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Abstract: Spinal cord injury (SCI) is a prevalent central nervous system disease with a high disability rate, leading 
to the loss of motor and sensory nerve function. Due to the complex pathophysiology of SCI, more effective clinical 
treatment strategies are needed. Research has indicated the considerable potential of extracellular vesicles (EVs) 
derived from mesenchymal stem cells (MSC-EVs) as a cell-free therapy in SCI repair and regeneration due to their 
ability to regulate immune cell activity and stimulate damaged neuron regeneration. Moreover, applying MSCs and 
engineered EVs can fully exploit the potential of MSC-EVs in spinal cord repair. Here, we outline the pathological pro-
cess of SCI and its current clinical treatment status, summarize the latest MSC-EVs research and its pretreatment 
and engineering strategies in SCI treatment, and explore MSC-EVs application prospects.
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Introduction

Spinal cord injury (SCI) is a severe central ner-
vous system (CNS) disorder with high disability 
and mortality rates and is recognized as one of 
the greatest threats to human health [1, 2]. SCI 
is estimated to permanently disable more than 
27 million people worldwide, with approximate-
ly 77,000 new cases each year [1, 3, 4]. Current 
clinical treatments for SCI include pharmaco-
therapy, surgical decompression, hemodynam-
ic therapy, and electrical stimulation. However, 
these methods do not completely slow SCI’s 
pathological progression [3-5]. Thus, an urgent 
need exists for a novel SCI treatment approach 
[6].

Transplantation of mesenchymal stem cells 
(MSCs) is a promising therapeutic approach for 
SCI treatment, but direct transplantation of 
stem cells brings safety and ethical concerns 
[10, 11]. MSCs, or multipotent stromal cells, 
are a class of pluripotent stem cells belonging 
to the mesoderm, mainly found in connective 
tissue and organ mesenchyme [7]. MSCs have 
a strong proliferative capacity with multiple dif-
ferentiation potentials and immunomodulatory 

functions and are also “seed cells” for tissue 
damage repair [8, 9]. Notably, growing evidence 
suggests that MSCs’ therapeutic properties are 
more likely to derive from paracrine effects, 
particularly from extracellular vesicles (EVs) 
[12, 13]. EVs are essential mediators of inter-
cellular communication and are involved in 
many pathological processes [14, 15]. The ther-
apeutic potential of MSCs derived from EVs 
(MSC-EVs) in SCI has received increasing atten-
tion in recent years [16-18].

Here, we review the pathophysiology and cur-
rent status of SCI treatment. Then, we des- 
cribe EV biogenesis and summarize the roles 
and mechanisms of MSC-EVs in SCI repair. 
Furthermore, we review the application and 
challenges of pretreatment methods and engi-
neering strategies being used to improve the 
therapeutic potential of MSC-EVs in SCI.

The pathophysiology of SCI

Most spinal cord injuries are caused by contu-
sion or impingement [6]. Changes in spinal 
canal shape or volume lead to physical defor-
mation of spinal cord tissue, compressing blood 
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vessels and axons and triggering a cascade of 
pathological processes [1, 19, 20]. In the acute 
phase of SCI (typically within hours to days 
after injury), bleeding from ruptured blood ves-
sels causes tissue ischemia and localized spi-
nal cord swelling [21, 22]. Damaged cells 
release adenosine triphosphate (ATP) that act 
on purinergic receptors of various immune 
cells, inducing the immune cells to converge on 
the damaged area [23, 24]. Microglia (innate 
immune cells of the CNS) exert phagocytosis in 
the injured tissue to prevent injury spread. 
However, microglia also mediate excessive 
immune responses. Subsequently, tissue re- 
perfusion-induced oxidative stress and gluta-
mate release lead to the death of neighboring 
neurons and glial cells [25, 26]. 

Furthermore, a dramatic imbalance in the ionic 
homeostasis of the tissue microenvironment 
activates enzymes such as lipid oxidase and 
lipid accumulation, mediating the occurrence 
of cellular lipid peroxidation and expanding 
areas of tissue necrosis [19, 22, 26].

Later in the acute phase of SCI, the hemostatic 
response also brings about a series of cascade 
reactions to stop hemorrhage from broken ves-
sels while also bringing about a potent inflam-
matory response stimulus (e.g., chemokines 
and eicosanoids released by platelets) to glial 
cells [27, 28]. The subacute phase occurs days 
to weeks after injury, where the incomplete 
pathological tissue and inflammatory microen-
vironment activate a variety of cells (including 
astrocytes, fibroblasts, oligodendrocytes, peri-
cytes, and macrophages), triggering a cascade 
of secondary damage that further exacerbates 
injury and inflammation [21, 29-32]. Later in 
the subacute phase, cross-linked interactions 
between reactive glial cells and non-neural 
cells form scar tissue [33, 34]. Simultaneously, 
extracellular matrix (ECM) molecules, such  
as chondroitin sulfate proteoglycans (CSPGs), 
block the outgrowth and regeneration of dam-
aged axons [20, 35, 36].

SCI’s chronic phase exhibits a gradual decrease 
in the local acute inflammatory response and  
a diminishing of glial cell proliferation. Addi- 
tionally, the spinal cord tissue at the injury site 
may become atrophied, softened, cystic, or 
even spinal cavernous [21, 30, 36]. At the 
periphery of the damaged area, distinct scar 
tissue or spinal cord compression forms by  

glial cells, fibroblasts, and ECM molecules. 
While limiting inflammation, scar tissue can 
prevent axonal lengthening [31, 35]. Lack of 
axonal lengthening results in long-term loss of 
spinal cord function and affects the physiologi-
cal function of the trunk and extremities below 
the site of spinal cord damage [29, 37-39].

Current status of SCI treatment

According to the Clinical Neurorestorative 
Therapeutic Guidelines for Spinal Cord Injury 
(version 2019) proposed by the International 
Association of Neurorestoratology and the 
Chinese Association of Neurorestoratology, the 
primary strategies for SCI neurorepair are phar-
macotherapy, surgical intervention, and electri-
cal stimulation therapy [3]:

(a) Pharmacotherapy: Early high-dose methyl-
prednisolone (MP) therapy was once consid-
ered to benefit neurorepair in SCI’s acute 
phase. However, various clinical trials have 
shown that MP therapy may have serious side 
effects, such as pneumonia and wound infec-
tions [40, 41]. Accordingly, high-dose MP thera-
py is no longer recommended for routine use 
for acute SCI [4, 42]. Pharmacological treat-
ments, such as gangliosides and acidic fibro-
blast growth factor, may benefit SCI, but addi-
tional clinical data are needed to confirm their 
use [43, 44].

(b) Surgical intervention: Spinal cord decom-
pression and internal fixation surgery can be 
immediately performed post-injury, within an 
appropriate window, to reduce secondary injury 
and prevent further destruction of spinal cord 
tissue. However, many patients are usually 
unable to undergo surgery promptly due to 
transportation, preoperative examination, and 
preparation [5, 45].

(c) Electrical stimulation therapy: In SCI’s  
chronic phase, local neuromuscular or periph-
eral nerve electrical stimulation may improve 
and induce axonal regeneration. However, this 
therapy is still being further explored for thera-
peutic effects [46-48].

The pathological changes of SCI are incredibly 
complex. Clinical treatment focuses on alleviat-
ing the imbalance of the microenvironment 
caused by secondary injury in the acute and/or 
subacute phase and protecting the surviving 
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Figure 1. The biogenesis and uptake of exosomes. Exosomes are generated via the endocytic pathway and are 
released into the extracellular space. Cellular contents such as proteins, lipids, metabolites, small molecules, DNA, 
RNA, and cell surface proteins can be internalized into extracellular vesicles (EVs) via endocytosis and membrane 
invagination. The EVs released by donor cells can interact with recipient cells and induce biological responses within 
the recipient cells. The process occurs via an interaction with cell surface proteins or receptors or through internal-
ization via endocytosis or membrane fusion.

neurons. However, the current treatment op- 
tions are ineffective in changing the underlying 
pathology of SCI [49]. Therefore, searching for 
novel, more effective, and safe therapies is an 
urgent clinical need.

Overview of MSC-EVs

With strong immunomodulatory and tissue 
regenerative potential, MSCs effectively treat 
various refractory diseases, including SCI [50, 
51]. MSCs influence tissue damage repair pri-
marily through paracrine effects. One of the 
most essential paracrine effectors of MSCs is 
EVs. EVs are nanoscale-sized vesicles com-
posed of phospholipid bilayer membranes that 
deliver bioactive components [7, 12, 16].

Depending on their size and biogenesis, EVs 
can be classified into three major categories: 
apoptotic bodies [52], microvesicles, and small 
EVs, known as exosomes [53]. Apoptotic bod-
ies are the largest subpopulation of EVs and 
are released by cells undergoing programmed 
cell death. Microvesicles are 200-1000 nm in 
diameter and arise from the plasma membrane 
surface by means of outgrowth [54]. Exosomes 
are produced by the endocytic pathway and 
have an average diameter of 30-200 nm.

Exosome formation is a complex process involv-
ing the formation of endosomes and intracellu-
lar multivessel bodies (MVBs) and ends in their 
release [55]. First, the cytoplasmic membrane 
forms early endosomes via the endocytic path-
way. Early endosomes subsequently fuse and 
exchange with other organelle material to form 
late endosomes. Late endosomes further de- 
velop into MVBs [56]. During this process, intra-
luminal vesicles form and accumulate in MVBs 
with the help of Golgi complexes. Finally, intra-
luminal vesicles form exosomes after fusing 
with the plasma membrane; exosomes are 
then released into the extracellular environ-
ment [57]. When exosomes are released, they 
can be internalized into recipient cells by three 
potential mechanisms: endocytosis, direct fu- 
sion (with plasma membrane), or receptor-
ligand interactions [53, 58]. Exosomes may 
contain many components depending on the 
parental cells’ specific physiological or patho-
logical state, including DNA, RNA, lipids, pro-
teins, and metabolites [59, 60]. Thus, exo-
somes reflect the parental cells’ metabolic 
state and function. Exosomes then reach recip-
ient cells and exchange molecular information 
[15] (Figure 1).
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Figure 2. Natural mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in spinal cord injury (SCI) repair. 
The utilization of MSC-EVs in SCI restoration is achieved through the transportation of active molecules like miRNA, 
which suppresses the detrimental microenvironment, activates the regenerative potential of surviving neurons, and 
guides axonal regeneration to alleviate SCI.

Many studies have found that MSC-EVs can 
repair a wide range of tissue damage and may 
be a novel “non-cellular” therapeutic strategy 
superior to cell therapy [12, 61]. Additionally, 
the expression profiles of MSC-EV components 
from multi-omics applications of active RNA, 
protein, and lipid components have been grad-
ually revealed. We now know that MSC-EVs play 
essential therapeutic roles in diabetes, tissue 
recovery, immunomodulation, and neuropro-
tection by regulating gene expression of recep-
tor cells [62-66]. Mechanically, enriched pro-
teins of MSC-EVs play irreplaceable roles in 
tissue repair and regeneration, including in 
Wnt4 [67], 14-3-3ζ [68, 69], glutathione pe- 
roxidase 1 [70], casein kinase 1δ (CK1δ), 
β-transducin repeats-containing proteins [71], 
E3 ubiquitin-protein ligase NEDD4 [72] and 
Beclin-1 [73], among others. In summary, MSC-
EVs have promising applications in various 
refractory diseases and tissue damage repair. 
The following section will focus on the latest 
advances in MSC-EVs in treating SCI.

Therapeutic role of MSC-EVs in SCI

Natural MSC-EVs in SCI

The use of MSC-EVs in SCI repair has been 
gaining increased attention, both independent-

ly and in conjunction with bioactive molecules 
[74]. Typically, these treatments focus on three 
key areas: (1) the inhibition of inflammation in 
the microenvironment of the spinal cord to 
decrease barriers of axonal germination [75], 
(2) the activation of the axonal regeneration 
potential of impaired neurons or endogenous 
neural stem cells to reconstruct damaged neu-
ral circuits and facilitate functional recovery 
[76], and (3) the use of MSC-EVs with biomate-
rials to supply both graft and nutritional sup-
port for guided axonal regeneration [77] (Figure 
2).

Inhibition of the damaged microenvironment: 
The first step in regenerating damaged CNS 
neurons is early growth cone generation that 
guides axonal regeneration [78]. However, da- 
maged neurons form structures called retrac-
tion bulbs, and axonal outgrowth ceases due to 
the poor microenvironment of the damaged  
spinal cord [34]. The spinal cord microenviron-
ment comprises glial cells, immune cells, peri-
cytes, endothelial cells, extracellular matrix, 
and neurotransmitters [39].

It has been well established that MSC-EVs can 
modulate various cell types of the spinal cord 
microenvironment to improve microenviron-
ments that otherwise are not conducive to neu-
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GFAP + and SOX1 + KI67 + cells, among others 
[88-90].

Combining biomaterials to guide axonal exten-
sion: MSC-EVs can also be combined with bio-
materials such as hydrogels for SCI repair appli-
cations [91]. Gel biomaterials can guide axonal 
extension toward the lesion region to slow-
release carriers and enhance the utilization 
efficiency of MSC-EVs [92]. For example, Wang 
et al. encapsulated MSC-EVs in an injectable 
(FE@EVs) for in situ drug delivery in SCI rats. 
FE@EVs achieved up to 56 days of EV release in 
vivo and considerably improved motor function 
recovery in rats after SCI [77]. Additionally, to 
mimic the conductive properties of neural tis-
sue, Fan et al. developed a conductive hydrogel 
composed of gelatin methacrylate and poly- 
pyrrole loaded with MSC-derived exosomes 
(GMPE). GMPE induced the differentiation in a 
mouse spinal cord hemisection model of neural 
stem cells to mature neurons in vitro and sh- 
owed considerable neuroregenerative benefits 
after implantation [93]. Accordingly, the com-
bined application of MSC-EVs and biomaterials 
may serve as an in vivo treatment for SCI 
(Figure 3).

Pretreating and engineering strategies to 
enhance the therapeutic potential of MSC-EVs 
for SCI

Despite the tremendous therapeutic potential 
of natural MSC-EVs for SCI, many inherent limi-
tations still limit their large-scale application in 
SCI therapy. For example, the decreased stem-
ness and replicative senescence of MSCs 
under conventional culture conditions lead to a 
decrease in the number and therapeutic effi-
cacy of their secreted EVs [94, 95]. Additionally, 
due to the inherent properties of natural EVs, 
MSC-EVs are poorly targeted to SCI injury sites 
in vivo after intravenous administration [96, 
97]. Therefore, improving the production of 
MSC-EVs and enhancing their targeting ability 
is essential for their clinical application [98].

Pretreating methods: The therapeutic potential 
of MSC-EVs is closely related to their cellular 
status. Changing culture conditions or drug pre-
treatment are effective strategies to improve 
MSC-EV yield and therapeutic efficacy [99]. For 
example, hypoxic culture was found to mimic 
the “stem cell niche” environment of MSCs in 
vivo, maintaining the stemness of MSCs and 

ral regeneration [79]. Zhao et al. found that 
MSC-EVs suppressed inflammation in the spi-
nal cord microenvironment by blocking the acti-
vation of the nuclear factor-κB signaling path-
way and the microglia complement system. 
Microglia are the first immune cells to activate 
and mediate inflammation after SCI [80]. Also, 
various miRNAs of MSC-EVs origin (e.g., miRNA-
21-5p, miRNA-182, and let-7b) have been found 
to promote macrophage polarization toward 
the anti-inflammatory phenotype M2 alleviating 
SCI by targeting and inhibiting toll-like receptor 
signaling pathway [81-83]. Macrophages in the 
peripheral circulation are recruited in response 
to vascular rupture and inflammation caused 
by spinal cord damage. They further exacerbate 
the inflammatory response of the spinal cord 
microenvironment and are detrimental to axo-
nal regeneration [81]. Lastly, MSC-EVs were 
found to protect pericytes, critical components 
of the neurovascular unit, thus promoting neu-
ronal survival and nerve fiber extension by 
inhibiting cell scorching and improving blood-
spinal cord barrier integrity; MSC-EVs ultimate-
ly improved motor function in spinal cord injured 
rats [84, 85].

Activation of axonal regeneration potential: 
Multiple transcriptional programs are repressed 
in most highly differentiated neurons in mam-
mals, thus limiting their regenerative potential 
[86]. The mammalian target of the rapamycin 
(mTOR) signaling pathway activates neonatal 
CNS neurons to maintain cell growth, metabo-
lism, and protein synthesis. However, in adult 
CNS neurons, enhanced expression of phos-
phatase and tensin homolog deleted on chro-
mosome ten (PTEN) activity, a negative regula-
tor of mTOR, considerably reduces mTOR si- 
gnaling levels, leading to diminished neural 
regeneration [17].

MSC-EVs have been demonstrated to inhibit 
PTEN by delivering miRNA-21 and miRNA-19b 
promoting axonal growth and neuronal survival 
[86, 87]. Conversely, activation of endogenous 
neural stem cells in the spinal cord to differenti-
ate toward mature neurons can reconnect 
parts of the neural circuits and restore neural 
function. Additionally, MSC-EVs have been sug-
gested to promote the activation of proliferat-
ing endogenous neural stem cells by activating 
the ERK pathway, as evidenced by a consider-
able increase in activation of spinal SOX2 + 
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Figure 3. Pretreating and engineering strategies to enhance the therapeutic potential of mesenchymal stem cell-
derived extracellular vesicles (MSC-EVs) for spinal cord injury (SCI) repair. Hypoxia and melatonin pretreatment alter 
the contents of MSC-EVs and thus improve their SCI efficacy. cystine-alanine-glutamine-lysine short peptide (CAQK) 
and extracellular-5-nucleotidase (CD73) engineering strategies can improve the expected efficacy of MSC-EVs.

enhancing their proliferation capacity [100]. 
Also, MSC-EVs from a hypoxic culture delivered 
microRNA molecules involved in neuroregener-
ation and inflammation regulation (e.g., miRNA-
511-3p and miRNA-499a-5p) and effectively 
promoted SCI repair [101, 102]. Liu et al. found 
that melatonin (MT) pretreatment (an amine-
like hormone secreted by the brain’s pineal 
gland with free radical scavenging and antioxi-
dant effects [103]) decreased the expression 
of methyltransferase 3 in MSCs, inhibited m6A 
methylation, and maintained the stability of 
ubiquitin-specific protease 29 (USP29) mRNA 
in the cells. They also found that MT-pretreat- 
ed MSC-EVs stabilized nuclear-like factors by 
delivering USP29, which regulated microglia/
macrophage polarization and promoted recov-
ery of motor behavior in SCI mice [103]. These 
studies demonstrate the benefits of diverse 
pretreatment methods for MSCs and MSC-EVs. 
Designing novel combinations of MSC pretreat-
ment methods for different pathological stages 
or degrees of injury in SCI may provide more 
effective treatment strategies for SCI in the 
future [98].

Engineering strategy: MSC-EVs have also been 
modified by engineering means such as con-

tent piggybacking or membrane modification to 
enhance spinal cord targeting and SCI thera-
peutic efficacy [104, 105]. Recently, it has  
been found that cystine-alanine-glutamine-
lysine short peptide (CAQK) can specifically tar-
get CSPGs at SCI-damaged sites [106]. Ac- 
cordingly, Wang et al. constructed CAQK pep-
tide-modified MSC-derived exosomes (EXO-
C@P) loaded with a TNF-α-responsive self-feed-
back CRISPR/Cas9 system. The team succe- 
ssfully delivered EXO-C@P by intravenous in- 
jection to the SCI-impaired site. EXO-C@P was 
phagocytosed at the site by activated immune 
cells (e.g., macrophages and neutrophils) and 
carried out cellular-level gene editing, resulting 
in the secretion of soluble mTNFR1 to neutral-
ize TNF-α and reduce inflammation; the system 
facilitated recovery from SCI [106].

Additionally, as extracellular-5-nucleotidase 
(CD73) can catabolize excess ATP to adenosine 
after SCI and alleviate the damaged microenvi-
ronment, Zhai et al. engineered MSC-EVs  
overexpressing CD73 (CD73+ MSC-EVs). CD73+ 
MSC-EVs improved SCI by reducing extracellu-
lar ATP in spinal cord tissue and activating the 
A2bR/cAMP/PKA pathway [107]. As more ther-
apeutic molecules for spinal cord and neuronal 
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Table 1. Therapeutic role of MSC-EVs in SCI
Origin of EVs Target cells Cargos in EVs Mechanism Ref.
Natural Mesenchymal stromal cells-de-
rived extracellular vesicles (MSC-EVs)

Microglia / Inhibite activation of the microglia comple-
ment system and NF-κB signaling pathway

[80]

Macrophages miRNA-21-5p, 
miRNA-182, or 
let-7b

Promote macrophage polarization toward M2 
(anti-inflammatory phenotype)

[81-83]

Pericytes / Inhibite cell scorching and improving blood-
spinal cord barrier integrity

[84, 85]

Neurons miRNA-21 or 
miRNA-19b

Promote axonal growth and neuronal survival [86, 87]

Neural stem 
cells

/ Promote the activation of proliferating 
endogenous neural stem cells by activating 
the ERK pathway

[88-90]

F127-polycitrate-polyethyleneimine hydro-
gel (FE@EVs)

Neurons / Improve motor function recovery in rats 
after SCI

[77]

Gelatin methacrylate (GM) and polypyrrole 
(PPy) loaded with MSC-derived exosomes 
(GMPE)

Neurons / Induce the differentiation of neural stem 
cells

[93]

MSC-EVs from a hypoxic culture Neurons miRNA-511-3p or 
miRNA-499a-5p

Improve neuroregeneration and inflamma-
tion regulation

[101, 102]

Melatonin (MT) pretreated MSC-EVs Microglia/macro-
phage

/ Regulate microglia/macrophage polarization 
and promoted recovery of motor behavior in 
SCI mice

[98]

Cystine-alanine-glutamine-lysine short 
peptide (CAQK) modified MSC-derived 
exosomes (EXO-C@P)

Macrophages 
and neutrophils

TNF-α self-feedback 
CRISPR/Cas9 
system

Carry out cellular-level gene editing, resulting 
in the secretion of soluble mTNFR1 to neu-
tralize TNF-α and reduce inflammation

[106]

Engineered MSC-EVs overexpressing CD73 
(CD73+ MSC-EVs)

Microglia CD73 Reduce extracellular ATP in spinal cord 
tissue and activating the A2bR/cAMP/PKA 
pathway

[107]

cells are uncovered, engineering technologies 
will load multiple combinations of molecules 
into MSC-EVs. The combined application of 
membrane modification and content piggy-
backing technologies is expected to address 
MSC-EV neural targeting while improving the 
enrichment of active molecules [108-110]. 
Thus, pretreatment and engineering strate- 
gies are expected to be the propellers of MSC-
EVs in SCI treatment.

Conclusions and outlook

Due to the weak regenerative capacity of the 
CNS in adult mammals, recovery of neurologi-
cal function after SCI is rather limited [1, 5].  
The pathological process of SCI is also complex 
and lengthy, with the recovery of spinal cord  
tissue subject to a combination of factors. 
Despite the availability of therapeutic tools to 
reduce mortality in SCI patients, functional 
recovery after SCI remains a great challenge for 
current medicine [4, 28]. A series of experi-
ments have demonstrated that MSC-EVs can 
easily cross the blood-spinal cord barrier, 
improve the poor injury microenvironment of 
the spinal cord, activate the regenerative 
potential of damaged neurons, and combine 

with biomaterials to guide axonal extension at 
the injured site [18, 87, 111]. These conclu-
sions suggest that MSC-EVs are an expected 
novel, non-cellular therapy for SCI treatment. 
Additionally, pretreatment methods like hypox-
ia and engineering strategies like membrane 
modification could considerably optimize MSC-
EV therapeutic potential in SCI [98] (Table 1).

Certainly, MSC-EVs or modified MSC-EVs in SCI 
treatment need more study to elucidate their 
mechanisms [13, 112]. Also, further clinical tri-
als are required to validate the efficacy and 
safety of MSC-EVs in humans [111, 113]. 
Likewise, establishing a set of standardized 
processes for the isolation and purification of 
MSC-EVs and the concentration and mode of 
administration are the keys to upscaling appli-
cations [114, 115]. Future studies that address 
these issues will provide a comprehensive the-
oretical basis for the clinical translation of 
MSC-EVs in SCI treatment, providing direction 
and hope for SCI clinical treatment [116, 117].
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