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Abstract: Purpose: To identify and validate the immune-related gene signature in patients with acute myeloid leu-
kemia (AML). Methods: Differentially expressed genes (DEGs) profiles and survival data were obtained from The 
Cancer Genome Atlas (TCGA), following screened immune-associated genes from the InnateDB database. Subse-
quently, the weighted gene co-expression network analysis (WGCNA) was used to detect functional modules, and 
survival analysis was performed. The least absolute shrinkage and selection operator (LASSO) regression model 
combined with a partial likelihood-based Cox proportional hazard regression model was applied to select prognostic 
genes, and the ESTIMATE algorithm was used to construct an immune score-based risk assessment model. Finally, 
two independent datasets from the Gene Expression Omnibus (GEO) and our clinical data were used for external 
validation. Moreover, a subpopulation of the immune microenvironment cells was analyzed by the CIBERSORT algo-
rithm, and its related serum indicator was identified by the enzyme-linked immunosorbent assay (ELISA) in clinical 
samples. Results: Finally, CTSD, GNB2, CDK6, and WAS were identified as the immune-related gene signature, and 
the risk stratification model was validated in both the GSE12417 database and our clinical cohort. Furthermore, 
the fraction of activated mast cells was identified. CIBERSORT algorithm showed that these cells have a positive as-
sociation with prognosis. In addition, mast cell stimulator IL-33 was markedly decreased in AML patients with poor 
prognoses. Conclusion: A novel immune-related gene signature (CTSD, GNB2, CDK6 and WAS) and its associated 
plasma indicator (mast cells activator, IL-33) were found to have prognostic value in AML patients.
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Introduction

Acute myeloid leukemia (AML) is a heteroge-
neous malignancy characterized by aberrant 
expansion of undifferentiated myeloid cells in 
the hematopoietic system, which results in dys-
regulated hematopoiesis [1]. Despite its poor 
prognosis, high-dose cytarabine remains the 
main effective treatment for AML. According to 
cytogenetic alterations, AML patients are clas-
sified into favorable, intermediate and poor-risk 
groups according to the European Leukemia 
Net (ELN) 2017, and this stratification has 
become the clinical norm for the selection of 
efficacious chemotherapeutical combinations 
[2]. However, most AML patients relapse after 

efficient remissions due to chemoresistance 
and immune escape of AML cells [3, 4]. Thus, 
new strategies are warranted to improve sur-
vival outcome prediction.

Recent advances in understanding the role of 
the tumor microenvironment in cancer have 
uncovered new potential prognostic tools to 
evaluate the risk of cancer development and 
progression [5, 6]. The immune score is particu-
larly interesting, as it is usually used to highlight 
the role of immune cells in the microenviron-
ment as favorable prognostic biomarkers in 
solid tumors [7]. To date, several studies have 
linked dysregulation of immune-related genes 
(IRGs) and signaling pathways with the poor 
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prognosis of AML. For example, single nucleo-
tide polymorphism of IL12A has been associ-
ated with decreased levels of IL-12 and worse 
overall survival of AML patients [8]. Moreover, 
AML relapse after transplantation is associat-
ed with the downregulation of major histocom-
patibility complex class II genes involved in  
antigen presentation [9]. In addition, overex-
pression of NFAT4 correlates with poor progno-
sis of AML by recruiting regulatory T cells [10]. 
These findings suggest that IRGs may serve as 
prognostic indicators for AML. Indeed, some 
studies have generated IRG signatures to pre-
dict the prognosis of AML [11-13]. However, 
only a few IRG signatures have been created to 
evaluate AML based on ELN stratification.  
Also, the application of the stratification tools 
had not been validated in peripheral blood 
mononuclear cells (PBMCs), which are easily 
accessible.

In the present study, we constructed a 4-IRG 
signature by analyzing the transcriptomes of 
AML patients from The Cancer Genome Atlas 
(TCGA) database. The performance of our sig-
nature in patient risk stratification was evalu-
ated in another AML cohort from the Gene 
Expression Omnibus (GEO) database and our 
clinical cohort. The clinical feasibility was test-
ed using PBMCs from AML patients. Our re- 
sults may provide a new prognostic tool for bet-
ter and easier patient risk stratification in AML 
management.

Materials and methods

Data sources

The RNA-Seq counts of 151 AML patients and 
corresponding clinical profiles (Table S1) were 
obtained from TCGA (https://xenabrowser.net/
datapages), while 407 healthy control samples 
were acquired from GTEx (https://gtexportal.
org/home) [14]. To further verify the strati- 
fication tool, we adopted GSE12417 from the 
GEO database based on GPL570 platforms 
(Affymetrix Human Genome U133 Plus 2.0 
Array) and included 79 AML patients (Table S2). 
Furthermore, the 1216 immune-related genes 
were obtained from the InnateDB database 
(https://innatedb.com).

Immune-related differentially expressed genes 
(DEGs) identification

DEGs between TCGA and GTEx were analyzed 
using the package DEseq2 [15]. In this study, 
genes with a p-value adjusted (padj) < 0.05 and 

fold change > 6 or < 1/6 were defined as DEGs, 
and the expression patterns were visualized on 
a volcano map. Afterward, the overlapped 
genes between DEGs and 1216 immune-relat-
ed genes were selected for further analysis. 
Enrichment analyses of Gene Ontology terms, 
including molecular function (GO_MF), biologi-
cal process (GO_BP) and cellular component 
(GO_CC), and the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway were performed 
for 264 immune-related differentially express- 
ed genes (IRDEGs). An FDR-adjusted p-value < 
0.05 was considered statistically significant for 
Gene Ontology and KEGG pathway over-repre-
sentation tests.

Weighted gene co-expression network analysis

The weighted gene co-expression network 
analysis (WGCNA) R package, as previously 
described [16, 17], was used to construct a 
weighted correlation network between 264 
IRDEGs and corresponding overall survival. To 
ensure a scale-free network, we used the pair-
wise Pearson coefficient to evaluate the weight-
ed co-expression relationship and the thresh-
old β value was determined as 5 based on the 
adjacency matrix calculation. Next, the mod-
ules were identified by average-linkage hierar-
chical clustering according to the topological 
overlap matrix (TOM), which was converted 
from an adjacency matrix, and the minimum 
number of genes in one module was set to 10. 
The Pearson correlation coefficient of each 
module with survival time and survival status 
was used to determine the correlation between 
gene modules and prognosis. Gene signifi-
cance (GS) was used to represent the degree  
of linear correlation between gene expression 
of the module and prognosis. Survival-related 
modules were defined according to the p-value 
≤ 0.01, and a higher GS value was used for fur-
ther analysis.

Survival analysis and risk stratification model 
construction

For identifying prognostic genes for overall sur-
vival, univariate COX regression analysis was 
performed to adjust for age and sex. The haz-
ard ratio (HR) and 95% confidence interval (CI) 
were calculated by SPSS 25.0 software. The 
genes (p-value ≤ 0.05) were selected as surviv-
al-related IRDEGs and further integrated into 
the Least Absolute Shrinkage and Selection 
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Operator (LASSO) regression to identify the 
prognostic immune-related biomarkers. Next, 
the β values of the biomarkers were coeffi-
cients generated, and the risk score model was 
created using a multivariate COX regression 
analysis. Next, AML patients were divided into a 
high-risk-score and low-risk-score group accor- 
ding to the median risk score. Kaplan was used 
to investigate the relation between risk scores 
and OS-Meier survival analysis and the perfor-
mance of the risk stratification model was 
examined by receiver operator characteristics 
(ROC) analysis using “timeROC” R package.

Survival-related immune microenvironment 
identification

The immune score was analyzed by STromal 
and Immune cells in MAlignant Tumor tissues 
using Expression data (ESTIMATE; http://bioin-
formatics.mdanderson.org/estimate/) [18] ba- 
sed on the normalized expression matrix of 
TCGA datasets and the difference of immune 
score between low-risk-score and high-risk-
score groups was examined by Wilcox test. To 
further investigate survival-related immune 
infiltration subtypes, we first identified the pro-
portions of 22 similar leukocyte subtypes us- 
ing the CIBERSORT algorithm according to the 
normalized mRNA expression of TCGA or GEO 
cohorts. Next, univariate COX regression analy-
sis was performed to adjust for age and sex, 
while an ANOVA test was conducted to compare 
the difference in immune subtypes between 
the low-risk-score and high-risk-score groups. 

Medical records and samples collection

A total of 79 AML patients diagnosed for the 
first time and treated at our Hospital between 
January 2019 and December 2020 were 
enrolled. The relevant clinical characteristics 
are shown in Table S3. According to the 2017 
European Leukemia Net (ELN) risk classifica-
tion, patients received standard cytarabine-
based chemotherapy protocols. Peripheral 
blood mononuclear cells (PBMCs) were isolat- 
ed by Ficoll (density of 1.077 g/mL, Stemcell, 
#07801) gradient centrifugation from freshly 
obtained peripheral blood at pre-treatment, 
complete-remission (CR), and relapsed time-
point. Among these patients, 20 relapsed dur-
ing the follow-up period, while 59 patients had 
CR without relapse. Additionally, the 500 μL 

serum of each sample was stored frozen at 
-20°C to avoid loss of bioactive cytokines. 

The study was performed in accordance with 
the Declaration of Helsinki, and was approved 
by the ethics committee of the hospital.

Quantitative real-time PCR

The total RNA of PBMCs was extracted using 
TRIZOL reagent (Invitrogen, #15596026), and 
complementary DNA was synthesized by Prime- 
Script reverse transcription reagent (TaKaRa, 
RR036A). Quantitative real-time PCR (qRT-PCT) 
was performed using SYBR Green PCR Mix 
(TakaRa, RR420A) on the CFX96 Touch PCR 
system (BioRad). ACTB was used as an internal 
normalization control. The normalized fold 
change of gene mRNA levels was calculated 
using the 2-ΔΔCt. The PCR primer sequences are 
shown in Table S4.

Serum IL-33 measurement

IL-33 levels in human serum were measured 
using a human IL-33 enzyme-linked immuno-
sorbent assay (ELISA) Kit (Abcam, ab119547). 
Following the manufacturer’s instructions, 25 
μL serum was diluted with 25 μL sample diluent 
was analyzed, and each sample was analyzed 
in duplicate.

Statistical analysis

TCGA and GEO database analyses were per-
formed with R version 3.4.1 (http://www.R-proj-
ect.org), and the appropriate packages were 
presented above. For the clinical study, experi-
mental data were expressed as mean ± SEM, 
while the statistical significance was deter-
mined by one-way ANOVA and Pearson’s Chi-
square test using GraphPad Prism 7 or SPSS 
25.0. P values < 0.05 were considered statisti-
cally significant.

Results

Identification of immune-related differentially 
expressed genes (IRDEGs) in AML

To identify IRDEGs associated with AML, we 
compared the gene expression profiles be- 
tween 151 AML samples from the TCGA data-
base and 407 control samples from the GTEx 
project. We found 3371 DEGs in AML samples 
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Figure 1. Identification of immune-related differentially expressed genes (IRDEGs) in acute myeloid leukemia (AML). 
The bone marrow gene expression profiles and clinical characteristics of 151 patients with AML obtained from The 
Cancer Genome Atlas (TCGA) database. The whole blood gene expression profiles of 407 normal individuals were 
acquired from the Genotype-Tissue Expression (GTEx) project (https://gtexportal.org/home/). (A) Volcano plot of 
mRNAs. The cutoff values of DEGs are |Log2 fold-change| > 6 and P < 0.05. Red and green dots indicate 1731 up-
regulated and 1586 downregulated DEGs, respectively. Black dots indicate genes that are not significantly changed. 
(B) A Venn diagram depicts 264 IRDEGs in the intersection between 3317 DEGs and 1216 immune-related genes. 
(C-E) Gene ontology (GO) annotation. The top 10 enriched terms of molecular function (C), biological process (D), 
and cellular component (E) are shown. (F) Kyoto Encyclopedia of Genes and Genomes enrichment analysis. The top 
10 enriched pathways are shown.

compared with control samples, including 1731 
upregulated and 1586 downregulated DEGs 
(Figure 1A). A total of 264 genes in the inter-

section between the 3317 DEGs and 1216 
IRGs were considered IRDEGs (Figure 1B). GO 
and KEGG analysis revealed that the IRDEGs 
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were enriched in immune-related pathways, 
such as cytokine receptor activity, regulation of 
innate immune response, and cytokine-cyto-
kine receptor interaction (Figure 1C-F).

Verification of survival-related modules by 
WGCNA

To better understand the relevance between 
immune-related genes and the prognosis of 
AML patients, we continued to investigate the 
coexpression network of 264 IRDEGs using 
WGCNA. As shown in Figure 2A and 2B, the 
soft-power 5 and module size cut-off 20 were 
chosen as the threshold, and 9 modules were 
identified based on the average linkage hierar-
chical clustering. Then, genes in the 9 color 
modules were used to analyze the module-trait 
relationships coexpression similarity and adja-
cency with overall survival of AML patients 
(Figure 2C). The black module (Figure 2D) 
showed the highest correlation with the overall 
survival of AML, including 12 IRDEGs (CTSD, 
HACE1, MAPK3, CEBPB, CYBA, GNB2, WAS, 
TNIP1, KIT, CDK6, DOK3, and SPI1). Univariate 
COX regression analysis was performed to vali-
date the overall survival relationship of these 
12 IRDEGs, and the prognostic effect was pre-
sented in a forest plot. As shown in Figure 2E, 
CTSD, CEBPB, WAS, and GNB2 expression had 
a negative effect on AML, while the KIT and 
CDK6 mRNA levels were positively related to 
survival.

Generation of risk stratification model based 
on survival-related IRDEGs

To further generate a prognostic model for 
AML, 6 IRDEGs significantly correlated with 
AML prognosis were considered for least abso-
lute shrinkage and selection operator (LASSO) 
regression analysis. Finally, CTSD, GNB2, WAS, 
and CDK6 were selected to establish a risk 
stratification model as the following formula: 
[Risk Score = expression level of CTSD × 0.291 
+ expression level of GNB2 × (-1.490) + expres-
sion level of WAS × 2.598 + expression level of 
CDK6 × (-0.414)]. Furthermore, patients were 
divided into high-risk and low-risk groups in 
accordance with the best separation of risk 
scores (cutoff = 0.140, which was calculated by 
R. package maxstat). The distribution of risk 
score and corresponding survival for each 
patient from TCGA-LAML is shown in Figure 3A, 
3B. The high-risk group had significantly worse 

OS than the low-risk group (P = 0.00016), as 
shown in Figure 3C. Moreover, the area under 
the ROC curve for predicting the overall survival 
of AML in 1 year, 3 years and 5 years was  
0.697, 0.700 and 0.788, respectively (Figure 
3D), suggesting that the risk model could accu-
rately identify high-risk individuals within differ-
ent time frames. Further analysis of the rela-
tionship between risk score and diagnosed age 
revealed that patients aged ≥ 60 years old had 
greater risk scores (P = 0.018) and worse sur-
vival, as shown in Figure 3E. The risk scores 
also significantly increased along with increas-
ing cytogenetic risk (Figure 3F). 

Validation of prognosis stratification tool in 
external cohorts

The immune-related genes signature and risk 
stratification model were further validated 
using an independent GEO dataset (Series 
GSE12417). Seventy-nine patients from the 
GSE12417 database were divided into high-
risk and low-risk groups in accordance with  
the best separation of risk scores (cutoff = 
-1.504). Consistent with the TCGA database, a 
high-risk score predicted poor survival in 
GSE12417 (Figure 4A). Additionally, the area 
under the curve (AUC) of 1-, 3-, and 5-year ROC 
curve were 0.636, 0.575 and 0.575, respec-
tively (Figure 4B). The above results demon-
strated that bone marrow immune-related 
genes signature had potential predictive power 
in the prognosis of AML from TCGA and 
GSE12417 cohorts. 

Next, we obtained peripheral blood samples 
from AML patients diagnosed and treated in 
our Hospital and detected the mRNA level of 
CTSD, GNB2, WAS, and CDK6 in PBMCs. After 
stratifying the patients into low- and high-risk 
groups (cutoff = -0.0373), we found that the 
mRNA levels of CTSD and WAS in PBMCs were 
remarkably elevated in high-risk patients com-
pared with those in low-risk patients. Similar 
trends were observed in CDK6 and GNB2 
mRNA levels in PBMCs (Figure S1A-D). Besid- 
es, the risk scores significantly increased in 
patients with a recent diagnosis and those who 
relapsed compared with those with CR (Figure 
S1E). Consistent with results observed in the 
TCGA cohort, patients’ risk scores were signifi-
cantly increased in older patients, who also  
had worse cytogenetic risk (Figure S1F, S1G). 
Furthermore, high-risk patients had significant-
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Figure 2. Construction of IRDEG-based prognostic model. A. Scale independence and mean connectivity of the weighted gene correlation network analysis. B. Den-
drogram of co-expression modules produced by average linkage hierarchical clustering of IRDEGs. Each branch represents a single gene. Each color represents a 
module containing co-expressed genes. C. Heatmap of the relationship between the co-expression modules and overall survival time/status of AML patients. Each 
row represents a module. Each column represents a clinical trait. The darker the color, the more significant the relationship. D. Module significance was calculated 
to quantify the association of individual modules with the clinical trait. E. Forest plot of Kaplan-Meier survival analysis of the correlation between each IRDEG and 
overall survival of AML patients from TCGA. *P < 0.05, **P < 0.01, ***P < 0.001. HR, hazard ratio; CI, confidence interval. 
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Figure 3. Evaluation of the IRDEG-based prognostic risk model. A. AML patients from TCGA were divided into high-risk and low-risk groups (cutoff risk score = 0.140). 
B. The distribution of risk score and corresponding survival of each patient. C. Kaplan-Meier curve. D. Receiver operating characteristic (ROC) analysis. AUC, the area 
under the curve. E. Comparison of risk scores between TCGA AML patients ≥ 60 years and younger peers. F. Comparison of risk scores among TCGA AML patients 
with different ELN risk classifications. Acute myeloid leukemia (AML).
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ly shorter relapse-free survival than low-risk 
patients (P = 0.008; Figure 4C), with an AUC of 
ROC curve at 0.819 (Figure 4D). Above findings 
indicate that the prognosis stratification tool 
has a predictive function both in the bone mar-
row and peripheral blood tests.

Estimation of immune cell subtypes according 
to risk scores

To determine which leukocyte subtype has a 
critical role in the AML progression and has a 
relation with the risk stratification tool, univari-
ate Cox regression analysis showed that acti-
vated mast cell (HR = 0.36, P = 0.002) was a 
protective factor, whereas macrophage M2 (HR 
= 1.95, P = 0.019) was a risk factor for overall 
survival of patients (Figure 5A). Next, we calcu-
lated the immune score of the TCGA database 
using the ESTIMATE algorithm and found an 
increased immune score in the high-risk and 

low-risk groups (Figure 5B). To further reveal 
the association of immune infiltration subtypes 
with risk stratification, the proportions of 22 
leukocyte subtypes were identified using the 
CIBERSORT algorithm between the low- and 
high-risk group. As shown in Figure 5C, the 
monocyte fraction was markedly increased, 
whereas the plasma B cells, gamma delta T 
cells, resting mast cells and activated mast 
cells remarkably decreased in the high-risk 
group compared with those in the low-risk 
group in TCGA samples. Taken together, down-
regulated activated mast cells in a high-risk 
group may have a critical role in AML 
prognosis.

IL-33 is the predominant stimulator of mast 
cells, basophils, and CD4+ Th2 cells [19]. In 
accordance with the activated mast cells pro-
portion, IL33 expression in TCGA-LAML also 
decreased in a high-risk group (Figure 5D) and 

Figure 4. Validation of the 4-mRNA prognostic risk signature in the external cohorts. A. Kaplan-Meier curves of 79 
AML patients from the GEO database (Series GSE12417). The cutoff risk score was -1.504, determined by the R-
maxstat package. B. Time-dependent ROC analysis. C. Relapse-free survival curves of AML patients from ZSCPH. 
D. Relapse-dependent ROC analysis. AUC, the area under the curve; ROC, receiver operating characteristic; ZSCPH, 
our Hospital. Acute myeloid leukemia (AML).
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Figure 5. The risk score was correlated with immune cell infiltration. A. Forest plots of the correlation between 
immune cell infiltration and overall survival by univariate Cox analysis. *P < 0.05, **P < 0.01 indicate significant 
correlation. B. Comparison of the immune scores. C. Comparison of fractions of 22 immune cell subtypes between 
low-risk and high-risk AML patients from TCGA database. ***P < 0.01. D. Comparison of the mRNA levels of IL33 
between low- and high-risk groups in TCGA cohorts. E. Kaplan-Meier survival analysis of the correlation between 
IL33 expression and overall survival of AML patients from TCGA. F. Comparison of the IL-33 serum concentration 
between low- and high-risk groups in AML patients from ZSCPH. G. Kaplan-Meier survival analysis of the correlation 
between IL33 concentration in serum and relapse-free survival from AML patients diagnosed in ZSCPH. HR, hazard 
ratio; CI, confidence interval. Acute myeloid leukemia (AML).

had an adverse hazard ratio (HR = 0.45, 95%  
CI 0.29-0.69) in overall survival (Figure 5E). 
Furthermore, as shown in Figure 5F, serum 
IL-33 concentration was lower in high-risk 

patients (47.0 ± 13.6 pg/mL) than in low-risk 
patients (57.5 ± 13.4 pg/mL). Also, the serum 
IL-33 concentration had a positive association 
with relapse-free survival (HR = 0.46, 95% CI 
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0.19-1.12), although there was no significant 
difference (Figure 5G). Above findings suggest 
that the prognosis stratification tool is associ-
ated with IL-33 expression and mast cell activa-
tion in AML immune microenvironment and has 
a predictive function in clinical outcomes.

Discussion

AML is an immune-responsive disease evi-
denced by durable remissions following alloge-
neic transplantation. Successful applications 
of checkpoint inhibitors in solid tumor therapy 
mark the revival of immunotherapies against 
AML [20]. Although multiple studies have dem-
onstrated the prognostic application of classi-
fying patients by age and cytogenetic abnor-
malities [21-23], a better understanding of the 
immune dysregulation and suppression in AML 
may pave the way for personalized immuno-
therapy. Consistent with these studies, our 
research demonstrated that a 4-IRG signature, 
detectable in PBMCs, performs well in predict-
ing the prognosis of AML patients. The IRG sig-
nature reflects the immune status of the tumor 
microenvironment of AML, which may serve as 
a novel and feasible tool for prognosis predic-
tion in AML management.

Our IRG prognostic signature comprises 3 risk 
genes (CTSD, GNB2, and WAS) and a positive 
gene (CDK6) in both bone marrow and PBMCs. 
GNB2 overexpression is associated with poor 
prognosis in human MLL-AML [24]. The WAS 
gene encoding Wiskott-Aldrich syndrome pro-
tein (WASP) exclusively in hematopoietic cells 
has been associated with the earlier onset of 
various solid tumors and T-cell lymphomas in 
mice [25]. In addition, cathepsin D (CTSD) is a 
proteolytic enzyme that can promote breast 
cancer progression by regulating hepsin ubiqui-
tin-proteasome degradation [26]. However,  
the role of upon 3 risk genes in AML remains 
unexplored. CDK6 encoding cyclin-dependent 
kinase 6 protein is crucial in promoting prolif-
eration and maintaining stemness in malignan-
cies, including AML [27, 28]. Kollmann et al. 
found that CDK6 is associated with poor prog-
nosis in AML patients [29], while Liu et al. 
showed that low CDK6 expression has a nega-
tive prognostic value [30]. In the TCGA cohort, 
CDK6 expression was correlated with a posi- 
tive prognosis and resulted in an important 
immune-related gene for our risk stratification 
tool. However, we also found that CDK6 expres-

sion in PBMCs was not correlated with a risk 
score, which was calculated based on bone 
marrow expression data of TCGA. This paradox 
may be associated with the different CDK6 
expressions in the tumor immune microenvi-
ronment. CDK6 is necessary for the develop-
ment and physiological function of immune 
cells. Cdk6-/- mice showed defective Notch sig-
naling in thymocytes maturation [31]. Another 
study reported that CDK4/6 inhibitors increa- 
se immunogenicity in breast, lung, and colorec-
tal cancers by inhibiting regulatory T cells [32]. 
However, the immunoregulatory activity of 
CDK6 in AML is still not fully understood.

AML is a malignancy with immune defects char-
acterized by altered antigen presentation and 
dysregulated proportions of T cells, natural kill-
er cells, and immunosuppressive M2-like mac-
rophages [9, 33, 34]. Consistent with these 
findings, the fraction of macrophage M2 in the 
TCGA cohort also represents a risk in the over-
all survival of AML patients. In this study, more 
macrophage M2 was enriched in the high-risk 
group than in the low-risk group. CTSD was  
also demonstrated as a poor prognosis-related 
gene associated with aggravating macrophage 
M2 infiltration in colon cancer [35]. In this risk 
score study, we also identified the proportion of 
activated mast cells as a protective immune 
subtype in AML patients, in accordance with its 
anti-tumorigenic role in solid cancers [36]. 
Besides, as IL-33 is a mast cell activator [19], 
we found IL-33 expression and activated mast 
cells were down-regulated in high-risk group 
patients in both TCGA and our clinical cohort. 
Although IL-33 has been demonstrated to par-
ticipate in pro-tumorigenic actions by activating 
the mitogen-activated protein kinases (MAPK) 
pathway of cancer cells [37, 38], its critical role 
in AML immune microenvironment remains 
unknown. Studies of the cellular source of  
IL-33 have revealed that IL-33 is mainly pro-
duced by endothelial cells, which have a critical 
role in the pathogenesis of AML [39, 40]. 
Therefore, it is supposed that the downregula-
tion of IL-33 and activated mast cells may be 
malignant changes in the bone marrow endo-
thelial microenvironment in AML progression.

Conclusion

4-IRG-based prognostic risk signature is clini-
cally feasible, and effective tool for survival pre-
diction and risk stratification of patients with 
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AML, providing important information for a bet-
ter understanding of the immune microenviron-
ment of AML and new guidance for individual-
ized therapy in AML management. However, the 
mechanism of CTSD, GNB2, WAS, CDK6 and 
IL33 expression in regulating mast cell infiltra-
tion and their critical roles in AML progression 
require further investigation.
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Table S1. Clinical characteristics of the TCGA acute myeloid leukemia cohort
Clinical Characteristics Category Cases
Sex Male 83

Female 68
Age at initial diagnosis, years < 60 84

≥ 60 67
ELN classification Favorable 30

Intermediate/Normal 84
Poor 37

FAB morphology M0 undifferentiated 15
M1 35
M2 38
M3 15
M4 29
M5 15
M6 2
M7 1
Not classified 1

Survival status Alive 53
Dead 89
Missing 9

ELN, European Leukemia Net 2017; FAB, French-American-British.

Table S2. Clinical characteristics of the GSE12417 acute myeloid leukemia cohort
Clinical Characteristics Category Cases
Age at initial diagnosis, years < 60 32

≥ 60 47
FAB morphology M0 undifferentiated 1

M1 23
M2 34
M3 11
M4 6
M5 3
M6 2
Not classified 1

Survival status Alive 32
Dead 47

FAB, French-American-British.
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Table S3. Clinical characteristics of the acute myeloid leukemia cohort in Zhongshan People’s Hospi-
tal from January 2019 to December 2020
Clinical Characteristics Category Cases
Sex Male 40

Female 39
Age at initial diagnosis, years < 60 44

≥ 60 35
ELN classification Favorable 22

Intermediate/Normal 29
Poor 28

Status Complete Remission 59
Relapsed 20

ELN, European Leukemia Net 2017.

Table S4. Quantitative real-time PCR primer sequences (5’→3’)
Gene Forward primer Reverse primer
CTSD TGCTCAAGAACTACATGGACGC CGAAGACGACTGTGAAGCACT
GNB2 TGATGCCTCTATCAAGCTGTGG GATGTCGGATTCATGGCCGAT
WAS GATGCTTGGACGAAAATGCTTG CCCCACAATGCTCCTTGGT
CDK6 GCTGACCAGCAGTACGAATG GCACACATCAAACAACCTGACC
ACTB GCACTCTTCCAGCTTCCTT GTTGGCGTACAGGTCTTTGC

Figure S1. The risk-score relative characteristics in AML patients form Zhongshan City People’s Hospital (ZSCPH). 
A-D. Comparison of the mRNA levels of the 4 components of the risk model in peripheral blood mononuclear cells 
(PBMCs) of AML patients. PBMCs were collected from 79 AML patients diagnosed in ZSCPH. Quantitative real-time 
PCR was performed to determine the mRNA levels of CDK6, CTSD, GNB2, and WAS in PBMCs. The risk score of each 
patient was calculated based on the mRNA level and LASSO coefficient of each gene. Patients were divided into 
low-risk and high-risk groups according to the cutoff risk score -0.0373 determined by rgw R-maxstat package. E. 
Comparison of risk scores among patients with early diagnosis, complete remission, and relapse. F. Comparison of 
risk scores between patients ≥ 60 years (n = 35) and younger peers (n = 44). G. Comparison of risk scores among 
patients with different cytogenetic risks.


