
Am J Transl Res 2023;15(9):5602-5612
www.ajtr.org /ISSN:1943-8141/AJTR0152282

Original Article
A nomogram for predicting breast cancer  
based on hematologic and ultrasound parameters

Yifei Liu, Haohui Zhu, Jianjun Yuan, Gang Wu

Department of Ultrasonography, Henan Provincial People’s Hospital, Zhengzhou 450003, Henan, China

Received July 18, 2023; Accepted September 3, 2023; Epub September 15, 2023; Published September 30, 
2023

Abstract: Background: The aim of this study was to investigate the ultrasound and hematological indicators, subse-
quently utilizing them to predict breast cancer and construct predictive models and columnar plots. Methods: The 
clinical data of 200 patients with breast tumors receiving ultrasound and blood tests at Henan Provincial People’s 
Hospital from January 2020 to January 2023 were collected. Patients were divided into training and validation sets 
at a 6:4 ratio using R language. Variables were screened using logistic regression, and a nomogram predicting 
breast cancer probability was constructed based on the training set. The predictive performance of the nomogram 
was evaluated in the validation set through receiver operating characteristic, calibration and decision curves. Model 
robustness was validated by bootstrap resampling. Results: Regression analysis revealed that maximum blood flow 
velocity within the breast mass ≥ 16.395 m/s, perfusion index ≥ 1.505, cancer antigen 15-3 ≥ 39.620 U/m, cancer 
antigen 125 ≥ 42.30 U/ml, carcinoembryonic antigen ≥ 6.520 ng/ml, Adler blood flow classification II & III, breast 
calcification present, and diameter of the lump > 2 cm were independent risk factors for breast cancer. Based on 
these ultrasonic parameters and blood indicators, the developed nomogram demonstrated excellent discrimination 
in both the training set (AUC = 0.917) and validation set (AUC = 0.844). The calibration plot showed high consistency 
between the nomogram-predicted and the actual results. Decision curve analysis indicated higher net benefit of 
this model. Conclusions: The nomogram developed in this study demonstrated solid predictive abilities for breast 
malignancy, indicating potential clinical value pending further research.
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Introduction

Breast cancer remains a major health concern 
and research focus worldwide, greatly impact-
ing the physical and mental health of women. 
Breast cancer has surpassed lung cancer as 
the most commonly diagnosed cancer and 
ranks 5th in cancer mortality [1, 2]. Early diag-
nosis and intervention are thus crucial for im- 
proving the outcomes of patients with breast 
cancer. In China, biopsy provides compelling 
evidence for early diagnosis [3], but has limi- 
tations in determining lymph node or distant 
metastasis. Moreover, the invasiveness and 
costs of biopsies restrict universal application.

Imaging examinations like mammography, ul- 
trasound, and MRI are major breast cancer 
diagnostic tools that can complement biopsy 
limitations [4, 5]. These tools are non-invasive 
and provide detailed diagnostic information, 

with ultrasound being particularly cost effec-
tive. Ultrasound can obtain indicators like cal- 
cification, lesion diameter, and aspect ratio to 
assess the malignant potential of breast le- 
sions. However, some studies have shown that 
the factors influencing breast cancer are multi-
faceted, and relying solely on ultrasound may 
miss early or minor lesions [6].

With advancements in blood testing, changes 
in certain blood markers have been associat- 
ed with the development of breast cancer [7], 
including neutrophil-lymphocyte ratio (NLR) and 
cancer antigen 15-3 (CA15-3) [8, 9]. A com-
bined approach of imaging and blood testing 
can be a more reasonable method with accu-
racy [10]. Li et al. developed a predictive model 
using only blood markers, yielding an area 
under the receiver operating characteristic cur- 
ve (AUC) of 0.708 [11]. However, relying solely 
on blood may overlook the complexity of breast 
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Figure 1. Flow chart of the study 
population enrollment.

cancer. Incorporating ultrasound parameters, 
which offer insights into tumor morphology, 
blood flow, etc., allows a comprehensive 
assessment when combined with blood mar- 
kers.

Therefore, this study aimed to develop and vali-
date a nomogram model utilizing widely acces-
sible ultrasound and blood test parameters  
to predict early clinical diagnosis of breast 
cancer.

Material and methods

Patient characteristics

The study was approved by the Ethics Com- 
mittee of Henan Provincial People’s Hospital. 

We collected data on female patients who 
underwent their first breast ultrasound and 
blood test from January 2020 to January 2023 
at the Henan Provincial People’s Hospital. 
These patients were eventually diagnosed by 
biopsy or surgery. The inclusion criteria were: 

(1) patients with complete and 
available clinical and patho-
logical data; (2) patients who 
did not receive biopsy or sur-
gery before ultrasound and 
blood tests. The exclusion cri-
teria were: (1) patients with 
other tumors, benign or malig-
nant; (2) patients with cardio-
pulmonary diseases; (3) pa- 
tients with hematologic dis-
eases; (4) patients with organ-
ic lesions of liver, kidney, heart, 
or brain; (5) patients without 
detected blood flow signals in 
the lesions; (6) patients who 
received treatments such as 
radiotherapy or chemotherapy 
before enrollment; (7) pati- 
ents who underwent ultra-
sound and blood tests with  
an interval exceeded 14 days 
between the two procedures. 

A total of 200 female patients 
with breast cancer meeting 
the inclusion/exclusion criteria 
(Figure 1) were included. The 
examination results catego-
rized patients into a benign (n 

= 102) group and a malignant (n = 98) group, 
with no difference in relevant medical history 
between groups (P < 0.05). The mean age was 
(49.97 ± 11.65) years in the benign group and 
(50.07 ± 12.53) years in the malignant group. 
See Table 1 for details.

Data collection

We collected the following patient information 
from electronic medical records or paper charts 
obtained during hospital consultations and 
examinations: (1) Demographic data: age, body 
mass index, age of menarche, menopausal sta-
tus, hormone replacement therapy, family his-
tory of breast cancer. (2) Medical history: diabe-
tes, hypertension. (3) Ultrasound parameters: 
Adler flow grading, breast calcification, lump 
diameter and aspect ratio, multiplicity, upper 
outer quadrant location, pulsatility index (PI) 
and resistive index (RI) of lump arteries, maxi-
mum intralesional blood flow velocity (Vmax). 
(4) Blood markers: liver and kidney function - 
total protein (TP), albumin (ALB), direct bilirubin 
(DBIL), total bilirubin (TBIL), aspartate amino-
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Table 1. Comparison of observational indicators in the benign and malignant groups

Observation indicators Benign group
(n = 102)

Malignant group
(n = 98) Z/t/χ2 P

Age (year) [(
_
x±s)] 49.97 ± 11.65 50.07 ± 12.53 0.059 0.953

BMI (kg/m2) [(M, QR)] 22.2, 8.3 22.85, 8.2 0.848 0.396
Age of menarche ≥ Thirteen [n (%)] 19 (18.63) 11 (11.22) 2.148 0.143
Menopausal [n (%)] 21 30 1.677 0.195
History of diabetes [n (%)] 46 39 1.604 0.205
History of hypertension [n (%)] 61 55 0.941 0.332
Family history of breast cancer [n (%)] 14 22 2.577 0.108
History of estrogen use [n (%)] 29 34 0.908 0.341
Bloody nipple discharge [n (%)] 17 23 1.446 0.229
Spicule sign [n (%)] 39 49 2.807 0.094
Adler blood flow classification [n (%)] 4.424 0.035
    0 & I 64 47
    II & III 38 51
Breast calcification [n (%)] 40 58 3.973 0.046
Aspect ratio of the lump > 1 [n (%)] 39 51 3.849 0.050
Diameter of the lump (cm) [n (%)] 6.028 0.049
    ≤ 2 42 28
    3~5 40 37
    > 5 20 33
Multiple lumps [n (%)] 26 31 0.925 0.336
The lump was located in the outer upper quadrant [n (%)] 39 43 0.658 0.417
Lump is irregular in shape [n (%)] 46 52 1.268 0.260
Suspicious lymphatic metastases [n (%)] 49 54 0.998 0.318
Mammary duct sprawl [n (%)] 62 66 0.934 0.33
PI [(
_
x±s)] 1.50 ± 0.20 1.56 ± 0.21 2.356 0.019

RI [(
_
x±s)] 0.78 ± 0.20 0.85 ± 0.20 2.520 0.013

Vmax (m/s) [(
_
x±s)] 17.57 ± 4.40 19.22 ± 3.80 2.842 0.005

TP (g/L) [(M, QR)] 71.09, 11.53 72.22, 12.46 0.719 0.472
ALB (g/L) [(M, QR)] 45.80, 10.74 46.42, 9.85 0.004 0.997
DBIL (μmol/L) [(M, QR)] 5.73, 5.22 5.79, 5.06 0.171 0.864
TBIL (μmol/L) [(M, QR)] 11.45, 11.45 14.11, 8.24 0.360 0.718
AST (U/L) [(M, QR)] 19.78, 14.13 17.40, 18.99 0.719 0.472
ALT (U/L) [(M, QR)] 20.31, 17.21 17.57, 16.35 0.534 0.593
ALP (U/L) [(M, QR)] 70.12, 53.05 66.12, 55.43 0.211 0.833
GGT (U/L) [(M, QR)] 27.99, 26.63 29.48, 23.78 0.396 0.692
Blood glucose (mmol/L) [(M, QR)] 4.75, 1.84 4.74, 1.81 0.417 0.677
Creatinine (μmol/L) [(M, QR)] 81.00, 33.00 78.00, 36.00 0.515 0.607
UA (μmol/L) [(M, QR)] 164.50, 89.00 170.50, 100 0.067 0.946
TG (mmol/L) [(M, QR)] 1.63, 1.49 1.60, 1.46 0.087 0.931
TC (mmol/L) [(M, QR)] 3.90, 1.72 3.95, 2.25 0.722 0.470
LDL-C (mmol/L) [(M, QR)] 2.92, 1.07 2.99, 0.98 0.237 0.813
HDL-C (mmol/L) [(M, QR)] 1.52, 0.42 1.55, 0.59 0.066 0.947
ApoA1 (g/L) [(M, QR)] 1.48, 0.45 1.52, 0.55 0.847 0.397
ApoB (g/L) [(M, QR)] 1.58, 0.54 1.49, 0.50 1.028 0.304
CK (U/L) [(M, QR)] 71.28, 30.89 72.99, 30.52 0.073 0.942
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LDH (U/L) [(M, QR)] 214.42, 98.37 212.02, 88.13 0.064 0.949
NLR [(

_
x±s)] 3.19 ± 0.68 3.45 ± 0.90 2.284 0.024

RDW (%) [(
_
x±s)] 14.80 ± 3.73 12.80 ± 3.14 4.097 < 0.001

CA15-3 (U/ml) [(
_
x±s)] 30.71 ± 9.18 34.92 ± 8.60 3.345 0.001

CA125 (U/ml) [(
_
x±s)] 36.78 ± 10.32 42.48 ± 12.40 3.529 0.001

CEA (ng/ml) [(
_
x±s)] 6.27 ± 2.09 8.19 ± 2.09 6.527 < 0.001

PI: Perfusion index; RI: Resistance Index; Vmax: Maximum blood flow velocity within the breast mass; TP: Total Protein; ALB: 
Albumin; DBIL: Direct Bilirubin; TBIL: Total Bilirubin; AST: Aspartate Aminotransferase; ALT: Alanine Aminotransferase; ALP: 
Alkaline Phosphatase; GGT: γ-glutamyl transferase; UA: Uric Acid; TG: Triglycerides; TC: Total Cholesterol; LDL-C: Low-Density 
Lipoprotein Cholesterol; HDL-C: High-Density Lipoprotein Cholesterol; ApoA1: Apolipoprotein A1; ApoB: Apolipoprotein B; CK: 
Creatine Kinase; LDH: Lactate Dehydrogenase; NLR: Neutrophil-to-Lymphocyte Ratio; RDW: Red Cell Distribution Width; CA15-
3: Cancer antigen 15-3; CA125: Cancer Antigen 125; CEA: Carcinoembryonic Antigen.

transferase (AST), alanine aminotransferase 
(ALT), alkaline phosphatase (ALP), γ-glutamyl 
transferase (GGT), creatinine, uric acid (UA); 
lipid profile - triglycerides (TG), total cholesterol 
(TC), LDL-C, HDL-C, apolipoprotein A1 (ApoA1), 
apolipoprotein B (ApoB); myocardial markers - 
creatine kinase (CK), lactic dehydrogenase 
(LDH); inflammation markers - NLR, red cell  
distribution width (RDW); tumor markers - 
CA15-3, cancer antigen 125 (CA125), carcino-
embryonic antigen (CEA). All blood samples 
were collected in the morning after overnight 
fasting.

Ultrasound and serum examinations

Ultrasound examinations were scheduled be- 
fore or 3-7 days after the patient’s menstrual 
period. Prior to the examinations, patients were 
calmed to maintain a stable and relaxed emo-
tional state. Patients were instructed to brea- 
the steadily throughout the procedure. The 
ultrasound was performed using an EPIQ Elite 
(China) color Doppler ultrasound machine with 
4-18 MHz probes. Radial scans centered on  
the nipple assessed the breasts and axilla. 
Lesions were evaluated using BI-RADS stan-
dards for size, morphology, margins, axial ratio, 
calcification, and other characteristics. Adler 
grading was employed to determine the intral-
esional blood flow. Ultrasound findings were 
determined through consensus between two 
sonographers, each possessing over 10 years 
of experience.

Fasting blood samples were collected in the 
morning. The venous blood (20 mL) was centri-
fuged at 3000 rpm and 10 cm radial distance 

for 20 minutes. The serum was stored at -80°C. 
Testing procedures adhered to relevant instru-
ment protocols. Glucose, creatinine, TP, ALB, 
DBIL, TBIL, AST, ALT, ALP, GGT, UA, TG, TC, LDL-
C, HDL-C, and CK were measured using a 
Hitachi 7600 automated biochemical analyzer 
(Japan). CA15-3, CA125 and CEA were quanti-
fied by chemiluminescent immunoassay on a 
Roche E602 electrochemical luminescence 
analyzer (Switzerland). NLR and RDW were 
obtained using a Mindray BC-5390 automat- 
ed hematology analyzer (China) with matched 
reagents.

Statistical methods

Data analysis was performed using SPSS  
26.0 software. Normally distributed quan- 
titative data were expressed as mean ± stan-
dard deviation (

_
x±s) and compared between  

groups by independent samples t-test. Non-
normally distributed data were expressed as 
median and interquartile range (M, QR) and 
analyzed using nonparametric tests. Catego- 
rical data were expressed as frequencies and 
percentages (n, %) and compared between 
groups using chi-squared test. Odds ratios 
(ORs) and 95% confidence intervals (CIs) were 
calculated by logistic regression. Statistical sig-
nificance was defined as P < 0.05. The primary 
outcome was the predictive performance of the 
nomogram, evaluated by area under the receiv-
er operating characteristic curve (AUC) in both 
training and validation cohorts. The differences 
in AUCs were compared using the DeLong test. 
Secondary outcomes included identifying inde-
pendent risk factors for breast cancer by logis-
tic regression, and assessing the clinical utility 
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Table 2. Assignment of values
Observation indicators Assign a value
Adler blood flow classification 0 & I = 0; II & III = 1
Breast calcification Yes = 1; No = 0
Aspect ratio of the lump > 1 Yes = 1; No = 0
Diameter of the lump (cm) ≤ 2 cm = 1; 3-5 cm = 2; > 5 cm = 3
PI 1.505 < = 0; ≥ 1.505 = 1
RI 0.715 < = 0; ≥ 0.715 = 1
Vmax 16.395 m/s < = 0; ≥ 16.395 m/s = 1
NLR 3.475 < = 0; ≥ 3.475 = 1
RDW 13.990% < = 0; ≥ 13.990% = 1
CA15-3 39.620 U/ml < = 0; ≥ 39.620 U/ml = 1
CA125 42.30 U/ml < = 0; ≥ 42.30 U/ml = 1
CEA 6.520 ng/ml < = 0; ≥ 6.520 ng/ml = 1
PI: Perfusion index; RI: Resistance Index; Vmax: Maximum blood flow velocity 
within the breast mass; NLR: Neutrophil-to-Lymphocyte Ratio; RDW: Red Cell 
Distribution Width; CA15-3: Cancer antigen 15-3; CA125: Cancer Antigen 125; 
CEA: Carcinoembryonic Antigen.

of the nomogram using decision curve an- 
alysis.

Construction of a nomogram

To demonstrate the predictive value of the 
ultrasound parameters and blood indicators  
for breast cancer, a nomogram was construct-
ed using the “rms” package in R (version 4.2.3) 
based on factors identified as significant by 
logistic regression analysis. Nomogram calibra-
tion was assessed using calibration curves. 
Decision curve analysis was applied to evalu-
ate the feasibility of using these indicators to 
develop breast cancer prediction models.

To avoid overfitting and ensure generalizability, 
the samples were randomly divided into train-
ing and validation (6:4) sets. The training set 
was used for model development, while the 
validation set was used to assess the model 
performance. The DeLong test was used to 
compare ROC curves between training and vali-
dation sets to evaluate performance gaps.

Results

Clinical characteristics

Comparisons between malignant and benign 
groups revealed similar general demographic 
characteristics and medical histories (P > 
0.05). However, PI, RI, and Vmax ultrasono-
graphic parameters were significantly higher in 
the malignant group (P < 0.05). The malignant 

group also exhibited higher pro-
portions of Adler grade II & III 
flow, breast calcification, lump 
diameter ≥ 3 cm, and axial ratio 
> 1 compared to the benign 
group (P < 0.05). Regarding 
blood indicators, the LNR and 
serum levels of CA15-3, CA125 
and CEA were markedly higher, 
while the RDW was lower in the 
malignant group (P < 0.05). No 
significant intergroup differences 
were observed in other indica-
tors (P > 0.05). See Table 1 for 
details.

Univariate and multivariate 
regression analysis

The general data with significant 
difference between the two gr- 

oups were included, and cutoff values were cal-
culated for continuous. The indicators included 
in the regression analysis were assigned, as 
shown in Table 2. Using the training set, a pre-
diction model was constructed. Univariate and 
multivariate regression analysis showed that 
Vmax ≥ 16.395 m/s, PI ≥ 1.505, CA15-3 ≥ 
39.620 U/m, CA125 ≥ 42.30 U/ml, CEA ≥ 6.520 
ng/ml, Adler blood flow classification II & III, 
presence of breast calcification, and diameter 
of the lump > 2 cm were independent risk fac-
tors for breast cancer (Table 3). CEA was the 
blood indicator with the greatest impact. In  
univariate analysis, when CEA ≥ 6.520 ng/ml, 
the risk of breast cancer increased 5.495-fold, 
and in multivariate regression analysis it in- 
creased 10.412-fold. For ultrasound indicators, 
PI and breast calcification showed the greatest 
impacts in univariate analysis. When PI > 1.505 
or breast calcification was detected in a patient, 
the risk of breast cancer increased 3.323-fold 
and 2.981-fold, respectively. In multivariate 
analysis, breast calcification had the greatest 
impact, increasing the risk by a factor of 
8.178-fold. 

Development and validation of nomogram

A nomogram was developed to predict the 
probability that a patient’s breast lump was 
malignant. With a total score of above 300, the 
patient would have over 50% probability of hav-
ing breast malignancy (Figure 2). The analysis 
resulted in an AUC of 0.917 (95% CI: 0.864-
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Table 3. Logistic regression results for training set

Observation indicators
Univariate logistic regression Multifactor logistic regression

β Wald χ2 OR P 95% CI Β Wald χ2 OR P 95% CI
Adler blood flow classification 0.746 3.960 2.109 0.047 1.011~4.398 1.419 5.793 4.132 0.016 1.968~13.117

Breast calcification 1.092 8.294 2.981 0.004 1.418~6.270 2.101 11.463 8.178 0.001 0.474~27.603

Aspect ratio of the lump > 1 0.331 0807 1.392 0.369 0.676~2.865 0.376 .467 1.456 0.495 1.850~4.278

Diameter of the lump (cm) 0.449 3.198 1.567 0.074 0.958~2.565 0.910 4.777 2.486 0.029 0.957~5.623

PI ≥ 1.505 1.201 8.453 3.323 0.004 1.479~7.467 1.962 8.959 7.113 0.003 0.292~25.702

RI ≥ 0.715 0.803 3.994 2.232 0.046 1.016~4.906 0.443 0.531 1.557 0.466 2.390~5.118

Vmax ≥ 16.395 m/s 0.950 6.838 2.585 0.012 1.237~5.401 1.887 8.456 6.597 0.004 1.122~23.529

NLR ≥ 3.475 0.610 2.654 1.841 0.103 0.883~3.838 1.085 3.548 2.961 0.060 2.672~9.161

RDW (%) ≥ 13.990% 0.692 3.424 1.997 0.064 0.960~4.154 0.109 0.036 0.897 0.849 1.301~2.755

CA15-3 ≥ 39.620 U/ml 1.523 9.921 4.587 0.002 1.778~11.834 2.217 10.426 9.177 0.001 2.423~35.241

CA125 ≥ 42.30 U/ml 0.713 3.378 2.039 0.066 0.954~4.360 1.319 4.609 3.740 0.032 .495~12.468

CEA ≥ 6.520 ng/ml 1.704 16.292 5.495 < 0.001 2.402~12.568 2.343 11.401 10.412 0.001 1.099~40.569
PI: Perfusion index; RI: Resistance Index; Vmax: Maximum blood flow velocity within the breast mass; NLR: Neutrophil-to-Lymphocyte Ratio; RDW: Red Cell Distribution 
Width; CA15-3: Cancer antigen 15-3; CA125: Cancer Antigen 125; CEA: Carcinoembryonic Antigen.

Figure 2. Nomogram based on ultrasonography parameters and blood indicators. PI: Perfusion index; Vmax: Maxi-
mum blood flow velocity within the breast mass; CA15-3: Cancer antigen 15-3; CA125: Cancer Antigen 125; CEA: 
Carcinoembryonic Antigen.

0.969) for the training set and 0.844 (95% CI: 
0.761-0.927) for the validation set (Figure 3A, 
3B). We used the DeLong test to compare the 
two AUC values, which showed no statistically 
significant difference (P = 0.149), indicating 
minimal variation in model prediction capability 
between the training and validation sets. Both 
training and validation calibration curves dem-
onstrated good calibration, where the predict-
ed values closely matched the observed values 
(Figure 3C, 3D). The decision curves of the 
training and validation sets showed that using 

the model to predict breast malignancy in pa- 
tients can always lead to a higher net benefit 
than either intervening in all patients or not 
intervening in any patients (Figure 3E, 3F).

Comparison of predictive models

We constructed another predictive model us- 
ing only hematological risk factors and demo-
graphics from the training set, which resulted in 
an AUC of 0.768 (95% CI: 0.687-0.849) for the 
training set and an AUC of 0.727 (95% CI: 
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Figure 3. Validation of the predictive models based on blood indicators and ultrasonic indicators. A: Training set’s 
receiver operating characteristic curve. B: Validation set’s receiver operating characteristic curve. C: Training set’s 
calibration curve. D: Validation set’s calibration curve. E: Training set’s decision curve. F: Validation set’s decision 
curve.

0.619-0.835) for the validation set (Figure  
4A, 4B). The DeLong test showed no significant 
difference between the two AUC values (P = 
0.552). The calibration curves also demon-
strated good calibration of the model (Figure 

4C, 4D). The decision curve for the training set 
showed that using this model to predict breast 
cancer would yield higher net benefit across 
threshold probabilities 0.05-0.7, while decision 
curve for the validation set showed higher net 
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Figure 4. Validation of the predictive models based on blood indicators and demographics. A: Training set’s receiver 
operating characteristic curve. B: Validation set’s receiver operating characteristic curve. C: Training set’s calibra-
tion curve. D: Validation set’s calibration curve. E: Training set’s decision curve. F: Validation set’s decision curve.

benefit between the threshold probability rang-
es of 0.1-0.5 and 0.52-0.72 (Figure 4E, 4F).

We compared the results between the two pre-
dictive models. The training and validation cali-
bration curves for both models demonstrated 

good calibration, with high agreement between 
predicted and observed values. Using the De- 
Long test, the model incorporating ultrasound 
parameters and blood markers had significant-
ly higher AUC values compared to the model 
using only hematological risk factors and de- 
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mographics (0.917 vs. 0.727, P < 0.001). The 
model with ultrasound and blood markers also 
had a wider threshold probability range for 
higher net clinical benefit, indicating overall 
better performance compared to the model 
using only hematological risk factors and de- 
mographics.

Discussion

Breast cancer is now the leading cause of can-
cer deaths in women globally, and the female 
population is facing financial burdens from cop-
ing with breast cancer. Nearly 700,000 women 
died of breast cancer in 2020 [12]. Primary pre-
vention of breast cancer should be conducted 
by reducing exposure to known breast cancer 
risk factors. In low- and middle-income coun-
tries, early diagnosis and accessibility to treat-
ment still need to be improved [13, 14]. In early 
screening, ultrasound is noninvasive, relatively 
affordable, and convenient. Integrating addi-
tional cost-effective and easily accessible diag-
nostic tools, such as blood tests, could enhance 
the accuracy of screening for malignant breast 
lesions, constituting a viable approach. Recent 
research has substantiated the viability of 
using blood tests to predict the presence of 
malignant breast lesions in patients with breast 
lumps [15], thus establishing a foundation for 
the current investigation. We constructed a 
nomogram based on ultrasound parameters 
and blood test indices to predict the likelihood 
of malignancy in patients with breast lumps, 
aiming to minimize unnecessary examinations 
which result in medical waste, economic and 
psychological burdens, and potential medical 
risks.

In this study, we identified eight variables, 
namely, IP, Vmax, Adler blood flow classifica-
tion, breast calcification, diameter of the lump, 
CA15-3, CA125, and CEA, as the most signifi-
cant predictive factors. By constructing a 
nomogram utilizing these variables, we were 
able to accurately identify patients with early 
malignant lesions, indicating a promising po- 
tential for clinical application. Our findings re- 
garding the effectiveness of CA15-3, CA125, 
and CEA as predictors align with the results of 
Li et al., who also developed a promising nomo-
gram incorporating other serum biomarkers 
(AUC = 0.708) [11]. Notably, our other model 
built solely using hematological risk factors and 

demographics exhibited comparable predictive 
performance (AUC = 0.727) to theirs. However, 
the incorporation of ultrasound parameters sig-
nificantly enhanced its predictive ability (AUC = 
0.917). Therefore, we assert that ultrasound 
parameters play a crucial role in the prediction 
of breast cancer.

Through case comparison, we discovered that 
the Vmax values in patients with malignant 
breast lesions typically exceeded those in 
patients with benign lumps, which aligns with 
the findings of Niu et al. [16]. This observation 
could be attributed to tumor angiogenesis and 
abnormal blood supply. For instance, the de- 
velopment of angiogenesis induced by tumors 
results in the formation of numerous distorted 
and dilated blood vessels, thereby increasing 
vascular density and blood flow to the tumor. 
Simultaneously, the walls of these newly gener-
ated tumor vessels are weak and immature, 
making them susceptible to vasodilation and 
consequently elevating the Vmax values [16, 
17]. Larger masses often demand a greater 
blood supply, whereas benign masses such as 
adenomas tend to grow slowly with well-defin- 
ed boundaries, making a significant increase in 
Vmax less likely. Conversely, malignant tumors 
exhibit rapid growth and require additional 
nutrients, necessitating not only an increased 
number of vessels but also faster flow speed 
within these vessels. Furthermore, during the 
expedited growth of malignant tumors, certain 
tumor cells are more prone to entering circula-
tion through the accelerated flow in vessels, 
leading to a further dissemination of tumor 
cells in the patient [18]. Therefore, by combin-
ing current research perspectives, our study 
highlights the phenomena wherein the malig-
nant group exhibited higher Vmax, Adler blood 
flow classification, and lump diameter com-
pared to the benign group. These findings sug-
gest that the potentially significant correla- 
tions among these three factors, contributing 
to their efficacy as predictive indicators.

In addition, breast calcification can be caused 
by tumor-secreted calcium salts [19]. Never- 
theless, various factors can contribute to br- 
east calcification, including tissue degenera-
tion, necrosis, and deposition of calcium salts. 
Consequently, it is crucial to thoroughly investi-
gate the characteristics of breast calcification, 
as it aids in the diagnosis of lesion nature. 
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Therefore, a meticulous analysis of calcification 
shape, number, location, and correlation with 
surrounding structures is warranted when a 
patient presents with breast calcification.

In blood tests, CA15-3, CA125, and CEA are 
commonly utilized a s tumor markers, with cur-
rent research indicating that elevated levels of 
CA15-3 and CEA are associated with a higher 
tumor burden [20, 21]. This correlation can be 
attributed to the abundant expression and 
release of CA15-3 and CEA by tumor cells. 
Tumors with larger volumes often harbor a 
greater number of secreting tumor cells, lead-
ing to higher levels of CA15-3 and CEA com-
pared to benign masses. CA125 is typically 
used as a marker for ovarian cancer, and its 
elevation in our subjects may be indicative of 
metastasis to the ovaries or other complica-
tions [22, 23]. Although effective in the nomo-
gram, CA125’s predictive value and mecha-
nisms require further investigation to clarify its 
relationship with breast cancer. Several periph-
eral blood indices were taken into consider-
ation due to research suggesting that breast 
cancer metastasis can affect organs such as 
lungs and liver [24, 25]. Changes in related indi-
ces might indirectly suggest lesion deteriora-
tion. However, these data did not reveal any 
significant differences between the malignant 
and benign groups in this study.

This study offers an effective prediction model 
that could act as an additional screening tool 
for high-risk breast cancer patients in clinical 
practice. However, further external validation 
and optimization are still necessary. As a retro-
spective study conducted at a single center, our 
conclusions may still carry a risk of bias. Due to 
our sample size and selective inclusion criteria, 
there may not have been significant differen- 
ces in general demographic characteristics 
between the two groups. We highlighted com-
parable demographics between the groups to 
provide specificity for further analysis. This 
could lead to an underestimation of the predic-
tive value of general demographic factors on 
breast cancer. As a result, there is a need for 
future multi-center studies with longer follow-
ups to enhance the optimization of the included 
indices, and to develop a more dependable pre-
diction model for clinical diagnosis.

Conclusion

The PI, Vmax, Adler blood flow classification, 
breast calcification, diameter of the lump, 
CA15-3, CA125, and CEA are effective predic-
tors for breast cancer. A nomogram with a 
strong predictive performance and clinical util-
ity for predicting malignant breast lesions was 
constructed and evaluated based on these 
effective predictors in this study. This nomo-
gram can function as an auxiliary tool to screen 
high-risk patients.

Disclosure of conflict of interest

None.

Address correspondence to: Gang Wu, Depart- 
ment of Ultrasonography, Henan Provincial Peo- 
ple’s Hospital, No. 7, Weiwu Road, Jinshui District, 
Zhengzhou 450003, Henan, China. Tel: +86-0371-
65580333; E-mail: w323sc@163.com

References

[1] Kashyap D, Pal D, Sharma R, Garg VK, Goel N, 
Koundal D, Zaguia A, Koundal S and Belay A. 
Global increase in breast cancer incidence: 
risk factors and preventive measures. Biomed 
Res Int 2022; 2022: 9605439.

[2] Bray F, Ferlay J, Soerjomataram I, Siegel RL, 
Torre LA and Jemal A. Global cancer statistics 
2018: GLOBOCAN estimates of incidence and 
mortality worldwide for 36 cancers in 185 
countries. CA Cancer J Clin 2018; 68: 394-
424.

[3] National Health Commission of The People’s 
Republic Of China. Chinese guidelines for diag-
nosis and treatment of breast cancer 2018 
(English version). Chin J Cancer Res 2019; 31: 
259-277.

[4] Burstein HJ, Curigliano G, Thürlimann B, We-
ber WP, Poortmans P, Regan MM, Senn HJ, 
Winer EP and Gnant M; Panelists of the St Gal-
len Consensus Conference. Customizing local 
and systemic therapies for women with early 
breast cancer: the St. Gallen International 
Consensus Guidelines for treatment of early 
breast cancer 2021. Ann Oncol 2021; 32: 
1216-1235.

[5] Paluch-Shimon S, Cardoso F, Partridge AH, 
Abulkhair O, Azim HA, Bianchi-Micheli G, Car-
doso MJ, Curigliano G, Gelmon KA, Gentilini O, 
Harbeck N, Kaufman B, Kim SB, Liu Q, Mer-
schdorf J, Poortmans P, Pruneri G, Senkus E, 
Sirohi B, Spanic T, Sulosaari V, Peccatori F and 
Pagani O. ESO-ESMO fifth international con-

mailto:w323sc@163.com


Risk prediction for breast cancer

5612 Am J Transl Res 2023;15(9):5602-5612

sensus guidelines for breast cancer in young 
women (BCY5). Ann Oncol 2022; 33: 1097-
1118. 

[6] Geisel J, Raghu M and Hooley R. The role of 
ultrasound in breast cancer screening: the 
case for and against ultrasound. Semin Ultra-
sound CT MR 2018; 39: 25-34.

[7] Muratov S, Canelo-Aybar C, Tarride JE, Alonso-
Coello P, Dimitrova N, Borisch B, Castells X, 
Duffy SW, Fitzpatrick P, Follmann M, Giordano 
L, Hofvind S, Lebeau A, Quinn C, Torresin A, Vi-
alli C, Siesling S, Ponti A, Giorgi Rossi P, 
Schünemann H, Nyström L and Broeders M; 
ECIBC contributor group. Monitoring and  
evaluation of breast cancer screening pro-
grammes: selecting candidate performance 
indicators. BMC Cancer 2020; 20: 795. 

[8] Wei B, Yao M, Xing C, Wang W, Yao J, Hong Y, 
Liu Y and Fu P. The neutrophil lymphocyte ratio 
is associated with breast cancer prognosis: an 
updated systematic review and meta-analysis. 
Onco Targets Ther 2016; 9: 5567-75. 

[9] Assad DX, Mascarenhas ECP, Normando AGC, 
Chardin H, Barra GB, Pratesi R, Nóbrega YKM, 
Acevedo AC and Guerra ENS. Correlation be-
tween salivary and serum CA15-3 concentra-
tions in patients with breast cancer. Mol Clin 
Oncol 2020; 13: 155-161.

[10] Jafari SH, Saadatpour Z, Salmaninejad A, Mo-
meni F, Mokhtari M, Nahand JS, Rahmati M, 
Mirzaei H and Kianmehr M. Breast cancer di-
agnosis: imaging techniques and biochemical 
markers. J Cell Physiol 2018; 233: 5200-5213.

[11] Li N, Cao L, Zhao K and Feng Y. Development 
and validation of a nomogram to predict Chi-
nese breast cancer risk based on clinical se-
rum biomarkers. Biomark Med 2023; 17: 273-
286.

[12] Sung H, Ferlay J, Siegel RL, Laversanne M, So-
erjomataram I, Jemal A and Bray F. Global can-
cer statistics 2020: GLOBOCAN estimates of 
incidence and mortality worldwide for 36 can-
cers in 185 countries. CA Cancer J Clin 2021; 
71: 209-249. 

[13] Wilkinson L and Gathani T. Understanding 
breast cancer as a global health concern. Br J 
Radiol 2022; 95: 20211033. 

[14] Ginsburg O, Yip CH, Brooks A, Cabanes A, Cal-
effi M, Dunstan Yataco JA, Gyawali B, McCor-
mack V, McLaughlin de Anderson M, Mehrotra 
R, Mohar A, Murillo R, Pace LE, Paskett ED, 
Romanoff A, Rositch AF, Scheel JR, Schneid-
man M, Unger-Saldaña K, Vanderpuye V, Wu 
TY, Yuma S, Dvaladze A, Duggan C and Ander-
son BO. Breast cancer early detection: a 
phased approach to implementation. Cancer 
2020; 126 Suppl 10: 2379-2393. 

[15] Akturk OM, Yildirim D, Cakir M, Vardar YM, Ero-
zgen F and Akinci M. Is there a threshold for 
red cell distribution width to predict malignan-
cy in breast masses. Niger J Clin Pract 2022; 
25: 349-353.

[16] Niu J, Ma J, Guan X, Zhao X, Li P and Zhang M. 
Correlation between doppler ultrasound blood 
flow parameters and angiogenesis and prolif-
eration activity in breast cancer. Med Sci Monit 
2019; 25: 7035-7041. 

[17] Majidpoor J and Mortezaee K. Angiogenesis as 
a hallmark of solid tumors - clinical perspec-
tives. Cell Oncol (Dordr) 2021; 44: 715-737.

[18] Zarychta E and Ruszkowska-Ciastek B. Coop-
eration between angiogenesis, vasculogene-
sis, chemotaxis, and coagulation in breast  
cancer metastases development: pathophysi-
ological point of view. Biomedicines 2022; 10: 
300. 

[19] Xue S, Zhao Q, Tai M, Li N and Liu Y. Correlation 
between breast ultrasound microcalcification 
and the prognosis of breast cancer. J Healthc 
Eng 2021; 2021: 6835963.

[20] Seale KN and Tkaczuk KHR. Circulating bio-
markers in breast cancer. Clin Breast Cancer 
2022; 22: e319-e331.

[21] Li X, Dai D, Chen B, Tang H, Xie X and Wei W. 
Clinicopathological and prognostic significance 
of cancer antigen 15-3 and carcinoembryonic 
antigen in breast cancer: a meta-analysis in-
cluding 12,993 patients. Dis Markers 2018; 
2018: 9863092. 

[22] Akinwunmi BO, Babic A, Vitonis AF, Cramer DW, 
Titus L, Tworoger SS and Terry KL. Chronic 
medical conditions and CA125 levels among 
women without ovarian cancer. Cancer Epide-
miol Biomarkers Prev 2018; 27: 1483-1490. 

[23] Gao B, Zhao X, Gu P, Sun D, Liu X, Li W, Zhang 
A, Peng E and Xu D. A nomogram model based 
on clinical markers for predicting malignancy 
of ovarian tumors. Front Endocrinol (Laus-
anne) 2022; 13: 963559. 

[24] Medeiros B and Allan AL. Molecular mecha-
nisms of breast cancer metastasis to the lung: 
clinical and experimental perspectives. Int J 
Mol Sci 2019; 20: 2272.

[25] Jin L, Han B, Siegel E, Cui Y, Giuliano A and Cui 
X. Breast cancer lung metastasis: molecular 
biology and therapeutic implications. Cancer 
Biol Ther 2018; 19: 858-868. 


