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Abstract: Drug repurposing, also known as drug repositioning, entails the application of pre-approved or formerly 
assessed drugs having potentially functional therapeutic amalgams for curing various disorders or disease con-
ditions distinctive from their original remedial indication. It has surfaced as a substitute for the development of 
drugs for treating cancer, cardiovascular diseases, neurodegenerative disorders, and various infectious diseases 
like Covid-19. Although the earlier lines of findings in this area were serendipitous, recent advancements are based 
on patient centered approaches following systematic, translational, drug targeting practices that explore patho-
physiological ailment mechanisms. The presence of definite information and numerous records with respect to 
beneficial properties, harmfulness, and pharmacologic characteristics of repurposed drugs increase the chances 
of approval in the clinical trial stages. The last few years have showcased the successful emergence of repurposed 
drug immunotherapy in treating various diseases. In this light, the present review emphasises on incorporation of 
drug repositioning with Immunotherapy targeted for several disorders.
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Introduction

In highly competitive therapeutic and pharma-
ceutical industrial settings, drug repurposing 
immunotherapies are favored over the “de 
novo” approaches of drug discovery [1]. Drug 
repurposing is an approach which involves  
finding new indications for pre-existing, FDA 
approved, endorsed, vastly characterized medi-
cations used in different medical, experimen-
tal, or clinical backdrops [2]. These drugs could 
also be known to be failures in original indica-
tions but could hold a potential in curing vari-

ous atypical and multifaceted terminal diseas-
es depending on their structural as well as func-
tional characteristics (Figure 1). The advance-
ment of novel or new drugs is estimated to take 
approximately 15-20 years costing a valuation 
of USD ~3-5 billion to create and launch a drug 
into the market [3]. On the other hand, repur-
posed drugs are preapproved in terms of certi-
fied formulations, safety and preclinical exami-
nations, with known pharmacokinetic reports 
from the primary stages of clinical tests. As a 
result, it is a more practical and efficient option 
with a reduced risk of failure [4]. 
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Many repurposed drugs were identified by a 
cause of unanticipated and serendipitous 
encounters. One of the well-known candidat- 
es is OnabotulinumtoxinA (BOTOX®; Allergan) 
which has eight distinctive sanctioned indica-
tions [5]. An unsuccessful chemotherapy drug, 
known as azidothymidine, worked well in curing 
human immunodeficiency virus [6]. With each 
passing year, a search for swifter, cost-effective 
and novel techniques is rising in the drug dis-
covery and development sector. It demands 
advances in large data depositories and allied 
investigative techniques. This has gained atten-
tion in developing orderly approaches to drug 
repositioning. Diverse pioneering translational 
bioinformatics-based methods are empower- 
ing systematic repurposing screenings [7]. A 
research team has invented a progressive, 
commanding, and state-of-the-art artificial 
intelligence (AI) and network medicine technol-
ogy that can accelerate remedial expansion [8]. 
The present review describes some of the main 
methodologies in drug repurposing immuno-
therapy, the means of successful applications 
of existing compounds to new symptoms, and 
their benefits to the society as well as the phar-
maceutical industry.

Repurposing immunotherapy in cancer 

One of the most advanced treatments in the 
cancer field is immunotherapy which aids the 

immune system to fight the disease [9]. The 
immune system which is composed of white 
blood cells and tissues of the lymphatic system 
identify and fight against cancer [10]. However, 
a dynamic microenvironment of malignant cells 
makes them unrecognizable and hides them 
from immune cells [11, 12]. The M2 vs M1 mac-
rophage recruitment paradigm executes a cru-
cial function in tumor succession [13, 14]. 
Conventional immunotherapy involved the use 
of remedies that either improved the cell’s 
defense mechanism against cancer or inhibit-
ed the tumor’s efficacy to disguise the antigens 
in the system [15]. In 1972, the very first case 
of drug repurposing was reported for treating 
leukemia with the help of a hypertoxic Arsenic 
trioxide which was used in traditional chinese 
medicine [16, 17]. A drug previously used for 
morning sickness, the Thalidomide along with 
its analogues like thalidomide, lenalidomide 
and pomalidomide are repurposed for treating 
multiple myeloma [18, 19]. Many clinical trials 
involving engineered T cells, natural killer (NK) 
cells, Adoptive cell therapy etc. have exhibited 
promising outcomes in a variety of malignant 
conditions [20-22]. However, the restrictions 
involved in these approaches open the room 
for improvement in terms of efficiency, cost 
effectiveness and time consumption. These 
limitations could be resolved by combining the 
repurposing of drugs with immunotherapy. It 
would not only decrease the expense and 

Figure 1. Drug repurposing strategy. This figure was created using the Servier Medical Art Commons Attribution 3.0 
Unported Licence (http://smart.servier.com).
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necessity of trial or testing but would also 
reduce the time that accompanies novel drug 
research [23]. Lately, numerous in silico 
advances and high-performance assessment 
techniques have been established to assist 
drug repurposing practice [24, 25]. Based on 
the structure-activity relationship (SAR), vari-
ous drugs have been evaluated to explore anal-
ogous clinical indications using electronic tools 
like Protein Data Bank and DrugPredict etc. 
[26-29]. Databases like the Library of Integrated 
Ntework-based Cellular Signatures are efficient 
in classifying drugs amongst similar transcrip-
tional signatures for drug repositioning [30]. 
Human transcriptome and interactome data 
were combined in a recent study that took a 
network medicine strategy to screening diag-
nostic and prognostic biomarkers and exploring 
medication repurposing in human cancer [31]. 
One report presented a wide-ranging graphic 
analytics tool, ClinOmicsTrailbc, which exam-
ines epigenomics and transcriptomics data- 
sets to distinguish as well as assess the tumor 
mutational burden, and biomarkers etc. [32]. 
The user-friendly databases like repoDB and 
repurposeDB combine data about clinical con-
sequences of drug repurposing [33-35].

The immune checkpoint inhibitors (ICIs) are 
monoclonal antibodies that block receptors like 
TIM-3, cytotoxic T-lymphocyte-associated pro-
tein 4 (CTLA-4), LAG-3, programmed cell death-
1 receptor (PD-1R) or anti-PD-L1 [36]. This aug-
ment T-cell activity, stemming an expansion in 
antineoplastic immunity which leads to de- 
molition and eradication of tumor cells [37]. 
However, eventually, these immunotherapeutic 
means failed to control the disease due to the 
acquired resistance in cancer patients. When 
repositioned drugs were combined with ICIs, a 
remarkable improvement was observed with 
respect to antitumor immunity. For example, 
Metformin, a type 2 diabetes drug was report-
ed to escalate CTL levels by destabilizing and 
misbalancing membrane localization of PD-L1 
by triggring AMP-activated protein kinase 
(AMPK) and thereby inducing ER-associated 
protein degradation (ERAD) via S195 phosphor-
ylation of PD-L1 [38]. Li et al. (2020) executed 
calcium flux blockade by Amlodipine which acti-
vate PD-L1 degradation and stimulated antitu-
mor immunity. Cytokines, the ~30 KDa glyco-
protein or polypeptide signaling molecules are 

paracrine facilitators [39]. Their pro-apoptotic 
and cytotoxic properties have been explored in 
cancer research as prospective drugs in combi-
nation with advanced immunotherapies to revi-
talize the immune system against cancer suc-
cession [40]. Mansurov et al., inactivated the 
immunotoxic properties of IL-12 by modifying 
its conformation using tumor-protease-cleav-
able linker [41]. Lately, studies have catego-
rized novel T cell adapting remedies by pheno-
typical assessment of chemical libraries [42, 
43]. Marro et al., reported ingenol mebutate, a 
compound identified from a chemical library 
created on ReFRAME drug-repurposing collec-
tion, that expanded the endurance of wearied 
CD8+ T cells and provided immunity against 
LCMV infection and suppressed tumor progres-
sion inside the B16 sarcoma model [44]. These 
repurposed drugs possess the capacity to 
exhibit synergy with existing checkpoint-block-
ade immunotherapies. 

In the tumor microenvironment (TME), the 
tumor puts the immune cells under metabolic 
stress by modulating the metabolic networks 
for its progression. Therefore, reprogramming 
the TME by means of drug repurposing may 
increase the efficiency of cancer immunothera-
py [45]. Numerous examples of efficacious 
drug repurposing for Cancer immunotherapy 
are summarized in Table 1.

The Warburg effect postulates that cancer cells 
gain energy more efficiently via glycolysis than 
oxidative phosphorylation. This rises lactic acid 
levels and makes the pH of TME acidic and 
heightens immunosuppressive properties of 
TME by preventing the propagation of CTLs [13, 
46]. Lactate dehydrogenase (LDH), an enzyme 
involved in the glycolytic conversion of pyruvate 
to lactate, can be inhibited to slow tumor 
growth. Although, galloflavin was shown to dis-
able LDH, it was also found to decrease inter-
feron gamma (IFN-γ) levels by T-cells. In a glio-
ma model, diclofenac an non-steroidal anti-
inflammatory drug (NSAID) was reported to 
decrease the acidic levels of TME and obstruct 
cancer proliferation [47]. Inhibiting the PI3- 
KeAKTemTOR network was found to downregu-
late the glycolysis. Amino acid metabolism 
stimulates the tumor’s growth as well as endur-
ance with the help of building block synthesis, a 
decline in oxidative stress, and immune circum-
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Table 1. Drug repurposing cases for treating malignant systems

Sr No. Original indication Name of the 
Drug

Repurposing immunotherapy 
used for treating type of cancer Mode of action Reference

1 Bone remodeling Denosumab Melanoma M1 macrophage activation
T-cell activation
Production of nuclear factor kappa B
Dendritic cell survival and function

[23, 157]

2 Antibiotic Doxycycline Breast cancer Suppression of stem cell marker
Inhibition of Autophagy

[158, 159]

Tigecycline Ovarian cancer/Myeloid leukemia Inhibition of mitochondrial translation
Suppression of MYC, HIFs, PI3K/AKT or AMPK-mediated mTOR, 
cytoplasmic p21 CIP1/Waf1, and Wnt/β-catenin signaling

[160]

3 Viral Infection Ritonavir Ovarian cancer/Melanoma AKT signaling Suppression
Apoptosis

[161]

4 Antiretroviral Drug-HIV-1 
integrase (IN) inhibitor

L-870810 Cancer Cytotoxicity
Blocking oncogenic kinases

[162, 163]

5 Anti-neurodegenerative 
agent

Benserazide Colon cancer
Melanoma

Suppression of M2 splice isoform of pyruvate kinase (PKM2) [164, 165]

Riluzole Pancreatic Cancer Suppressing the Wnt-β-catenin pathway [166]
6 Anti-bacterial agent Ciprofloxacin Colon cancer Reversal of MDR [17, 167]
7 Fungal infection Enilconazole Colorectal cancer Suppression of PI3K/AKT pathways [168]
8 Malaria Chloroquine Glioblastoma Autophagy inhibition

Reduction of tumor hypoxia
[169]

9 Antipsychotic drugs Chlorpromazine Glioblastoma Inhibition of cytochrome c oxidase [170]
Risperidone Colorectal Cancer Apoptosis

Anti-proliferative activity
[171]

10 Antidepressants All-trans retinoic 
acid (ATRA)

Acute myeloid leukemia Suppression of PKCβ, MEK/ERK and Akt activity [172]

11 Cardiovascular Prevention/
antihypertensive drug

Losartan Ovarian cancer Apoptosis
Decrease in fibroblast infiltration
Lower expression of collagen (Col)-I (Col)-III
Lower expression of alpha smooth muscle actin (Acta2)

[173]

Enalapril Colorectal cancer Activation of nuclear factor-κB (NF-κB) signaling proteins
Upregulation of vascular endothelial growth factor (VEGF) expression
Anti-proliferative activity
Apoptosis

[174]

Valsartan Gastric cancer Regulation of PI3K/AKT Pathways [175, 176]
Telmisartan Lung cancer/Gastric cancer Induction of apoptosis

Inhibition of cadherin-mediated activation FGFR signaling
Inhibition of the PI3K/AKT pathway

[177]
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Irbesartan Prostate cancer Renin-angiotensin blockade [176]
Benazepril Esophageal carcinoma Inhibition of Ki-67 nuclear protein

Inhibition of angiogenesis
[178]

Digoxin Prostate cancer Inhibition of VEGF
Inhibition of angiogenesis

[179]

Fluvastatin Breast cancer
Renal cancer
endometrial cancer (EC)
Lung adenocarcinoma

Expression of Sirtuin 6 (SIRT6)
Activation of mTOR pathway
Endoplasmic reticulum (ER) stress leading to aggresome formation
Anti-proliferative activity
Apoptosis

[180, 181]

Propranolol Malignant Melanoma Suppression of ERK/Cyclin D1/Rb/Cyclin E pathway
Stimulation of G0/G1/S phase arrest

[182]

Anti-inflammatory drugs Ibuprofen Gastric cancer Apoptosis
Inhibition of cell proliferation
Inhibition of cyclooxygenase

[183, 184]

Abbreviations: MYC, MYC Proto-Oncogene; HIF, Hypoxia-inducible factor; PI3K, phosphoinositide 3-kinases; AMPK, AMP-activated protein kinase; mTOR, Mammalian target of rapamycin; p21 CIP1/Waf1, 
cyclin-dependent kinase inhibitor p21; Wnt, Wingless-Type; Akt, Ak strain transforming; PK, pyruvate kinase; MDR, Multidrug resistance; PKCβ, Protein kinase C-β; ERK, Extracellular signal-regulated kinase; 
MEK, Mitogen-activated protein kinase kinase MEK; Col, collagen; Acta, alpha smooth muscle actin; NF-κB, nuclear factor-κB; VEGF, vascular endothelial growth factor; FGFR, fibroblast growth factor receptor; 
SIRT6, Sirtuin 6; ER, Endoplasmic reticulum.
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vention provokment [48]. Therefore, inhibition 
of indoleamine 2,3-dioxygenase (IDO), an en- 
zyme responsible for the breakdown of trypto-
phan was found to be effective in augmenting 
antitumor immunity of the subjects in liver can-
cer [49, 50]. In this regard, Imatinib was also 
reported to enhance antitumor immunity by 
activation of effector T cells. Leone et al., 
reported expansion of antitumor activity of T 
cells upon using glutamine antagonist 6-diazo-
5-oxo-L-norleucin (DON) or its prodrug JHU-083 
as a treatment for cancer therapy which sup-
ported tumor suppression [51]. Byun et al., also 
reported a synergic effect of Glutamine inhibi-
tion with ICI in supporting immunity against 
cancer [52]. Many studies have that adoptive T 
cell therapies are proven to be efficient in can-
cer treatment involving anti-CD19 chimeric 
antigen receptor (CAR) T cells and TILs. Many 
reviews have provided excellent information on 
these powerful treatment alternatives [53-55]. 

Oncolytic viruses were shown to work as an 
antigen-agnostic vaccine for various cancer 
conditions within the TME by activating innate 
immunity involving macrophages, dendritic 
cells, and NK cells [56]. As a response, 
OV-infected tumor cells get demolished. The 
expansion and accumulation of activated T 
cells within the TME results in elimination of 
cancer cells. Vijayakumar et al., showed the 
efficient synergy of Newcastle disease (ND) 

virus expressing anti-CTLA4 single chain vari-
able fragment (scFv) with radiotherapy for 
boosting immune cell activity against murine 
melanoma [57]. Shekarian et al., provided a 
preclinical validation in support of intramural-
attenuated rotavirus to prevent resistance 
towards immune checkpoint immunotherapies 
in pediatric cancers by expressing double-
stranded RNA receptor retinoic acid-induced 
gene-I (RIG-I) [58]. In this regard, many 
advanced approaches are being explored to 
treat numerous cancer conditions [56, 59-61]. 
Nanoparticle (NP)-centered drug transport 
schemes are being explored intensively for 
attaining targeted delivery of several antineo-
plastic mediators, counting small molecule 
drugs, monoclonal antibodies, DNAs, and siR-
NAs to the cancer sites [23]. Kadiyala et al., 
showed efficacy of a synthetic high-density lipo-
protein nanodiscs for chemo-immunotherapy 
for treating glioblastoma [62]. Feng et al., evalu-
taed the efficiency of a prodrug nanoparticle in 
shunting the cancer proliferation and blocking 
metastasis in murine models of the breast as 
well as 4 colorectal cancer [63]. Figure 2 exhib-
its a schematic illustration of a few drugs that 
have been used to treat various malignancies.

Repurposing immunotherapy in cardiovascu-
lar diseases

Despite the development of novel therapeutics 
and medical innovations, cardiovascular dis-

Figure 2. Schematic illustration of drugs that have been used to treat various malignancies.
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eases (CVD) continue to rank higher as a major 
contributor to the mortality index of the world. 
Drug repurposing can play a pivotal role to 
improve the treatment regime for the selection 
of the best drugs without or with minimum side 
effects. While the success rate of generating a 
new molecular entity is only 2.01%, the field  
of drug repurposing is gaining popularity [64], 
and the number of approved drugs has declin- 
ed in the past three decades. In the pharma-
ceutical sector, drug repurposing accounts for 
roughly one-third of approvals over the past 
decade. It is considered as a direct applica- 
tion of polypharmacology where one drug mol-
ecules target multiple genes/proteins or dis-
ease pathway.

Initially, atherosclerosis was considered as  
an accumulation of lipoprotein in the arterial 
wall. With the advancement in decoding the  
disease pathophysiology, the role of inflamma-
tion was also recognized equally in cardiovas-
cular diseases [65, 66]. Inflammation is medi-
ated by pro-inflammatory cytokines, chemo-
kines, lipids, and adhesion molecules [67-69]. 
Fernandez-Gutierrez et al., highlighted the rele-
vance between CVD and inflammation and  
suggested that the occurrences of inflammato-
ry diseases like systemic lupus erythematous, 
arthritis, and psoriasis increase the risk of CVD 
[70]. Thus, a treatment involving the blockade 
of the inflammatory cytokines could hold a 
potential of health improvements in CVD pa- 
tients, clinically [71] and the immunomodulato-
ry effects of ketogenic diet reduces inflamma-
tion in various immune disorders including 
CVDs [72]. Pro-inflammatory cytokines include 
IL-1, IL-6, IL-18, and tumour necrosis factor 
(TNF), while IL-1R antagonists, IL-10, IL-19, and 
IL-33 antagonize inflammation [73]. Inflamma- 
tion and disturbed immune system evokes 
occurrences of CVD and others. The increased 
level of inflammation is a challenge to clinicians 
as it predisposes an individual towards devel-
oping end organ comorbidities. Activated lym-
phocytes and monocytes run towards the endo-
thelium, which penetrates the arterial wall and 
thus induce atherogesesis [74]. The healing of 
injury induced by the above cytokines favours 
the formation of atherosclerotic plaques which 
further increase the risk of plaque rupturing 
and may result in thromboembolic events [75]. 
Moreover, the availability of monoclonal anti-
body-based immunotherapies targeting pro-

atherogenic cytokines paves a path to address 
the role of immunotherapy in CVD [76]. 

Interestingly, cancer and heart failure interact 
with each other in a bidirectional way [77, 78]. 
It has been studied by Armenian et al., that 
89% of lung cancer patients possess high risk 
of developing atherosclerosis [79]. In fact, the 
low grade inflammation is associated with the 
release of TNF-α, interlukin (IL)-1β, IL-6 and 
IFN-γ which increase the risk of heart disease. 
Anti-TNF-α therapy (Infliximab, Adalimumab, 
Certolizumab etc.) was associated with a 
reduced risk of all cardiovascular events [80]. 
Canakinumab (anti-IL-1), and Toclizumab (anti-
IL-6) are the candidate of choice as immuno-
therapeutic agents to manage the inflam- 
matory status. Canakinumab Anti-Inflmmatory 
Thrombosis Outcome Study (CANTOS) trial is 
one of the largest trials in the series of anti-
cytokine immunotherapy which hints the roles 
of inflammation in triggering both CVD and can-
cer. The mature B lymphocytes are involved in 
the mobilization of inflammatory monocytes in 
the heart which leads to the declined heart 
function [81]. Rituximab was the first monoclo-
nal antibody approved for cancer patients. It 
was developed in the form of anti-CD20 mole-
cules [82] that caused depletion in normal and 
malignant B cells. Many studies are supporting 
CAR-T cell therapy as an interesting therapeutic 
option for treating several malignancies with 
respect to its anti-imflammatory effects on  
various functions of the heart [83]. Tocilizumab, 
a monoclonal antibody targeting IL-6 receptors 
used for the treatment in RA was found equ- 
ally effective in myocardial injury [84]. Another 
monoclonal anti-IL-17 antibody, secukinumab, 
has been approved to treat arthritis and psoria-
sis, and it has been shown to improve myocar-
dial function parameters like the global longitu-
dinal strain rate during early diastole and left 
ventricular twisting, as well as the coronary flow 
reserve and pulse wave velocity.

The above facts strongly highlighted the key 
role of inflammation in the onset and progres-
sion of CVDs. However, the knowledge about 
the side effects of anti-inflammatory drugs lim-
its the possibility to see their potential role in 
the cardiovascular field. With the support of 
various medical evidence, drug repurposing 
could be considered as a powerful strategy that 
offers a great hope in the treatment regime of 
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the cardiac ailments within a clinically attain-
able safety range. 

Repurposing immunotherapy in infectious 
disease

Infectious diseases continuously pose a signifi-
cant burden to human health with a high rate of 
morbidity and mortality and are considered 
globally in the top 10 in mortality rate [85]. 
Globally, it is estimated that every third death 
results from an infectious disease and is pre-
dicted to acquire the highest contributor of 
mortality by the year 2050. The outspread of 
infectious diseases was majorly caused by 
viruses, bacteria, fungi, and protozoans which 
augmented weaker immunity. The WHO’s an- 
nual data estimated 300-500 million people 
infected with malaria, over 330 million with se- 
xually transmitted diseases, 33 million cases  
of HIV/AIDS, and 14 million with tuberculosis. A 
recent survey carried out by the national sam-
ple survey organization (NSSO) estimated that 
over 30% of people in India are suffering from 
infectious diseases [86]. The prevalence of 
acute and chronic infectious diseases has  
been further challenging to mitigate after rap-
idly evolving resistance against frontline clini- 
cal therapies and most of the conventional 
treatments seem to be ineffective to work. The 
most recent, Covid-19 pandemic infection out-
break with higher morbidity and mortality rate 
throughout the different continents of the 
world, and no standalone therapy is available 
even today [87]. It is a serious concern to 
search for various strategies to resist such ail-
ments. Much attention has been drawn to 
repurposing the existing therapies and drugs. 
Collectively, immunotherapies can be defined 
as the collection of treatments which able to 
boost the human immune system in such a pre-
cise way to promptly fight against infectious  
diseases. It is well-stated that infectious patho-
gens are not able to clear up, and remain pres-
ent in the host when immunity gets weakened. 
Immunotherapy treatment can potentiate im- 
mune responses that will help to eradicate 
pathogens and fight against threats. Mecha- 
nistically, immunotherapy can either be passive 
which synthesizes ex-vivo and injected in the 
host for protection. In contrast, active immuno-
therapy induces immunological memories in 
the host using active effectors or virulence fac-
tors. Over a period, different immunotherapies 
have been investigated and tested to mitigate 

several infectious diseases. Immunomodula- 
tory molecules, cell therapies, Monoclonal anti-
bodies, and vaccines are such prominent 
examples of immunotherapy that have been 
successfully employed against infectious dis-
eases. For a long time, vaccines symbolize the 
foremost immunotherapy used to protect hosts 
against different diseases. The success of the 
vaccine lies in an immunization program of vac-
cine run over a decade which has successfully 
eradicated polio and smallpox, as devastating 
diseases from India. Henceforth the research 
on vaccines has been shifted last few decades 
to find out their new activities (repurposed) 
against different infectious diseases. Some of 
the prominent examples of vaccines have been 
repurposed for the protection of infectious dis-
eases. The promising BCG vaccine is a formula-
tion of live attenuated Mycobacterium bovis. It 
is a standalone vaccine for the treatment of 
tuberculosis over the last 100 years. The effi-
cacy of BCG was also repurposed for the treat-
ment of non-muscular bladder cancer and mel-
anoma. However, BCG has emerged as an adju-
vant to cancer treatment without any success-
ful completion of clinical trials. 

The long-term phase-3 trial of the BCG vaccine 
was carried out on colon cancer patients and 
showed a promising result in overall survival 
when it was injected as an adjuvant after sur-
gery [88, 89]. Linezolid, marketed under the 
brand name Zyvox, is an antibiotic from the  
first generation. It works by blocking the pro-
duction of proteins in bacteria. When bound  
to bacterial ribosomes, it prevents the produc-
tion of functional 70S ribosomes and slows 
down the translation process [90, 91]. In the 
past, linezolid was only used to treat infec- 
tions caused by gram-positive bacteria like St- 
aphylococcus aureus. Despite showing excel-
lent antibacterial capabilities, linezolid’s usage 
against drug-resistant tuberculosis (DR-TB) is 
time-limited due to its neurological adverse 
effects [90]. Both Moxifloxacin and Gatifloxacin 
are fourth-generation antibiotics derived from 
fluroquinolone class of medicines. The major 
purpose of these medicines is to limit the enzy-
matic activity of DNA gyrases and topoisomer-
ase-IV, therefore preventing the replication of 
DNA in bacteria and other microorganisms [92, 
93]. It was first approved for use against skin 
and stomach germs, but its encouraging effect 
led experts to conclude that it was also a safe 
candidate for treating tuberculosis [94]. While 
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clofazimine’s approval [95] is limited to treat- 
ing leprosy, the antibiotic’s antibacterial anti-
inflammatory characteristics have been found 
to be highly effective in combating multidrug-
resistant and extensively drug-resistant tuber-
culosis [96]. Similar to how the antibacterial 
drugs sanfetrinem cilexetil, spectinamide, me- 
ropenem, and faropenem were initially devel-
oped to treat various bacterial infections, they 
were later found to have a novel role against 
tuberculosis [97-99].

The Diptheria vaccine contains inactivated  
toxins that potentially protect the host from 
Corynebacterium diphtheriae infections. Di- 
fferent trials of the diphtheria vaccine com-
bined with the tetanus vaccine (Td) have been 
found to induce immunogenic responses 
against the brain, prostate, pancreas, liver, 
breast, or lung cancer. Similarly, the influenza 
vaccine was reported to show antitumor activi-
ty if administered without adding any adjuvant 
against tumors on intratumoral administration. 
However, the Human Papillomavirus vaccine is 
formulated by viral-like particles (VLPs) of ma- 
jor capsid protein (L-1) effectively preventing 
Human Papillomavirus (HPV) infection and pro-
viding protection from cervical cancer [100]. 
The clinical trials of the HPV vaccine adminis-
tered with sintilimab (anti-PD-1) showed prom-
ising results to prevent pre-cancerous anal or 
vulvar lesions. The 17D-204 strain of the yellow 
fever virus is transfected into a chicken embryo 
for preparation of yellow fever vaccine, used for 
the protection of travellers from this virus that 
transmits through a mosquito bite. The yellow 
fever vaccine also suppresses tumor progres-
sion in human and mouse cell lines via T-cell-
mediated cell immunity [88]. In a recent study, 
the cancer approved drug Bruton’s tyrosine 
kinase (BTK) [101] inhibitor known as ibrutinib 
has been repurposed for the treatment of 
COVID-19 infection that promisingly reduces 
inflammation in the lungs. The use of ibrutinib 
is approved for clinical trials after receiving 
promising results against Covid-19 infections 
[102].

Repurposing immunotherapy in COVID-19 for 
targeting inflammatory pathway in disease 
progression

SARS-CoV-2, the new beta coronavirus respon-
sible for the recent global public health disaster 
known as COVID-19, causes severe illness and 
millions of people have lost their lives due to 

COVID-19 infection. Acute respiratory distress 
syndrome (ARDS) is the most notable clinical 
symptom of COVID-19 infection among se- 
verely infected patients. Many of the extrapul-
monary symptoms of COVID-19 are believed to 
have their origins in rapid virus replication and 
severe inflammatory response in the lung. 
Numerous tissues and nearly all bodily fluids 
have yielded SARS-Co-2 RNA [103]. Extrapul- 
monary involvement and systemic inflammato-
ry symptoms are hallmarks of COVID-19, which 
can ultimately cause multiorgan failure and 
death [104, 105]. Intriguingly, hospitalized 
patients with spiked inflammatory cytokines 
and persistent lung injury even after SARS-
CoV-2 is under control or eradicated [105].

Immunotherapy refers to the use of medica-
tions comprised of immune cells or antibodies 
to modulate the immune system to treat SARS-
CoV-2 infection and it is a relatively novel strat-
egy to treat various cancers and infectious dis-
eases [106, 107]. Though, the toxicity outline of 
these treatment strategy, such as constrain in 
using CAR-T cells, despite the fact that immu-
notherapy has shown outstanding responses  
in patients with malignancies [108]. Cytokine 
storm, also known as cytokine release syn-
drome, is a potentially fatal consequence of 
immunotherapy that manifests with fever, 
hypotension, and respiratory failure alongside 
increased cytokine and inflammatory markers 
[109]. In the years following immunotherapy, 
many medications have proven effective in 
treating cytokine release syndrome, and numer-
ous serologic markers are now accessible for 
both diagnosis and therapy response monitor-
ing. It is possible that the pathophysiologic 
mechanisms underlying systemic symptoms  
of COVID-19 and toxicity after immunotherapy 
are identical. Therefore, immunotherapy may 
have an important role in COVID-19 treatment. 
Here in Table 2, we have summerized available 
immunotherapeutic targets for COVID-19.

SARS-CoV-2 causes acute lung inflammation

SARS-CoV-2 detects ACE2 on respiratory epi-
thelial cells. Spike protein mediates viral adher-
ence and ACE2 recognition [110]. Most COVID-
19 patients hospitalized had pneumonia or 
ARDS, viral replication in the respiratory tract 
might migrate to the lower respiratory tract and 
produce pneumonia [111]. Fewer, low oxygen 
saturation, shortness of breathing and dry 
cough are early SARS-CoV-2 lung symptoms, 
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Table 2. Overview of available immunotherapeutic targets for COVID-19

Sr No. Target Immunotherapeutic role Available drugs Intervention Role of COVID-19 Recommendation Overall  
Conclusion Reference

1 IL-6 Elevated in cytokine  
restoration syndrome  
during CAR-T treatment 

Tocilizumab
Sarilumab
Otilimab

anti-IL-6 Elevated with  
severity of diseases 

Recommended for sever 
respiratory disease in 
combination of  
Dexamethasone

Beneficial [185-187]

2 JAK/STAT Steroid refractory GVHD Baricitinib
Ruxolitinib
Tofacitinib
Imatinib

Jak kinase 
activate after 
interleukin 
stimulation

Interleukin receptor 
activation 

Recommended for  
progressive ARDS in  
combination of  
Remdesivir

Partial  
beneficial

[188-190]

3 IL-1R IL-1R inhibition to reduce 
inflammation and slower 
tissue damage

Anakinra
Canakinumab

anti-IL-1 IL-1b elevated  
during COVID-19

Radiologically and PCR 
confirm sever hospitalize 
patients

Beneficial [191-193]

4 IFN-γ IFN blocker in familiar 
hemophagocytic  
lymphohistiocytosis

Emapalumab anti-IFN-γ Reduced  
inflammation

Radiologically and PCR 
confirm sever hospitalize 
patients

Partial  
beneficial

[194-196]

5 TNF-α Inflammation suppression 
in autoimmune diseases

Infliximab
Adalimumab

anti-TNF-α Hyperactive  
immune status 

Radiologically and PCR 
confirm sever hospitalize 
patients

Partial  
beneficial

[197, 198]

6 Complement 
C5a

Hyperactivated during 
transplant associated 
thrombotic microangiopathy 

Vilobelimab anti-C5a Anti-inflammatory 
effect and improved 
PaO2/FiO2

Radiologically and PCR 
confirm sever hospitalize 
patients 

No significant 
effect 

[199-201]

7 Spike protein 
of SARS-CoV-2

--- Bamlanivimab
Casirivimab

anti-spike 
protein mAb

Change is log viral 
load

Patients with mild to 
moderate severity 

Beneficial [202, 203]

Abbreviations: IL, Interleukin; CAR-T, Chimeric antigen receptor; JAK/STAT, Janus kinase/signal transducers and activators of transcription; ARDS, Acute respiratory distress 
syndrome; GVHD, Graft-versus-host disease; IFN-γ, Interferon gamma; TNF-α, Tumor necrosis factor alpha; SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2; mAb, 
monoclonal antibody.
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also 20% to 33% of patients need ICU hospital-
ization [112-114]. The most common histologic 
finding is diffuse alveolar injury, which damages 
the blood-air contact and causes inflammation 
and mucosal thickening during acute infection. 
Patients receiving mABs aiming TME by fetch-
ing PD-1 and CTLA4 receptors called check-
point inhibitors (CPIs), to reverse cancer-in- 
duced T-cell anergy have similar pathophysiol-
ogy (30546008). CPI, notably nivolumab, can 
cause severe inflammatory interstitial pneumo-
nitis that resembles COVID-19 lung involve-
ment [115]. PD-1-positive T cells may regulate 
pulmonary dendritic cells and macrophages  
in CPI-related pneumonitis [116]. CPI-related 
pneumonitis and COVID-19 pulmonary symp-
toms shares PD-1 and toll-like receptors (TLRs) 
mechanism. TLR stimulation on CD8+ T cells 
lowers PD-1 expression and SARS-Co-2 spike 
protein binds to TLR and stimulates inflamma-
tory cytokines [117, 118].

Endothelial impairment and systemic inflam-
mation in COVID-19 and immunotherapy

COVID-19 patients observed with activated 
complement cascade that causes microvascu-
lar damage, thrombosis in the circulatory sys-
tem, and intravenous catheters causes morbid-
ity and mortality in COVID-19 patients [119-
121]. ACE2-expressing endothelial cells in 
arteries and veins throughout the body may 
explain SARS-tropism CoV-2’s to renal, cardiac, 
and gastrointestinal organs outside the res- 
piratory tract [122]. SARS-CoV-2 invades lung 
endothelial cells and is crucial to pneumonitis 
worsening and spreading to other organs. Endo- 
thelialitis can block fibrinolysis, stimulate the 
complement system, and cause microthrombi 
and microvascular dysfunction [123]. Thus, his-
topathology shows neutrophil extracellular 
traps, fibrin deposition, and/or microthrombi 
[124]. Many proinflammatory cytokines acti-
vate the coagulation system, making COVID-19 
procoagulant. Acute inflammatory conditions 
were associated with high levels of tumor TNF-
α, IL-6, and IL-1 and hypercoagulability, occa-
sionally leading to diffuse intravascular coagu-
lation [125, 126]. A prelimilinary investigation 
recommends that SARS-CoV-2 directly pro-
motes platelet adhesion and aggregation [127, 
128]. Thus, COVID-19 and post-CAT-T associat-
ed toxicity share endothelial involvement. Hay 
et al., showed that endothelial activation was 

associated with cytokine release syndrome  
and elevated levels of circulating endothelial-
derived factors such as Von Willebrand and 
angiotensin-2 (28924019). SARS-CoV-2 may 
inhibit the host interferon response and down-
regulate major histocompatibility complex class 
I (MSC-I) molecules on many cells during early 
infection [129-131]. This prevents immune 
detection and slows viral clearance. COVID-
19’s induced lymphopenia may cause uncon-
trolled viral replication [132].

IL-6, IL-1b, and TNF-α were considerably raised 
in severe COVID-19 patients and caused cyto-
kine release syndrome, according to recent 
meta-analyses [133]. IL-6 has a key function in 
autoimmune disorders and is considered as  
a major proinflammatory cytokine, it affects 
IL-6R expressing cells like T cells, B cells, mono-
cytes, and hepatocytes [134, 135]. Multiple 
viral infections require IL-6, although the main 
source of IL-6 during COVID-19 remians unclear, 
upon IL-6R binding on the surface of target 
cells, intercellular signal leads to the activation 
of JAC/STAT3 axis [136]. Post-CAR-T therapy 
cytokine release syndrome has extremely ele-
vated serum IL-6 levels [137]. In CAR-T-
associated cytokine syndrome, release of IL-1 
tends to precede that of IL-6; consequently, tar-
geting IL-1 might attenuate or prevent cytokine 
release syndrome [138]. mABs (rituximab) and 
the bispecific antibody blinatumomab also pro-
duced IL-6 in B cell malignancies [139, 140]. 
IL-6 concentrations correlated with pulmonary 
disease severity in 69 hospitalized SARS-CoV-2 
patients, while IL-2 and IL-4 did not [141]. In 
conclusion, SARS-CoV-2 shares the rise of IL-6 
with cytokines release syndrome due to CAR-T 
infusion and has an inflammatory profile more 
similar to other related cytokine release syn-
drome than other systemic inflammation.

Potential immunotherapeutic repurposing for 
COVID-19

Immunotherapy has the potential to treat 
COVID-19 by either eliminating the infected 
cells themselves or modulating the inflamma-
tory responses that result in cytokines res- 
ponse syndrome. Treatment using SARS-CoV-2 
specific T cells has not been documented in  
any investigations so far. T cell clones from 
recovering patients were used to prevent or 
treat SARS-CoV-2 infection in immunocompro-
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mised after bone marrow transplantation [142]. 
T cells with engineered tumor-recognizing T cell 
receptors can steer the immune system to tar-
get antigen (TCR). TCR-rngineered T cells have 
shown promise in acute myeloid leukemia, mel-
anoma esophageal cancer, synovial sarcoma, 
and Wilms tumor [143]. Most clinical trials tol-
erated ex vivo expanded TCR-modified cell infu-
sion. TCR-engineered T cells against SARS-
CoV-2 antigen have been studied and may have 
similar downsides as CAR-T cells.

NK cells, part of the innate immune system are 
crucial to immunological surveillance and can 
be employed as adoptive immunotherapy [144]. 
Engineered CAR-NK cells may treat cancer, allo-
geneic NK cells from cord blood can be safely 
delivered without comprehensive human leuko-
cyte antigen matching or CAR product custom-
ization [145]. Few in-vitro studies show, CAR-
NK cells target anti-SARS-CoV-2 infected cells 
and show high efficacy in to abolishing them 
[146-148]. Mesenchymal stromal cells (MSCs) 
are a heterogeneous population of stromal 
cells that migrate to specific tissue in the set-
ting of remodelling and regeneration. In some 
haematological malignancies, they immuno-
modulate the TME and increase local tumor 
aggressiveness [149, 150]. Engineered MSCs 
to hyperexpress IFN-γ and injected tumor tis-
sue [151, 152]. MSC cell treatment is intriguing 
for targeting many inflammatory patterns. Many 
COVID-19 clinical trials use MSC from autolo-
gous or allogenic adipose tissue, dental pulp, 
bone marrow, or cord blood Wharton’s jelly.

Neutralizing antibodies can target SARS-CoV-2 
spike protein to prevent virus-cell interaction 
and restrict SARS-CoV-2 from circulation. 
Several stabilized SARS-CoV-2 spike protein 
vaccines have shown potential efficacy in elicit-
ing a protein-specific antibody response with 
an acceptable rate of anomalies [153, 154]. In 
a recent randomized experiment, volunteered 
pooled plasma from recovered SARS-CoV-2 
patients are proved to be helpful if adminis-
tered within 72 hours of symptom start [155, 
156]. This approach is restricted by donor avail-
ability, allergic reaction safety, and blood-
derived products. Conversely, B cell-produced 
non-neutralizing antibodies may accelerate 
SARS-CoV-2 infection through antibody-depen-
dent augmentation and worsening organ da- 
mage.

Inflammation is the hallmark of COVID-19, a 
disease brought on by a virus. Global vaccina-
tion against SARS-CoV-2 is the best hope for 
the pandemic. Vaccines for both high- and low-
risk populations are becoming increasingly 
accessible thanks to their recent approval in 
several nations. Treatment of individuals with 
COVID-19 may benefit from immunotherapeu- 
tic techniques that control the immune system, 
since these may help to reduce viral replication 
and stop the cascade of inflammatory process-
es triggered by SARS-CoV-2. Few immune-mod-
ulating effective against COVID-19 so far. The 
FDA-approved REGN-COV2 mAb combination  
is for newly infected COVID-19 and ARDS 
patients with limited symptoms and a high risk 
of deteriorating. Hospitalized patients are rec-
ommended for baricitinib, an anti-JAK medica-
tion, along with remdesivir. Tocilizumab and 
dexamethasone are now recommended for 
fast-progressing respiratory illness. Besides 
ruxolitinib and anakinra, other anti-IL6 drugs 
like sarilumab have shown promising out-
comes, many clinical trials are testing cell ther-
apy and inhibition of such defibrotide and eculi-
zumab. If patients are classified by cytokines 
implicated in the COVID-19 inflammatory pro-
cess, we may be able to learn more about the 
efficacy of the above drugs in specific sub- 
groups.

Future perspective and conclusion

The ever increasing burden of the diseases in 
the present scenario warranted the need for 
the development of the quick and effective 
therapies to control the human diseases. The 
role of the immune response in the diverse dis-
eases have been well established which makes 
the targeting of the immune system as an  
alternative tool for targeting the disease. Drug 
repurposing using immunotherapy could pro-
vide a quick and effective therapy against the 
diseases. In the recent years, several drugs 
have been repurposed either alone or in combi-
nation and have been found to be effective. 
Rigorous efforts in the drug repurposing may 
lead to the emergence of successful therapies 
against different diseases. Despite the devel-
opment of the artificial intelligence and machine 
learning based drug designing, there are still 
road blocks which hinders and delays the 
human use. For this reason, drug repurposing 
provides the advantage over the AI designed 
drugs. In the near future, drug repurposing 
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could develop into a cost effective and quick 
method for the diverse diseases. Further 
research is required to ensure the safety and 
efficacy of the patients with repurposed drugs. 
Overall, the future of the repurposing of the 
immunotherapy is promising.
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