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Abstract: Objectives: Currently, an increasing number of studies are focusing on the impact of m7G modification 
in cancer. This study aims to investigate the prognostic value of m7G-related genes in low-grade glioma (LGG). 
Methods: LGG samples were obtained from the CGGA database, and normal samples were obtained from GTEx. 
Differentially expressed m7G-related genes were identified, and genes highly associated with macrophage M2 in 
LGG patients were identified by immuno-infiltration and WGCNA analysis. The intersection of differentially expressed 
m7G-related genes and macrophage M2-associated genes yielded candidate genes, and hub genes were identi-
fied using 5 algorithms in CytoHubba. Enrichment analysis verified the relevant pathways of hub genes, and their 
performance in tumor classification was evaluated. Results: A total of 3329 differentially expressed m7G-related 
genes were identified. 1289 genes were highly associated with macrophage M2 in LGG patients. The intersection of 
m7G-related genes and results in WGCNA yielded 840 candidate genes, and six hub genes (STXBP1, CPLX1, PAB3A, 
APBA1, RIMS1, and GRIN2B) were identified. Hub genes were enriched in synaptic transmission-related pathways 
and showed good performance for tumor classification. There were significant differences in survival levels between 
clusters. Conclusions: The identified m7G-related genes may provide new insight into the treatment and prognosis 
of LGG.

Keywords: Low-grade glioma (LGG), N7-methylguanosine, immune microenvironment, WGCNA, prognostic signa-
ture

Introduction

Glioma is a group of tumors arising from glial 
cells in the central nervous system and is the 
most common type of brain tumor. The World 
Health Organization (WHO) classifies gliomas 
into four grades based on their histopathologic 
features, genetic alterations, and clinical 
behavior [1]. Low-grade glioma (LGG) is WHO 
grade II, III gliomas that are less aggressive and 
have a better prognosis compared to high-
grade gliomas (HGG). However, LGG still causes 
severe neurological deficits and affects the 
quality of life of patients. Second, the infiltra-
tive growth pattern of LGG leads to its frequent 
recurrence and increases the difficulty of com-
plete surgical resection [2].

The factors that contribute to the development 
and progression of LGG are complex. Several 
genetic alterations associated with LGG have 
been identified, such as mutations and copy 
number alterations in genes such as IDH1/2, 
TP53 and ATRX. These genes play a key role in 
altering cellular metabolism, DNA repair and 
chromatin remodeling, affecting tumor progres-
sion [3, 4]. Recent evidence suggests that epi-
genetic modifications such as RNA methylation 
and histone modifications also play a crucial 
role in the pathogenesis of LGG. m7G is an 
important RNA modification that is achieved by 
attaching guanine molecules with methylation 
at the 5’ end of RNA. This modification is pres-
ent at the end of most eukaryotic mRNAs and 
has many important functions. It includes initi-
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ating transcriptional processes, enhancing 
translation efficiency and stabilizing RNA mole-
cules [5]. Several studies have shown that 
abnormal levels of m7G modifications are asso-
ciated with the formation and progression of a 
variety of tumors. For example, the m7G regula-
tor METTLE is an oncogenic factor in bladder 
cancer. METTLE mediates the translation of 
EFEMP1 by altering the m7G modification of 
tRNA and inhibiting ribosomal pausing during 
tRNA-mRNA codon recognition. Promoting 
tumorigenesis [6]. In hepatocellular carcinoma, 
METTL1 promotes tumor proliferation and 
metastasis by inhibiting PTEN-related signaling 
pathways [7]. Another m7G regulator, WDR4, 
contributes to the poor prognosis of esopha-
geal squamous cell carcinoma by decreasing 
the transcriptional level of ULK1, a negative 
regulator in autophagy-related pathways [6]. In 
addition, m7G modifications are involved in the 
regulation of tumor cell stemness and drug 
resistance [8]. Therefore, investigating the spe-
cific mechanism of action of m7G modification 
in LGG may provide important information for 
the diagnosis and prognosis of this cancer. 

The immune tumor microenvironment (TME) 
refers to the environment surrounding the 
tumor consisting of multiple components 
including immune cells, extracellular mecha-
nisms and cytokines. Immune cells play an 
important role in the TME as they fight against 
tumor expansion and recognize and destroy 
cancer cells. At the same time, cancer cells can 
secrete some cytokines or control immune cell 
functions, rendering immune cells useless or 
shifting to a tumor-supportive state, thus evad-
ing immune attack and promoting tumor pro-
gression [9]. Several studies have shown that 
immune cell infiltration in TME is associated 
with m7G modification. For example, a study on 
human hepatocellular carcinoma found signifi-
cantly reduced levels of m7G modification in 
tumor tissues and significant changes in the 
expression of genes associated with antitumor 
immune response. Further studies found that 
the reduction in m7G modification may lead to 
a decrease in the number and activity of hepat-
ic natural killer cells in the tumor microenviron-
ment, thus affecting the anti-tumor effects of 
immune cells [10]. In addition, another study 
found that changes in the level of m7G modifi-
cation altered the expression of certain key 
genes in T cells, thus affecting T cell expansion 

and activity in TME [11]. However, the mecha-
nism of m7G modification in immune infiltration 
is not clear, especially in LGG. Therefore, clari-
fying the characteristics of m7G-related gene-
mediated immune infiltration may help improve 
the survival prognosis of LGG patients.

This study was based on CGGA and GTEx data-
bases. The differential analysis identified m7G 
regulators that were differentially expressed in 
LGG, and further Pearson correlation analysis 
screened for differential genes associated with 
m7G. Techniques such as CIBERSORT and 
WGCNA were applied to screen candidate 
genes in LGG that were associated with m7G 
and involved in immune infiltration. Enrichment 
analysis of the candidate genes was performed 
to detect the biological processes they are 
involved in, and protein interaction networks 
were constructed. 6 hub genes were finally 
identified, and tumor classification validated 
their value in LGG and evaluated in the TCGA 
dataset. The results showed that these hub 
genes could be used as signatures for optimiz-
ing LGG prognosis.

Materials and methods

Data source and preprocessing

The tumor sample data in this study were ob- 
tained from the CGGA database (Home|CGGA - 
Chinese Glioma Genome Atlas) (DataSet ID: 
mRNAseq_325), and we downloaded the FPKM 
values. The dataset included 325 glioma sam-
ples. 137 LGG samples were screened based 
on the primary tumor, tumor classification as 
WHO II and III (LGG), complete information on 
sample survival, and survival days >30 days. 
Normal cortex samples from the GTEx project 
were obtained from the UCSC (UCSC Xena) in 
105 cases as controls. It is worth noting that 
the data downloaded from CGGA were the raw 
FPKM values, while the data in UCSC were log2 
(fpkm+0.001) processed. Therefore, we first 
performed an fpkm^2-0.001 calculation for  
the expression in the normal group. Then we 
merged the tumor group and normal group data 
sets, and the “normalizeBetweenArrays” func-
tion in the “limma” package was used to eli- 
minate the batch effect between the two 
groups. The log2 (fpkm+1) was calculated for 
the expressions in the combined dataset for 
normalization purposes. This resulted in the 
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experimental matrix used for our subsequent 
analysis. Data for the test set were obtained 
from TCGA (GDC (cancer.gov)) by doing the 
same screening as the experimental set, yield-
ing 481 LGG samples. 37 m7G regulators were 
obtained from the GSEA database.

Identification of differentially expressed genes 
and differential m7G regulators in LGG

The “limma” package in R was applied to obtain 
differentially expressed genes (DEGs) between 
LGG and normal samples in the expression 
data. The significance analysis was performed 
and the selection criteria were |log2FC| >0.5 
and adjusted p value <0.05. There were some 
differentially expressed m7G regulators in the 
DEGs. 

Identification of M7G-related genes

Pearson correlation analysis was performed to 
investigate the relationship between DEGs and 
differential m7G regulators. Specifically, DEGs 
that exhibited Pearson correlation coefficients 
greater than 0.7 and p values less than 0.05 
were considered as m7G-related genes.

Immune cell infiltration assessment

CIBERSORT is an immune cell analysis tool 
based on gene expression data that allows the 
quantification of multiple immune cell types 
and their relative percentages in tissue sam-
ples. CIBERSORT uses a linear regression 
model that compares the gene expression pro-
file of a sample with known reference gene 
expression profiles of different immune cell 
subpopulations and calculates the relative 
abundance of different immune cell subpopula-
tions in the sample [12]. To identify differences 
in immune cell composition between LGG and 
normal groups, all genes in the matrix were 
analyzed with CIBERSORT. We used LM22 sig-
nature and 1000 replacements in R to obtain 
the proportion of each type of immune cell in 
the two groups of samples and kept the immune 
cells that showed a different distribution 
between the two groups of samples for subse-
quent analysis.

Weighted gene co-expression network analysis

WGCNA (Weighted Gene Co-expression Net- 
work Analysis) is a systems biology approach 

for gene expression data analysis that can be 
used to construct gene co-expression net-
works, identify key gene modules and central 
genes associated with biological processes 
and diseases, and explore their role in cellular 
function, disease development, and progres-
sion [13]. Genes in the top 50% of the absolute 
median deviation in the expression matrix were 
selected and analyzed using the “WGCNA” 
package in R. WGCNA was applied to the co-
expression network based on Pearson correla-
tion coefficient matrix. To satisfy the scale-free 
topology, an appropriate soft threshold of β is 
determined. Then the genes are clustered into 
functional modules of different colors and clus-
tered and classified using a minimized dynamic 
tree-cutting algorithm. The module size is set to 
100 and the minimum merge height is 0.4. 
Gray modules denote genes that cannot be 
merged. Module signature genes (MEs) indi-
cate the expression profiles of corresponding 
genes in different modules. The level of differ-
entially distributed immune cell infiltration was 
selected as a clinical trait. Module affiliation 
(MM) indicates the correlation of MEs with gene 
expression. Gene significance (GS) was defined 
as the Spearman correlation coefficient of gene 
expression with clinical traits. Modules with the 
highest GS were considered as critical modules 
and genes with |MM| >0.8, |GS| >0.5 were 
identified as key genes [14].

Enrichment analysis of candidate genes 

First, the intersecting genes from m7G-related 
genes and key genes in WGCNA were taken  
as candidate genes. GO enrichment analysis 
classified gene function into three aspects: 
molecular function (MF), cellular component 
(CC), and biological process (BP). In KEGG 
enrichment analysis, target gene sets were 
mapped to pathway information in the KEGG 
database to identify metabolic pathways and 
signaling pathways that may play important 
roles in the research question [15]. We used 
Metascape (Metascape) to perform the enrich-
ment analysis.

Construction of protein interaction network to 
identify hub genes

The protein interaction network of candidate 
genes was generated in the String database 
(string-db.org), and the interaction score thresh-
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old was set to 0.7. The results were imported 
into Cytoscape, and to ensure the accuracy of 
hub gene identification, we used five algorithms 
in CytoHubba with reference to previous stud-
ies [16]. The final hub genes were obtained by 
taking the intersection of the top 25 genes of 
each algorithm.

Consensus clustering analysis

To further explore the biological characteristics 
of the hub gene, 137 patients were clustered 
into different subtypes based on the expres-
sion of the hub gene using the “Consensus- 
ClusterPlus” package in R. To verify the stability 
of the subtypes, 500 replicates were performed 
with p-Item equal to 0.8. The optimal k value 
(k=3) was determined to obtain stable cluster-
ing. Principal component analysis (PCA) was 
used to examine the clustering results. Di- 
fferences in survival and hub gene expression 
were also compared between the different 
clusters. ImmuneScore, StromalScore, ESTIM- 
ATEScore and TumorPurity were determined 
between different clusters using the ESTIMATE 
algorithm. ssGSEA determined the scores of 28 
immune cells.

Validation of hub gene features

We retrieved datasets related to low-grade glio-
ma in the TCGA database and screened 481 
LGG samples based on the primary tumor, 
tumor classification as WHO II or III (LGG), com-
plete information on sample survival, and sur-
vival days >30 days. Log2 (fpkm+1) processing 
was done on the expression matrix. Consensus 
clustering analysis was done according to hub 
gene to examine the function of hub gene in 
identifying tumor subtypes and clinical progno-
sis. The clustering results were examined by 
PCA and survival analysis. In addition, we down-
loaded immunohistochemical images from the 
publicly available Human Protein Atlas (http://
www.proteinatlas.org) for comparison of pro-
tein expression levels associated with gene 
features.

Statistical analysis

All data analyses were conducted using R ver-
sion 4.2.1. Details of the specific bioinformatic 
analyses performed can be found in the respec-
tive subsections. Statistical significance was 
defined as a p value less than 0.05.

Results

Differentially expressed genes in LGG

By comparing LGG samples with normal brain 
tissue samples, 4174 differentially expressed 
genes were obtained (2000 up-regulated genes 
and 2174 down-regulated genes; see Figure 
1A). 9 out of 37 m7G regulators were differen-
tially expressed. The box line plot (Figure 1B) 
and heat map (Figure 1C) results showed that 
these 9 m7G regulators were significantly dif-
ferent between LGG and normal samples. 
Among them, 7 genes were up-regulated and 2 
genes were down-regulated. The positions of 
these 9 m7G regulators on the chromosomes 
are shown in Figure 1D.

Immune cell infiltration analysis

Applying the CIBERSORT algorithm, we investi-
gated the differences in immune infiltration 
between LGG and normal samples in 22 
immune cell subpopulations (Figure 2A). As 
shown in the violin plot (Figure 2B), T cells fol-
licular helper (P<0.001), Macrophages M0 
(P<0.001), Macrophages M2 (P<0.001), and 
Dendritic cells resting (P<0.001) were different 
compared to normal samples. Dendritic cells 
activated (P<0.001) and Mast cells activat- 
ed (P<0.001) were more infiltrated in LGG. 
Conversely, B cells memory (P<0.001), Plasma 
cells (P<0.001), T cells regulatory (P=0.001), 
NK cells resting (P<0.001), Macrophages M1 
(P<0.001), Mast cells resting (P<0.001), Eo- 
sinophils (P<0.001), and Neutrophils (P<0.001) 
infiltrated significantly less than normal sam-
ples in LGG.

Construction of co-expression network

We selected the genes in the top 50% of the 
median absolute deviation in the expression 
matrix for WGCNA screening. To detect possible 
outlier samples, a clustering tree including 137 
samples and infiltrate-associated immune cells 
was built by applying the average linkage meth-
od. The results showed no abnormal samples 
were identified (Figure 3A). Then, we built a 
scale-free co-expression network with scale-
free R2=0.9 and soft threshold power β=5 
(Figure 3B). The clustering height was set to 0.4 
to merge the highly correlated modules (Figure 
3C). The results of the initial and merged mod-
ules are shown under the clustering tree (Figure 
3D).
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Figure 1. Differentially expressed genes in LGG. A. Volcano plot showing DEGs between LGG and normal samples. Red dots represent upregulated genes in LGG, 
green dots represent downregulated genes, and black dots represent genes with no significant change. B. Boxplot showing the differential expression of 9 m7G 
regulators in LGG and normal samples. The Wilcoxon test was used to compare differences. *P<0.05; **P<0.01; ***P<0.001. C. Heatmap displaying the expres-
sion pattern of m7G regulators in LGG and normal samples. D. Chromosome locations and names of the 9 differentially expressed m7G regulators.
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Figure 2. Analysis of immune cell infiltration. A. The relative proportions of 22 types of infiltrated immune cells in 
LGG and normal samples are shown. B. A violin plot displays the significant changes in immune cell infiltration levels 
between LGG and normal samples.
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Identification of WGCNA key modules

The relationship between modules and infiltrat-
ing immune cells was explored by calculating 
the correlation between ME values and clinical 
features. We identified seven co-expression 
modules, and gray modules were considered 
as unassignable gene collections. The results 
showed a positive correlation between the tur-
quoise module and T cells follicular helper 
(r=0.39, P=2e-06) and a negative correlation 
with Macrophages M2 (r=-0.44, P=9e-08),  
and a negative correlation between the black 
module and T cells follicular helper (r=-0.39, 
P=3e-06), and a negative correlation with 
Macrophages M1 (r=0.43, P=2e-07). Based on 
the ME values, we identified turquoise as the 
most clinically significant module (Figure 4A). 
In addition, we plotted GS scatter plots of T 
cells follicular helper and Macrophages M2  
versus MM in turquoise (Figure 4B, 4C). The 
results showed that the turquoise module was 
highly correlated with immune infiltration. We 
further selected 1289 genes from the tur-
quoise module for subsequent analysis based 
on the criteria of |MM| >0.8 and |GS| >0.5.

Acquisition of candidate genes

In the differential analysis we obtained 9 dif-
ferentially expressed m7G regulators. 3329 
m7G-related DEGs were identified by Pearson 
correlation analysis (Figure 5A). The 840 candi-
date genes were obtained by taking the inter-
section of m7G related DEGs and genes in the 
turquoise module (Figure 5B).

Identification of hub genes and enrichment 
analysis

After constructing the PPI network of candidate 
genes in String, the results were collated in 
Cytoscape. We used five algorithms of CytoHu- 
bba, including MCC, DMNC, MNC, Degree and 
EPC, and took the intersection of the top 25 
genes in each algorithm to get the final 6 hub 
genes (Figure 6A). They were STXBP1, CPLX1, 
RAB3A, APBA1, RIMS1, and GRIN2B. Hub 
genes were mainly enriched in Dopamine 

Neurotransmitter Release Cycle, Transmission 
across Chemical Synapses, Neurexins, and 
Neuroligins pathways (Figure 6B).

Identification of tumor subtypes

Based on six hub genes, 137 tumor samples 
were clustered by CDF and delta area (Figure 
7A, 7B). When k=3, three clusters were found, 
namely cluster 1, cluster 2 and cluster 3 (Figure 
7C). PCA analysis verified that samples from 
the three subgroups were clustered separa- 
tely, confirming the reliability of the clustering 
results (Figure 7D). KM survival analysis 
showed that patients in cluster 3 performed 
better than the other two groups (P=3e-07) in 
Figure 7E. Based on clustering, we combined 
other clinical manifestations to represent the 
expression differences of the six pivotal genes 
in the form of heat maps (Figure 8A). The 
results showed that the expression of the six 
pivotal genes was significantly higher in cluster 
3 than in cluster 1, suggesting that these piv-
otal genes may be markers for identifying dif-
ferent tumor clusters. In addition, the heat map 
shows the differences between the different 
clusters based on the ESTIMATE algorithm, 
ImmuneScore, StromalScore and Estimate- 
Score mentioned in the methods section 
(Figure 8B). Previous studies have shown that 
patients with high purity in a wide range of 
tumors usually have better survival (Li et al., 
2022b). This is consistent with the results of 
our study. Tumor purity was higher in group 3 
and most immune cells had more infiltration in 
group 1, which had poorer survival.

Validation of hub genes

To validate the ability of the hub gene in LGG 
prognosis. Tumor subtype analysis was per-
formed for 481 samples of TCGA. Delta area 
and CDF clustering showed (Figure 9A, 9B) that 
the division into 3 clusters was reasonable 
(Figure 9C). PCA and survival analysis also con-
firmed the reliability of clustering results (Figure 
9D, 9E). These results indicated that the ability 
of hub gene in LGG prognosis is worthy of affir-

Figure 3. Construction of a co-expression network. A. The LGG samples were clustered based on their expression 
levels, and the color intensity indicates the infiltration level of immune cells. B. The appropriate soft-power value for 
the graphs of scale independence, mean connectivity, and scale-free topology was found to be 5. C. To identify and 
combine similar modules, clustering dendrograms were cut at a height of 0.4. D. The original and merged modules 
are displayed beneath the clustering tree.
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mation. Finally, to determine the clinical rele-
vance of these six hub gene expressions, we 
analyzed the protein expressions encoded by 
these six genes using clinical samples from 
HPA. Compared to their expression levels in 
normal samples, STXBP1, CPLX1, and RAB3A 

showed HIGH staining in normal samples 
(Figure 10A, 10C and 10E) and low expression 
in LGG (Figure 10B, 10D and 10F), RIMS1 and 
GRIN2B were not detected in cancer tissue 
sections, and APBA1 had no corresponding 
information in the website.

Figure 4. Screening of clinically related modules. (A) A heatmap presents the module-trait correlation, with red indi-
cating a positive correlation and blue indicating a negative correlation. Gene significance for LGG across all modules 
was calculated, and the turquoise module was determined to be the clinically related module. (B, C) Scatter plots 
display the correlation between module membership (MM) and gene significance (GS), with revised MM and GS 
values. (B) T cells follicular helper, and (C) Macrophages M2 are shown.
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Discussion 

Low-grade glioma is a group of relatively slow-
growing, relatively less malignant glial tumors. 
It usually has a good prognosis and long-term 
survival rate. However, LGG is usually located in 
important areas of the brain, such as motor, 
language, and visual areas, and therefore surgi-
cal resection or tumor enlargement may lead to 
neurological dysfunction. Secondly, low-grade 
glioma also has the risk of transforming into 
high-grade glioma. Therefore, early diagnosis 
and screening, as well as prognosis after diag-
nosis, are crucial to reduce the risk from LGG. 
The factors associated with the development 
and progression of LGG are complex and vary 
greatly between patients, making it difficult to 
identify consistent predictors or biomarkers. To 
be able to provide some new theories for the 
treatment and prognosis of LGG, in this study, 
we used the CGGA database of glioma-related 
datasets. 9 m7G regulators were identified by 
differential expression gene analysis, and m7G-
related genes were explored. Applying the 
CIBERSORT algorithm to analyze the infiltration 
of immune cells, WGCNA identified the most 
significant modules with macrophage M2. 
Among the modules, 840 m7G-related candi-
date genes were screened. Candidate genes 
were used to construct a PPI network and the 
final six hub genes (STXBP1, CPLX1, RAB3A, 
APBA1, RIMS1 and GRIN2B) were identified  
by five algorithms in CytoHubba. These hub 
genes were mainly enriched in the Dopamine 

Neurotransmitter Release Cycle, Transmission 
across Chemical Synapses, Neurexins and neu-
roligins pathways. These genes have some 
value in tumor clusters and show significantly 
different survival levels between clusters. We 
found evidence in the RMVar database (RMVar-
Database of functional variants involved in  
RNA modification (renlab.org)) that supports 
the m7G modification of our hub genes. We 
defined the above genes as hub genes involved 
in macrophage M2 m7G modification in LGG 
patients. This may provide us with some 
insights into LGG prognosis.

Macrophages are a class of immune cells that 
play an important role in the tumor immune 
microenvironment. Macrophages are usually 
differentiated into two types, M1 and M2. 
Macrophage M1 cells are mainly involved in 
immune response processes with bactericidal 
and antitumor effects [17]. Previous studies 
mentioned that in gliomas, macrophage M2 
stimulates glioma blood vessel formation and 
growth through the release of growth factors 
such as VEGF, and promotes tumor cell migra-
tion and invasion through interactions [18]. In 
addition, macrophage M2 regulates immune 
responses in the TME by suppressing T cell 
activation and proliferation, thereby limiting 
tumor antigen presentation and recognition 
and promoting the immune escape of tumors 
[19]. In our study, we found a significant 
increase in the number of macrophages M2 
and a relative decrease in macrophages M1 in 

Figure 5. Acquisition of candidate hub genes. A. Screening of m7G related genes. The orange dots represent the 
m7G regulators, the green dots represent the m7G regulated genes, and the lines represent the correlations be-
tween the dots. B. Venn diagram of m7G-related genes and the genes of the turquoise modules in WGCNA. Intersec-
tion indicates candidate hub genes.
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tumor samples. This imbalance may promote 
tumor growth and spread. We observed that 
these 6 hub genes are lowly expressed in LGG, 
and their expression trends are consistent 
across different clusters. Samples in the clus-
ters with higher expression levels have higher 
survival rates, while samples in the clusters 
with lower expression levels have relatively 
lower survival rates. There are differences in 
ImmuneScore, ESTIMATEScore, and Stromal- 
Score among different clusters. Specifically, 
ImmuneScore, ESTIMATEScore, and Stromal- 
Score are significantly higher in the group with 
lower hub gene expression levels than in the 
group with higher expression levels. M2 macro-

phages infiltrate more in cluster 1, which has a 
lower survival rate. Therefore, we believe that 
the silencing of hub genes leads to the prolifer-
ation of M2 macrophages, indirectly promoting 
the occurrence and development of tumors. 
Currently, there are therapeutic strategies tar-
geting the inhibition of M2 macrophage func-
tion, intervention in its signaling pathway, and 
immunotherapy. Thus, the hub genes we identi-
fied can serve as new targets for effective treat-
ment of tumors.

Looking from another perspective, we found 
that these hub genes are enriched in synaptic 
transmission-related pathways. Synaptic trans-

Figure 6. Identification of hub genes and enrichment analysis. A. A Venn diagram between five algorithms of Cyto-
Hubba to identify hub genes in LGG. B. Functional enrichment analysis of hub genes.
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Figure 7. Consistent cluster analysis in the experimental set. A. Cumulative distribution function (CDF) for consistent clustering with k values ranging from 2-9. B. 
Relative changes in the area under the CDF curve for k values ranging from 2-9. C. Consensus clustering matrix using k=3. D. Principal component analysis showed 
effective clustering. E. Comparison of Kaplan-Meier overall survival (OS) rates among the three clusters (P=3e-07).
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Figure 8. Consensus clustering of hub genes and clinicopathologic characteristics. A. Heatmap displaying the ex-
pression pattern of hub genes across three identified clusters (red, high expression level; green, low expression 
level). Clinicopathologic characteristics of each cluster are also presented. B. Comparison of immune score, stromal 
score, ESTIMATE score, and tumor purity between the three identified clusters.
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Figure 9. Consistent clustering analysis in the test set. A. Relative change in the area under the cumulative distribution function (CDF) curve for k=2-9. B. CDF plot 
showing consistent clustering at k=2-9. C. Consensus clustering matrix obtained with k=3. D. Principal component analysis confirming the effectiveness of the clus-
tering approach. E. Kaplan-Meier overall survival curves for the three identified clusters, demonstrating significant differences in OS rates (P=4e-04).
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mission is an important mode of information 
transfer between neurons and between neu-
rons and target cells. Many tumor cells have 
neuron-like characteristics, such as membrane 
potential and calcium ion concentration, so 
they can also synthesize, store, and release 
neurotransmitters and affect surrounding tis-
sues through synaptic transmission. Second, 
some key molecules, pathways, and mecha-
nisms in synaptic transmission are also 
involved in the proliferation, invasion, and 
metastasis of tumor cells [20, 21]. STXBP1 is a 
protein involved in cellular secretion. Mutations 
in STXBP1 lead to impaired stability of synaptic 
proteins, resulting in a range of brain disorders 
such as developmental delay, mental retar- 
dation, and epilepsy [22, 23]. Furthermore, 
STXBP1 is involved in regulating the activity of 
NRF1, a class of transcription factors with high 
activity in cancer. downregulation of STXBP1 in 
gliomas predicts the degree of malignancy in 
those with high NRF1 activity [24]. This is con-
sistent with our findings that STXBP1 is down-
regulated in LGG. APBA1, a member of the amy-
loid β preprotein binding family, was found to 
be lowly expressed in Ewing sarcoma [25]. In 
addition, APBA1 and STXBP1 were found to 

have the ability to collaborate in insulin release. 
A calmodulin, CASTK, enhances the collabora-
tion of APBA1 with STXBP1 and affects vesicu-
lar transport during insulin release [26]. RIMS1 
is a protein involved in the presynaptic response 
of neurons and has an important role in neu-
rotransmitter release. The high expression of 
RIMS1 in gastric cancer was negatively corre-
lated with patient survival. In addition, RIMS1 
expression was found to be downregulated in 
adamantinomatous craniopharyngioma [27]. 
The function of RAB3A is similar to that of 
RIMS1. RIMS1 and RAB3A are required to inter-
act during terminal vesicle transport and affect 
synaptic transport function. Abnormal neu-
rotransmitter transmission may be a contribut-
ing factor to hippocampal lesions [28]. GRIN2B 
is one of the NMDA-type glutamate receptor 
subunits that regulate biological processes 
such as calcium ion concentration, synaptic 
plasticity, and neural signaling [29]. GRIN2B is 
associated with many neurodevelopmental dis-
orders, such as epilepsy, developmental delay, 
and language impairment [30]. There is also 
some evidence that GRIN2B is significantly 
more mutated in stage III lung cancer than in 
stage I patients [31]. CPLX1 has been identified 

Figure 10. Human protein Atlas immunohistochemistry using anti-STXBP1, anti-CPLX1, and anti-RAB3A antibodies. 
Normal brain (A, C, E) vs. low-grade glioma (B, D, F). The staining in normal samples is stronger than that in the 
tumor.
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as a biomarker for gastric cancer, and high 
expression of CPLX promotes proliferation, 
motility, and invasion of gastric cancer cells. 
and is associated with a poorer prognosis [32]. 
In addition, CPLX is a synapse-encoded protein 
and its deletion was detected in a mouse model 
of Alzheimer’s disease [33]. In-depth explora-
tion of the mechanisms of synaptic transmis-
sion in tumors and the search for possible tar-
gets and therapeutic strategies are expected to 
provide new ideas and approaches for the 
treatment of tumors. The results of tumor clus-
tering showed that these hub genes can effec-
tively stratify LGG into different subtypes. 
Further exploration of the synaptic transmis-
sion mechanism in tumors may help us under-
stand the occurrence, growth patterns, and 
metastasis rules of different types of LGG. The 
search for possible targets and treatment strat-
egies is expected to provide new ideas and 
methods for the treatment of LGG.

Our study has some limitations. Our data and 
clinical survival studies are based on the CGGA 
database only. Careful consideration is needed 
in extending our findings to patients of different 
races. In addition, it is necessary to experimen-
tally validate the specific m7G modification 
mechanism of these genes in LGG in subse-
quent studies. Finally, the functions and molec-
ular mechanisms of these genes are complex 
and need to be further validated by cellular and 
animal experiments.

Conclusion

Our study identifies the role of m7G-related 
genes in LGG. Using multiple biological meth-
ods, STXBP1, CPLX1, PAB3A, APBA1, RIMS1, 
and GRIN2B were identified as protective prog-
nostic factors against macrophage M2 infiltra-
tion in LGG. The results of these genes in the 
prognostic survival of patients with different 
types of LGG support our conclusions. Pers- 
pectives on regulating synaptic transmission 
and macrophage M2 have provided new insight 
into immunotherapy for LGG.
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