Original Article
Particulate matter increases connexin 43 expression and exacerbates endothelial barrier disruption

Jun Zhang1,2*, Xiaomin Wu1*, Ying Liang1*, Gabriel Kelly1, Janis M Burt3, Liming Zhang2, Ting Wang1,4

1Department of Medicine, University of Arizona, Tucson, AZ, USA; 2Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China; 3Department of Physiology, University of Arizona, Tuscon, AZ, USA; 4Center of Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, USA. *Equal contributors.

Received April 27, 2023; Accepted June 29, 2023; Epub August 15, 2023; Published August 30, 2023

Abstract: Objectives: Particulate Matter (PM) air pollution is known to exacerbate cardiopulmonary diseases. We previously demonstrated that PM mediates endothelial injury and barrier disruption by modulating the endothelial cytoskeleton and cell-cell junctions, but the effects of PM exposure on cell-cell communication and gap junction activity are still unknown. Methods: This study focused on the characterization of PM-regulated endothelial dysfunction through connexin 43 (Cx43), the most abundant gap junction protein expressed in lung endothelial cells (ECs), using cultured human lung endothelial cells and a well-characterized PM sample. Results: PM exposure induced a time-dependent increase of Cx43 in human lung ECs at both the mRNA and protein levels. N-acetylcysteine (NAC), a reactive oxygen species (ROS) scavenger, significantly suppressed PM-induced Cx43 expression. Cx43 proteins on the plasma membrane and ER/Golgi apparatus were elevated in response to a PM challenge. In addition, PM induced gap junction activity, which was indicated by green fluorescence dye transfer between two adjacent ECs. Moreover, GAP27, a selective Cx43 channel inhibitor, attenuated PM-induced human lung EC barrier disruption, which was reflected by rescued trans-endothelial electrical resistance (TER) with an electric cell-substrate impedance sensing system. Moreover, knocking down Cx43 alleviated PM-induced myosin light chain (MLC) phosphorylation. Conclusions: These results strongly suggest that Cx43 plays a key role in PM-mediated endothelial barrier disruption and signal transduction. Cx43 may be a therapeutic target in PM-mediated cardiopulmonary disorders.

Keywords: Particulate matter, gap junction, connexin 43, endothelial cell, barrier function

Introduction

Airborne particulate matter (PM) is a complex mixture of solid and liquid particles suspended in gas [1]. Epidemiologic studies showed that PM are associated with increases in morbidity and mortality, while also contributing to respiratory symptoms and heart disease [2]. In addition to leading to cardiovascular risk [3], inhalation of airborne PM generates a wide range of respiratory health effects, such as asthma, lung function deterioration, lung cancer, and chronic obstructive pulmonary disease (COPD) [4].

PM triggers multiple cellular responses in the respiratory system, including innate immunity, adaptive immunity, and the production of reactive oxygen species (ROS), which lead to pulmonary anatomic and physiologic remodeling [5]. Our lab has performed several studies to elucidate the mechanisms of PM-mediated vascular barrier dysfunction. Exposure of a murine asthma model to PM produced significant changes in airway hyperresponsiveness and stimulated a strong molecular signature of inflammatory/asthmatic gene expression [6]. Furthermore, using a monolayer human lung endothelium system, we verified that PM directly disrupted pulmonary endothelial cell (EC) barrier integrity through ROS-dependent P38 Mitogen-activated protein kinases (MAPK) activation [7, 8] and calpain-mediated tight junction protein degradation [9], thereby contributing to acute inflammatory lung hyperpermeability in vivo.
Gap junctions are membrane channels that regulate intercellular communication by permitting the exchange of ions (electrical communication) and small cell signaling molecules (chemical communication) [10]. These channels are composed of two hemichannels, in a homo or hetero manner, termed a connexon that oligomerizes with six connexin proteins [11]. It is widely accepted that alterations in gap junction organization and connexin expression are critical to vascular [12] and pulmonary inflammatory diseases [13].

Connexin 37 (Cx37), Connexin 40 (Cx40), and Connexin 43 (Cx43) are the predominant connexins expressed by pulmonary endothelial cells in mammals [14], and altered expression of these proteins contributes to the pathogenesis of acute lung injury, asthma, cystic fibrosis, idiopathic pulmonary fibrosis, and pulmonary hypertension [13, 15-17]. Exposure to multiple inflammatory stimuli, thrombin, Lipopolysaccharide (LPS) and cyclic stretch upregulates Cx43 expression in human pulmonary endothelial cells, resulting in changes in EC barrier function [18]. PM is a well-known risk factor that increases EC permeability; however, it is not known whether gap junction proteins participate in PM-induced cell signaling.

In the present study, we found that Cx43 was upregulated by PM exposure at both the mRNA and protein levels, and the truncated isoform at 20 kDa assisted Cx43 protein assembly between apposing cell plaques for gap junction channel formation through the Endoplasmic Reticulum (ER)/Golgi vesicular transport pathway. The increase in Cx43 expression was blocked by an ROS scavenger. Functional analyses of intercellular communication indicated that PM treatment increased Cx43 channel activity. In addition, inhibiting Cx43 activation (siRNA knockdown) alleviated PM-induced myosin light chain (MLC) phosphorylation (specific inhibitor peptide or siRNA knockdown) and attenuated PM-induced EC barrier dysfunction. Our results indicated that Cx43 mediated PM-induced EC barrier dysfunction through ROS-dependent regulation.

Material and methods

PM

PM samples (0.1-0.3 μm of aerodynamic diameter) were collected (April 2005) from Ft. McHenry Tunnel, Baltimore, MD, using a high-volume cyclone collector [7, 19]. No detectable endotoxin (LPS) contamination was found in the PM suspension (1 mg/ml) in water by an LPS Enzyme-linked immunosorbent assay (ELISA) kit (Uscn Life Science). The elemental composition (micrograms per gram) has been described previously [9].

Human endothelial cell culture

Human lung ECs were purchased from Lonza and cultured in endothelial growth media 2 (EGM2) complete medium (Lonza) according to the protocol as described previously [7]. All experiments were conducted using cells at passages 6-8. ECs were grown to 70% confluence and then transfected with Cx43-targeted siRNA (Dharmacon) by using siPORT Amine reagent (Ambion). After incubation with siRNA for 4 hr, the medium was changed to fresh complete culture medium for transfected cells, and the cells were cultured for 24 hr before use in subsequent experiments.

Real-time PCR

Total RNA was extracted using TRizol reagent (Life Technology) according to the manufacturer’s protocol. First-strand cDNA was synthesized from 1 mg of DNase I (Thermo)-treated RNA using the random primers p(N)6 and Maxima H Minus Reverse Transcriptase (Thermo). One microliter of the first-strand cDNA reaction was used as a template for real-time PCR using Taqman Probes and Universal Master Mix II (Life Technology). The GAPDH gene was used as an internal control. Real-time PCR was performed by using the CFX96 Touch Real-Time PCR Detection System (Bio-Rad). All reactions were performed in triplicate.

Western blot analysis

ECs were lysed with RIPA buffer and quantified using a BCA Protein Assay (Pierce). Twenty micrograms of protein were separated on 4-12% Bis-Tris Plus gels (Life Technology) and transferred to a nitrocellulose membrane (Bio-Rad). After being blocked with 5% BSA, the membrane was incubated with Cx43 C-terminal-specific antibodies (Abcam) or GAPDH antibodies (Pierce) prepared in 5% BSA buffer. Signals were visualized using a chemiluminescence detection kit (Thermo Fisher Scientific) and myECL imager (Thermo Fisher Scientific). The
PM increases Cx43

intensity of the individual bands was quantified using ImageJ software.

Transendothelial electrical resistance

The transendothelial electrical resistance (TER) assay was conducted as previously described [20]. Endothelial cells were seeded on gold microelectrodes and grown to confluence. TER was measured using an electrical cell-substrate impedance sending system (ECIS) (Applied Biophysics). The TER tracings represent resistance records, and reduced resistance indicates an increase in EC barrier disruption.

Immunofluorescence analysis

Human lung ECs were plated on collagen-coated glass coverslips and grown to 95% confluence before being exposed to 0.1 mg/ml PM for 4 hrs. Control and/or PM-treated cells were fixed in formalin for 10 min before being permeabilized with 0.25% Triton X-100 for 5 minutes. ECs were blocked in 5% BSA followed by incubation with the Cx43 primary antibodies (Abcam) overnight at 4°C. The amount of Cx43-binding was detected by using Alexa 488-conjugated secondary antibodies (Life Technology). Cell nuclei were stained with DAPI (Thermo). The coverslips were mounted in Gold Antifade Mountant (Life Technology). Images were taken by using a Zeiss microscope, and excitation and emission wavelengths at 488 nm and 509 nm were used to capture the Cx43 signal, while excitation and emission wavelengths of 353 nm and 465 nm were used for DAPI. Cx43 subcellular localization was determined by confocal microscopy (Leica SP5), and the ER and Golgi apparatus were indicated by PDI antibodies (Abcam) and 58K (Abcam), respectively.

Microinjection of gap junction tracers

Gap junction activation was measured by tracing dye coupling. Endothelial cells were cultured on coverslips to 95% confluence, and then one single cell was implanted with a micro-pipette containing 5 mM (2-(4-nitro-2,1,3-benzoxadil-7-yl) [aminomethyl] trimethylammonium) (NBD-TMA) [21, 22]. The injection was conducted with a micromanipulator that allows for small movements [23, 24]. Images were collected using a fluorescence microscope in a time lapse for 5 min following injection. To determine channel activation, the number of dye-transferred cells was counted in a blinded manner and compared between PM-exposed and control samples by Student’s t test.

Statistical analysis

Data are presented as the mean ± SEM for each experimental group. We performed statistical comparisons among treatment groups by randomized design and an unpaired Student’s t-test for two groups. Statistical significance was defined as P < 0.05. These statistical analyses were performed by using GraphPad Prism software version 9.5.

Results

PM induced Cx43 expression at the mRNA and protein levels

In addition to tight junctions and adherens junctions, gap junctions belong to another type of intercellular junction that mediates adjacent cell communication by regulating small molecular-weight protein and ion passage. The gap junction channel is named a connexon, which is an apparatus assembled by six homo or heteroconnexin proteins. In endothelial cells, three kinds of connexins were observed: Cx43, Cx40 and Cx37 [25]. To investigate the Connexin expression pattern in human lung endothelial cells, we performed RT-PCR using gene-specific primers. Cx43 and Cx37 were abundantly expressed, but Cx40 was not observed (Figure S1A).

Our previous study demonstrated that particulate matter exposure disrupted the endothelial barrier and induced inflammatory lung injury [7-9, 26]. To determine whether Cx43 and Cx37 contribute to PM-induced barrier dysfunction, we investigated Cx43 and Cx37 mRNA expression patterns during the time course of challenge with 0.1 mg/ml PM. Real-time PCR showed that Cx43 constantly increased until 24 hrs after PM exposure, and there was a peak at 4 hrs showing more than 5 times that of the control (Figure 1A). Cx37 exhibited a fluctuating pattern, increasing to 2-fold at 1 hr, then dramatically reducing at 4 hr and maintaining the same level until 24 hr (Figure S1B). At the protein level, Cx37 was not altered by challenge with PM, while Cx43 expression was upregulated at the mRNA level (Figure 1B).
PM increases Cx43

Figure 1. PM challenge mediates a continuously increased expression of Cx43 at both mRNA and protein levels. A. Real-time RT-PCR analysis confirms that Cx43 mRNA is increased by particulate matter (PM) (100 µg/ml) in a time-dependent manner. The bar graph indicates the relative mRNA level (vs. 0 hr) normalized to GAPDH. B. Western blot analysis of Cx43 proteins after PM stimulation (100 µg/mL) demonstrates time-dependent (0-24 hrs) increase of Cx43.

Figure 2. PM-induced Cx43 expression increase is determined by immunofluorescence staining. Distribution of Cx43 in control (upper) and 4 hrs PM-challenged (lower) ECs. Cx43 expression is detected by immunofluorescence (Green), and DAPI (Blue) is used to indicate cell nuclear. Images are a typical example of three separate experiments. The cell labeled with asterisk is shown enlarged on the right. Membrane associated and cytosolic Cx43 are both increased upon PM challenge. PM, Particulate Matter; ECs, endothelial cells.

Multiple Cx43 isoforms have been identified in the human heart, and the 43 kDa and 20 kDa isoforms are predominant [27]. In the human lung endothelium, we observed two isoforms, a 43 kDa band named gap junction a1 - 43k (GJA1-43K) and a 20 kDa band named GJA1-20K, which could be clearly blocked by transfection with Cx43-specific siRNA (Figure S2). As Figure 1B shows, the 43 kDa band was much stronger than the 20 kDa band and was clearly increased after 8 hr of PM challenge with 5 sec of image exposure. In addition, the 20 kDa protein was also dramatically increased after 2 hr of PM challenge, and the image exposure time was increased to 3 min. These results revealed that two Cx43 isoforms were present in human lung endothelial cells, and both proteins were upregulated by PM challenge.

Cx43 was enhanced in both the cytosol and membranes

Cx43 is a rapid turnover protein that is present in diverse subcellular locations. The Cx43 protein is synthesized in the endoplasmic reticulum and six individual proteins oligomerize to form hemichannels in the Golgi apparatus before assembling on the cell surface, in turn combining with adjacent cell hemichannels at intercellular plaques, which are termed full gap junction channels [11, 28]. To investigate the subcellular distribution of the PM-induced increase in Cx43, immunofluorescence analysis was conducted using a Cx43 C-terminal-specific antibody. In control monolayer cells, we observed gap junctional plaque-associated Cx43 at the membrane and intracellular Cx43 predominantly located at the perinucleus. After PM exposure for 4 hr, membrane and cytosolic proteins were dramatically enhanced (Figure 2), indicating that Cx43 protein expression was upregulated, and these data confirmed the western blot results. Taken together, PM upregulated cytosol and membrane Cx43 protein levels and increased cell-to-cell channel formation at adjacent cell plaques, suggesting an increase in channel activation.

PM increases gap junction channel activation

To determine whether the PM-induced increase in Cx43 expression alters intercellular communication, we microinjected single cells with NBD-TMA, a cationic dye used to test estimate
PM increases Cx43

Figure 3. PM-challenge enhances Gap junction communication competency compared to control ECs. Cell-to-cell communication was measured by microinjection of NBD-TMA in vehicle and PM-challenged for 4 hrs. A. Images are representative examples of NBD-TMA transfer in ECs. B. Bar graph indicates spread cell number after 5 min injection. PM challenge causes NBD-TMA transfer to more nearby cells. Error bars show SEM and \(^{*}p < 0.05\) versus vehicle. C. Time-lapse images sequence are recorded for 120 sec after injection. PM challenge causes more NBD-TMA transfer to nearby cells. Asterisks indicate the microinjected cells. White arrowhead indicates a nearby cell receiving transported NBD-TMA dye. PM, Particulate Matter; ECs, endothelial cells; NBD-TMA, (2-(4-nitro-2,1,3-benzoxadiol-7-yl) [aminoethyl] trimethylammonium).

Figure 4. N-acetyl-cysteine (NAC), a reactive oxygen species (ROS) scavenger, attenuates PM-increased Cx43 protein expression. Confluent ECs are pretreated with NAC (5 mM) for 1 hr and followed by PM exposure (100 µg/ml for 0-8 hr). Western blot data suggest that the increased pattern of Cx43 (both 43 kDa and 20 kDa) is blocked by NAC. ECs, Endothelial cells.

PM-induced Cx43 expression was increased through the ROS pathway

PM has been reported to stimulate oxidative stress in vascular endothelial cells by activating nicotinamide adenine dinucleotide phosphate (NADPH) oxidase [31], and we have demonstrated that PM-induced EC barrier disruption was mediated by an ROS-dependent pathway [7-9]. To determine whether the PM-induced increase in Cx43 expression was regulated by oxidative signaling, we used N-acetyl-cysteine (NAC), an ROS scavenger, to block ROS production. NAC pretreatment (5 mM, 1 hr) prevented the Cx43 (GJA1-43k and GJA1-20k) increase (both GJA1-43k and GJA1-20k) after 4 hr and 8 hr of PM exposure, and Cx43 was dramatically upregulated by PM treatment only (Figure 4). These results suggested that PM induced Cx43 transcription and protein production in an ROS-dependent manner.
PM increases Cx43

PM challenge induced Cx43 accumulation in the ER/Golgi apparatus

It has been demonstrated that the truncated isoform GJA1-20k localizes to the perinuclear ER/Golgi apparatus and acts as a chaperone auxiliary protein to promote full-length GJA1-43K protein assembly in gap junction plaques, resulting in channel formation [27]. A detailed understanding of Cx43 cellular localization may uncover the mechanism of PM challenge in ECs. To identify Cx43 localization, high-resolution immunofluorescence analysis was performed using PDI and 58K proteins as biomarkers of the ER and Golgi apparatus, respectively. As Figures 5 and 6 show, noncytosolic Cx43 protein colocalized with PDI and/or 58k protein. After PM stress for 4 hrs, more perinuclear Cx43 protein was produced and anchored in the ER and Golgi (Figures 5 and 6). PM regulates gap junction channel activation by stimulating GJA1-20K protein translation, which is then retained at the ER/Golgi, assisting GJA1-43K trafficking to cell plaques.

Cx43 contributed to PM-induced EC barrier disruption

Our previous experiment demonstrated that PM disrupts endothelial cell barrier integrity, resulting in enhanced organ dysfunction [7]. Cx43 participates in permeability alterations in ECs stressed by multiple inflammatory factors, such as thrombin and LPS [18]. We performed a TER assay to investigate whether Cx43 contributes to PM-induced endothelial permeability changes. Pretreatment with the selective Cx43 inhibitor GAP27 (60 nM) for 2 hr attenuated PM-induced barrier dysfunction by 45% (Figure 7B). This result was also verified by siRNA-mediated knockdown. The siRNA fragment targeting Cx43 was transfected into ECs, while the control had no siRNA, and there was significant ablation of the Cx43 protein (Figure 7A). Compared to control cells, Cx43 siRNA-treated cells showed 15% TER recovery under PM challenge, while Cx43 siRNA-treated cells without PM remained at baseline (Figure 7A).

To characterize the molecular mechanisms of Cx43-mediated EC barrier dysfunction, we examined the phosphorylation level of myosin light chain (Thr18 and Ser19), and the increase revealed paracellular gap formation that favored barrier disruption [32, 33]. In our study, PM challenge of human lung ECs for 15 min resulted in an increase in MLC phosphorylation at Thr18 and Ser19, and this phosphorylation remained at basal levels in PM-induced Cx43-knockout cells (Figure 7B). Taken together,
PM increases Cx43

Figure 6. PM-challenge induces Cx43 accumulation in Golgi apparatus. Confluent ECs are treated with PM exposure (100 µg/ml for 4 hr) and fixed in 4% paraformaldehyde. Immunofluorescence is performed by using Cx43 antibody and Golgi specific marker 58K antibody, and compartment colocalization is imaged using Confocal (Leica SP5) at X 63 objective. These results indicate that PM-stress stimulates Cx43 vesicular transport and increase Gap Junction assembly. PM, Particulate Matter; ECs, endothelial cells.

Figure 7. Blocking Cx43 activation abolishes PM-induced myosin light chain (MLC) phosphorylation, resulting in attenuation of PM-induced trans-endothelial electrical resistance (TER) reduction. A. ECs are transfected with specific siRNA of Cx43 leads to decline PM-induced ECs barrier disruption. TER is continually recorded for 11 hrs after PM exposure. Bar graphs indicate PM-induced TER reduction at 10 hr, and compared to non-inhibited ECs. Arrows indicate PM exposure (100 µg/ml). Western blot demonstrates Cx43 protein silencing. CNTL: Control. B. MLC phosphorylation level is stimulated by PM challenge (15 min) in ECs, while it is blocked in Cx43 silenced cells. PM, Particulate Matter; ECs, endothelial cells.

these results indicate that Cx43 contributes to PM-induced EC permeability by regulating MLC phosphorylation, which is a critical factor in cell contraction.

Discussion

Intercellular communication refers to the exchange of ions, metabolites, and water, which are essential for maintaining cellular function and signal transduction, and gap junction channels directly mediate this process. Gap junction channels form by connexin protein oligomerization, and six connexin proteins assemble into hexameric subunits termed connexons or hemichannels, which dock at cell plaques with complementary hemichannels provided by the apposed cell [34]. Connexin 43
(Cx43) is one of the most ubiquitously expressed gap junction proteins in vertebrate tissues [11]. In addition to mediating heart diseases, Cx43 has been characterized in various pulmonary inflammatory diseases, such as acute lung injury, cystic fibrosis and asthma [13, 35, 36]. Vascular endothelial cells act as a semiselective barrier to resist devastating inflammatory syndromes by preventing fluid and solute flux across the blood vessel wall. Increased vascular permeability resulting from the disruption of EC barrier integrity is a cardinal feature of inflammatory lung injury [37].

In the present study, we found that Cx43 was expressed in human lung endothelial cells and was upregulated by PM stress in an ROS-dependent manner. Increased Cx43 aggregated in the cell membrane through the ER/Golgi vesicular transport pathway, increasing gap junction channel formation, which in turn enhanced channel activation. We also demonstrated that Cx43 contributes to PM-induced EC barrier disruption by controlling MLC phosphorylation. Our results indicated that Cx43 mediates the PM-induced EC permeability increase.

Cx43 contains four transmembrane domains (M1, M2, M3 and M4), two extracellular loops (E1 and E2), one intracellular loop (IL) and the amino and carboxy-terminal parts (NT and CT, respectively), which are intracellular [38]. A recent study described multiple Cx43 isoforms generated by the same mRNA sequence in human heart tissue, and 43 kDa and 20 kDa were the predominant forms. The 20 kDa isoforms docked at the ER/Golgi apparatus and was essential for full-length protein trafficking to the cell plaque to build a complete gap junction channel [27]. Similar to that in heart tissue, we observed two Cx43 isoforms in human lung ECs (43 kDa and 20 kDa) by immunoblot analysis, and both of these proteins were upregulated by PM stimulation over time. These results were also confirmed by high-resolution immunofluorescence images. After PM stress for 4 hrs, in addition to an increase in cell membrane proteins, an enhanced signal was observed at the ER and/or Golgi apparatus, suggesting that PM upregulated the two isoforms of Cx43, while the 20 kDa isoform served as a chaperone protein that assisted transport of the 43 kDa protein (may appear as a hexamer subunit) to intercalated discs and to form a fully activated channel. Cx43 can be directly delivered to the plasma membrane by dynamic cytoskeletal proteins, including the microtubule plus-end tracking proteins EB1 and p150 (Glued) and β-actin [39-41]. It would be intriguing to verify the mechanism by which the 20 kDa isoform protein facilitates Cx43 trafficking to cell-cell junctions in EC.

We and others have found that PM increases intracellular and/or extracellular ROS generation, resulting in the direct induction of oxidative stress in vascular endothelial cells [7, 31, 42]. Here, we reported that the PM-induced increase in Cx43 was an underlying ROS-dependent process in EC. In cultured cardiomyocytes, exposure to the ROS hydrogen peroxide (H$_2$O$_2$) induced a ROS-Cx43 positive feedback loop in which ROS upregulated Cx43 expression and Cx43 induced intracellular ROS production [43]. However, whether Cx43 acts as a protective or detrimental factor in response to ROS-induced oxidative stress is still under debate [44, 45]. In our previous study, PM-induced ROS production was shown to be directly involved in EC barrier dysfunction [7]; currently, we demonstrated that inhibition of Cx43 attenuated the PM-induced decrease in EC barrier function. We anticipate that a similar positive feedback loop may occur in ECs in response to PM challenge. The increase in Cx43, which is regulated by PM exposure in an ROS-dependent manner, supported ROS accumulation.

The key event in endothelial barrier disruption properties the increase in MLC phosphorylation leading to cell contraction [32]. Cx43 exacerbates human lung vascular permeability induced by thrombin, a barrier-disrupting protease [18, 46], and this effect may be modulated by increased MLC phosphorylation, which alleviates Cx43 blockade activation [18]. Similarly, in rat pulmonary vein vascular endothelial cells, Cx43 increases vascular permeability by increasing MLC phosphorylation by the activity of the RhoA/RACK kinase pathway [17]. In our study, Cx43 knockdown attenuated PM-induced MLC phosphorylation; however, further investigation is needed to determine whether this effect is mediated by RhoA kinase or Ca$^{2+}$/calmodulin-dependent myosin light chain kinase signaling. PM induces calcium
PM increases Cx43

leakage in EC [9], and Cx43 is a critical factor that induces secondary Ca\(^{2+}\) increases in the adjacent capillary networks in mice [46]. We demonstrated that cellular communication was enhanced by PM exposure. Therefore, we hypothesize that Cx43 may spread the PM-induced proinflammatory response by controlling Ca\(^{2+}\) release.

Based on previously reported data and our present results, we suggest a detrimental role of Cx43 in PM-induced EC permeability (Figure 8). PM exposure upregulates the expression of the gap junction protein Cx43, both the full-length 43 kDa isoform and the truncated 20 kD isoform. The ER/Golgi apparatus-associated 20 kDa protein serves as a chaperone to facilitate hexamer polymerization of the 43 kDa isoform and transport to intercalated discs to form an integrated gap junction channel with another hemichannel provided by the opposed cell. Increased channel activation enhances PM-induced inflammatory spread by stimulating Ca\(^{2+}\) in adjacent cells, resulting in MLC phosphorylation and modulating cytoskeletal arrangement and cell contraction. These processes are under the oxidative-dependent signaling pathway. The ability of PM to regulate Cx43 function provides a mechanistic framework for understanding how Cx43 participates in lung injury and diseases.

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Liming Zhang, Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China. Tel: +86-10-51718813; E-mail: cyyzxlm@sina.com; Dr. Ting Wang, Center of Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA. Tel: 772-345-4716; E-mail: tinwang@fiu.edu

References

PM increases Cx43

[14] Johnson LN and Koval M. Cross-talk between pulmonary injury, oxidant stress, and gap junc-
PM increases Cx43

PM increases Cx43

Figure S1. A. RT-PCR confirms that Cx37 and Cx43 are abundantly expressed in human pulmonary endothelial cells (HPAECs), but Cx40 was not detected. B. Cx37 mRNA expression fluctuates under PM stress.

Figure S2. Cx43-specific siRNA abolishes Cx43 kDa and 20 kDa isoforms.