results of 
Wilcoxon’s rank-sum test and the Pearson coefficient were intersected to determine stable and critical TICs. TIC: 
tumor-infiltrating immune cell; p-value < 0.05 is considered significant.
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Figure 7. Prognosis ability assessment for the 22 TICs. A. We performed Cox analysis to determine the survival pre-
dicting power for the 22 TICs. Bold words indicate p-values < 0.05. B. Kaplan-Meier estimators were plotted to check 
the TICs that differ in the survival possibility between low and high-risk groups. Only showed Kaplan-Meier curves 
with p-values < 0.05. HR: hazard ratio; TIC: tumor-infiltrating immune cell; p-value < 0.05 is considered significant.

fers from other forms of death [9, 50], includ- 
ing apoptosis [4], necroptosis [5], pyroptosis 
[6], and ferroptosis [7, 8]. Copper is involved in 
many physiological processes, and studies 
have reported that disturbance of copper 
homeostasis can lead to structural abnormali-
ties or loss of some basic physiological func-
tions, and studies have also shown that copper 
homeostasis is deregulated in many cancers 
[51]. Copper plays an vital part in carcinogene-
sis and metastases progression and therapeu-
tic resistance [10]. It is worth noting that re- 
cent research has provided an in-depth under-
standing of copper metabolism, and as a re- 
sult, many therapeutic strategies have been 
developed against this metal [10]. Copper 
metabolism has been extensively studied over 
the years, but some “uncharted territory” 
remains, especially copper metabolism and 
lung adenocarcinoma. Our study aimed to con-
struct a cuproptosis-related prognostic model 
to predict lung adenocarcinoma prognosis, 

uncover the “uncharted territory”, and provide 
more clues for further research.

While the way of regulated cell death of cupro-
ptosis, apoptosis, necroptosis, pyroptosis, and 
ferroptosis varies [9, 50], from our research, 
they seem to be somewhat related, such as  
our cuproptosis-related signature correlated 
with 2617/3681 (71.09%) apoptosis-related 
genes,13/20 (65%) necroptosis-related genes, 
34/50 (68%) pyroptosis-related genes, and 
245/380 (64.47%) ferroptosis-related genes, 
providing potential interpretations and encour-
agements for upcoming research of cell death-
related tumor mechanism.

Our risk model contains ten genes (Table 2), 
which were GJB3, FKBP4, XRCC5, CDKN3, 
GOLM1, AMT, RPS6KA1, MS4A1, PGPEP1,  
and PEBP1. Our study confirmed that GJB3, 
FKBP4, XRCC5, CDKN3, and GOLM1 had dis-
ruptive effects on LUAD prognosis, whereas  
the remaining genes showed protective effects 
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(Figure S2). GJB3 is a member of the connexin 
gene family [52]. An earlier study identified 
GJB3 as a gene associated with poor prognosis 
in LUAD by Aasen and colleagues [52]. It has 
been reported that FKBP4 binds to various cel-
lular receptors or targets in cancer [53]. FKBP4 
is highly expressed in LUAD tissues and is 
closely associated with tumor size [54]. Ac- 
cording to Du and colleagues, XRCC5 prevents 
copper from oxidizing DNA [55]. It has been 
reported that XRCC5 is involved in develop- 
ing several tumors, including lung cancer [56]. 
Researchers found CDKN3 overexpression is 
associated with a poorer prognosis in LUAD 
patients, where CDKN3 plays an important role 
in cell division and tumor progression [57, 58]. 
According to Song’s group, GOLM1 can pro-
mote various cancer types’ oncogenic pheno-
types, promoting proliferation, migration, and 
invasion of lung cancer cells [59].

Gene signature functions are influenced by 
pathways involving unfolded protein response, 
glycolysis/gluconeogenesis, and MYC, accord-
ing to GSEA. The unfolded protein response is 
associated with many diseases, including can-
cer. In non-small cell lung cancer cells [60], 
Zhao et al. demonstrated that unfolded protein 
response promotes doxorubicin-induced apop-
tosis [61]. Glycolysis is an inefficient form of 
energy metabolism. Recent studies have dem-
onstrated that shortened gluconeogenesis can 
partially avoid the need for glycolysis in lung 
cancer cells. Inhibiting glycolysis is considered 
a way to treat lung cancer. By activating cell 
cycle kinesins and regulating metabolism, MYC 
regulates lung cancer cell growth, resistance, 
death, and dissemination [62]. For patients 
with lung cancer, novel MYC inhibition strate-
gies may provide new treatment options [62].

Cancer immunotherapy prolongs the survival of 
cancer patients and as more cancer patients 
become eligible for immune-based cancer tre- 
atments, revealing that this approach is revolu-
tionizing the field of oncology [63, 64]. New 
therapeutic combinations and newly discov-
ered drug targets are expanding the use of 
immunotherapy in cancer treatment [63, 64]. 
This study gives hints about which immunother-
apy targets to use and under what circumstanc-
es to apply them. We first found that our risk 
score was associated with TMB, suggesting 
that our signature appeared to guide immuno-

therapy. Next, we followed the trail and found 
six targets related to our score, including TNF, 
TBX2, GZMB, CXCL10, CTLA4, and CD274. We 
analyzed the sensitivity of each target in differ-
ent risk score intervals and found that the tar-
geting of CXCL10 and GZMB was more effec-
tive in low-risk patients, and triggering CTLA4, 
CD274, TNF, and TBX2 can benefit the high-risk 
group more. Additionally, the TIDE database 
confirmed the above points of view and affirmed 
that our risk score could bring hope to precisely 
targeted therapy.

Our analysis of TICs concluded that mast cells 
might be able to provide secure prognostic 
power for our signature. As an essential stro-
mal component of the immune system, mast 
cells play a vital role in the immune microenvi-
ronment in the progression of malignant tu- 
mors [65-68]. Mast cells can promote growth 
factor secretion, which may be associated with 
poor prognosis in NSCLC [68]. In recent years, 
evidence has revealed the involvement of  
mast cells in the progression of LUAD [68]. 
Further research on mast cells’ role in tumor 
microenvironment remodeling and tumor 
immunity should be conducted since the cur-
rent research results are not sufficient.

Several limitations are present in this study. 
Retrospective data was used to generate this 
ten-gene signature. Although it has been con-
firmed to have stable prognosis ability throu- 
gh being applied to another two independent 
cohorts, its corroboration source was obtained 
from public databases. Its clinical applicability 
needs further confirmation with more prospec-
tive data. Furthermore, there are still no wet-lab 
experimental facts to hold up the prognostic 
power of the ten genes and their parts in cupro-
ptosis-related mechanisms and immune infil-
tration. More in vitro and in vivo research is 
therefore needed to unveil more clues about 
the future potential of the ten-gene signature.

Conclusion

A ten-gene prognostic signature associated 
with cuproptosis in LUAD was constructed in 
this study. Its stability and applicability was 
confirmed by applying it to independent co- 
horts. The risk model we developed has the 
potential to take on the role of precision immu-
notherapy. According to the immune infiltration 
analysis, mast cells might contribute to main-
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taining the signature’s predictive ability. Our 
work may advance the development of LUAD 
diagnosis and treatment.
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Table S2. The Kaplan-Meier estimator and univariate Cox model recognized potential prognostic 
genes (p-value < 0.05)
ID KM_p value HR HR_95L HR_95H Cox_p value
A2M 0.03635591 0.865952386 0.767586037 0.976924407 0.019312523
AGFG1 0.005969821 1.557284476 1.187009783 2.043062302 0.001386026
AMT 0.000688087 0.706229679 0.584920058 0.852698334 0.000297883
BIRC5 0.000512744 1.225187869 1.087336185 1.380516288 0.000853495
BRCA1 0.003639305 1.294398812 1.051486381 1.593428422 0.014957799
CCNA2 7.60E-05 1.319065087 1.155949134 1.505198329 3.93E-05
CCNB1 0.000748649 1.33362251 1.163665557 1.528402202 3.49E-05
CD40LG 0.004450403 0.603035786 0.459661858 0.791129724 0.000260791
CDC45 0.009352153 1.225039592 1.06487204 1.409297968 0.004523127
CDK1 3.48E-05 1.273785278 1.116573093 1.453132756 0.00031753
CDKN3 0.000491463 1.317019834 1.150053539 1.508226517 6.85E-05
CTSH 0.014136377 0.797222352 0.709852616 0.895345688 0.000129958
CYB5A 0.017896263 0.847791437 0.733712337 0.979607789 0.025130929
CYCS 0.000678607 1.410693187 1.139902451 1.745811904 0.001555754
FBLN5 0.006211839 0.842754242 0.720859452 0.98526101 0.031853444
FKBP4 0.000656198 1.512177196 1.263554203 1.809720443 6.41E-06
GJB3 4.91E-05 1.286595672 1.172188403 1.412169256 1.14E-07
GMFB 0.044418626 1.382669098 1.060958477 1.801930874 0.016490709
GOLM1 0.004606133 1.283927731 1.092758192 1.508540893 0.002378666
GPR18 0.037110876 0.630993691 0.444531878 0.895668136 0.009980401
KIFC1 0.019722175 1.216917773 1.068563591 1.38586873 0.00307908
MGP 0.002194157 0.830807679 0.7420004 0.930243971 0.001310817
MS4A1 0.000646014 0.79028853 0.691254095 0.903511408 0.000570454
MTHFD2 0.007938215 1.217044681 1.037684728 1.427406337 0.015747404
PEBP1 0.000694846 0.603658936 0.464865289 0.78389185 0.000152746
PGPEP1 0.008388266 0.579023332 0.435016278 0.770702238 0.000180315
PIK3R1 0.001224051 0.740850366 0.578366037 0.948982528 0.017573195
PSEN1 0.042803167 1.574897514 1.035498553 2.39527344 0.033752401
PSTPIP1 0.001047455 0.745607296 0.589258229 0.943440775 0.014490901
RPS6KA1 0.004880836 0.590566723 0.443361394 0.786647325 0.000317583
SCNN1B 0.000434671 0.840445752 0.761426061 0.927665993 0.000559833
SELENBP1 0.024496317 0.836016789 0.753471769 0.927604856 0.000733344
SFTPB 0.000420472 0.909053377 0.868133865 0.95190163 4.96E-05
SFTPD 0.006936968 0.903031336 0.850333872 0.958994602 0.000884913
SLC2A1 4.18E-05 1.260694284 1.134365867 1.401091237 1.71E-05
SPHK1 0.034273147 1.324008324 1.132246235 1.548248066 0.000438349
ST3GAL4 0.009671338 1.239821144 1.052814974 1.460044269 0.009968083
STEAP1 4.88E-05 1.140063667 1.027349666 1.265143901 0.013588133
STXBP1 0.023049985 0.79530979 0.680537345 0.929438576 0.003974098
SYNE1 0.045716589 0.717043718 0.574109582 0.895563686 0.003363569
TK1 0.000278583 1.309411925 1.145019451 1.497406518 8.20E-05
TP73-AS1 0.033595176 0.672083258 0.510731802 0.884409202 0.004555332
UBE2C 0.036479194 1.160711037 1.05461661 1.277478562 0.002309194
VDAC2 0.007902772 1.592458648 1.213269074 2.090158398 0.000798918
XRCC5 0.011601889 1.801297672 1.281241219 2.5324453 0.000709821
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Figure S1. The distributions of the risk score, survival status, survival time, and ten genes’ levels for LUAD cases 
in the training cohort (A), validation cohort one (B), and validation cohort two (C). All LUADs are listed in ascending 
order from left to right according to their risk scores (upper part), and their survival status and survival time are 
displayed in middle part. The hub genes relative expression of each patient is shown in the lower part. OS: overall 
survival; LUAD: lung adenocarcinoma.
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Table S3. The significant pathways that were detected in the GSEA analysis (p<0.05 and FDR<0.25)
Term ES NES p FDR FWER
UNFOLDED_PROTEIN_RESPONSE 0.5884 2.3847 0 0 0
GLYCOLYSIS 0.61 2.4193 0 0 0
MYC_TARGETS_V1 0.7787 2.5074 0 0 0
MTORC1_SIGNALING 0.7022 2.5633 0 0 0
MYC_TARGETS_V2 0.7924 2.257 0 0.0005 0.003
G2M_CHECKPOINT 0.8341 2.201 0 0.0012 0.006
E2F_TARGETS 0.8562 2.0977 0 0.0043 0.021
DNA_REPAIR 0.4932 2.0467 0 0.0054 0.033
PROTEIN_SECRETION 0.507 2.0514 0.0073 0.006 0.032
MITOTIC_SPINDLE 0.6305 1.9618 0.002 0.0115 0.066
HYPOXIA 0.5011 1.8854 0.006 0.0179 0.096
UV_RESPONSE_UP 0.3971 1.8279 0.002 0.0245 0.135
ANDROGEN_RESPONSE 0.4641 1.7816 0.0216 0.0325 0.182
ESTROGEN_RESPONSE_LATE 0.4224 1.7404 0.0082 0.0407 0.223
SPERMATOGENESIS 0.4702 1.6864 0.0142 0.0536 0.294
PI3K_AKT_MTOR_SIGNALING 0.3777 1.6359 0.0393 0.069 0.366
CHOLESTEROL_HOMEOSTASIS 0.4304 1.5691 0.033 0.0958 0.469

Figure S2. The Kaplan-Meier analysis (A) and univariate Cox models (B) established in the studied cohorts testing 
the predictive ability of each hub gene. Patients were grouped based on their median risk score. The Kaplan-Meier 
method compared the survival difference between high and low-risk patients, and the log-rank test examined the 
significance. HR: hazard ratio; P-value < 0.05 is considered as significantly.



A novel cuproptosis signature of LUAD

5 



A novel cuproptosis signature of LUAD

6 



A novel cuproptosis signature of LUAD

7 

Table S5. Correlations of risk score with 22 kinds of TICs tested by Pearson coefficient
TIC r p-value
Mast cells resting -0.317643279 3.49E-13
T cells CD4 memory resting -0.231546267 1.64E-07
B cells memory -0.223983323 4.19E-07
Monocytes -0.173246186 9.87E-05
T cells regulatory (Tregs) -0.134370068 0.002606029
Plasma cells -0.116668829 0.009022841
Dendritic cells resting -0.103880197 0.020162682
B cells naive -0.093952242 0.035709027
Eosinophils 0.00375334 0.933281073
NK cells resting 0.058399276 0.192338627
NK cells activated 0.060118331 0.179551798
Macrophages M2 0.069367219 0.121361923
T cells follicular helper 0.084551609 0.058853829
T cells gamma delta 0.086093431 0.054371805
T cells CD4 naive 0.128221154 0.004081428
Dendritic cells activated 0.145338326 0.001117858
Macrophages M1 0.169104063 0.000145156
Mast cells activated 0.181257916 4.57E-05
T cells CD8 0.186636691 2.67E-05
Macrophages M0 0.219748632 6.97E-07
Neutrophils 0.259109739 4.10E-09
T cells CD4 memory activated 0.2793269 2.05E-10

Figure S3. The correlations between the ten-gene signature and apoptosis (A), necroptosis (B), pyroptosis (C), and 
ferroptosis (D) related genes in the training cohort. Only top correlations were plotted. The Pearson examination was 
carried out for correlation test.

Figure S4. Identification of 22 TICs distribution and their mutual internal relationships in LUADs. LUAD patients were 
grouped according to the median risk score. A. We displayed the distributions of 22 TICs in high and low-risk LUADs 
in bar graph. B. Correlation among 22 TICs detected by Pearson coefficient. P-value < 0.05 is considered significant. 
TIC: tumor-infiltrating immune cell; LUAD: lung adenocarcinoma.



A novel cuproptosis signature of LUAD

8 

Table S6. Prognostic capacity of 22 TICs examined by Kaplan-Meier analysis
TIC p-value
B cells naive 0.731955731
B cells memory 0.145264777
Plasma cells 0.07168164
T cells CD8 0.949457769
T cells CD4 naive 0.151571969
T cells CD4 memory resting 0.983427527
T cells CD4 memory activated 0.063337318
T cells follicular helper 0.612899091
T cells regulatory (Tregs) 0.570358661
T cells gamma delta 0.877261838
NK cells resting 0.420059349
NK cells activated 0.650309228
Monocytes 0.347772347
Macrophages M0 0.157737947
Macrophages M1 0.073909277
Macrophages M2 0.251093491
Dendritic cells resting 0.044346026
Dendritic cells activated 0.671178187
Mast cells resting 0.000163805
Mast cells activated 0.008103067
Eosinophils 0.602112244
Neutrophils 0.922155496


