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Abstract: Objectives: Cancer, a formidable disease, continues to challenge our understanding and therapeutic 
approaches. This study delves into the pan-cancer analysis of BCL2 Associated X (BAX) gene expression, seek-
ing to unravel its significance in cancer development, prognosis, and potential therapeutic strategies. Methods: A 
combination of bioinformatics and molecular experiments. Results: Our pan-cancer investigation into BAX expres-
sion encompassed 33 distinct cancer types, revealing a remarkable and uniform increase in BAX expression. This 
groundbreaking finding emphasizes the potential universality of BAX’s role in cancer development and progression. 
Further, our study explored the prognostic implications of BAX expression, highlighting a consistent association be-
tween up-regulated BAX and poor overall survival (OS) in Liver Hepatocellular Carcinoma (LIHC) and Skin Cutaneous 
Melanoma (SKCM). These results suggest that BAX may serve as an adverse prognostic indicator in these malig-
nancies, emphasizing the importance of personalized treatment strategies. Epigenetic and genetic analyses of BAX 
provided valuable insights. Hypomethylation of the BAX promoter region was evident in LIHC and SKCM, which likely 
contributes to the up-regulation of BAX, while genetic mutations in the BAX gene itself were infrequent in these can-
cers. Our exploration of BAX-associated signaling pathways and the correlation between BAX expression and CD8+ 
T cell infiltration shed light on the intricate molecular landscape of cancer. BAX’s interaction with key apoptotic and 
immune-related pathways reinforces its role as a central player in tumor development and the immune microenvi-
ronment. Moreover, our drug prediction analysis identified potential therapeutic agents for modulating BAX expres-
sion in the context of LIHC and SKCM, bridging the gap between research and clinical application. Conclusion: In 
sum, our comprehensive BAX study not only enhances our understanding of its significance as a biomarker gene but 
also offers novel avenues for therapeutic interventions, contributing to the ongoing quest for more effective cancer 
treatments and improved patient care.
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Introduction

Cancer, a complex and multifaceted group of 
diseases, continues to be a global health chal-
lenge with profound implications for both pa- 
tients and healthcare systems [1-3]. Defined by 
the uncontrolled growth and spread of abnor-
mal cells, cancer is characterized by its hetero-
geneity, affecting virtually every tissue and 
organ within the human body [4-7]. With over 

100 different types of cancer, each with its 
unique molecular and clinical features, under-
standing the underlying mechanisms and po- 
tential therapeutic targets has become a para-
mount goal of biomedical research.

The intricate interplays of genetic, environmen-
tal, and lifestyle factors underpin the develop-
ment of cancer [8-11]. Genetic abnormalities, 
in particular, have been identified as key drivers 
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in the transformation of normal cells into can-
cerous ones [12-14]. These abnormalities may 
disrupt the regulatory pathways responsible for 
cell growth, differentiation, and apoptosis, ulti-
mately leading to the emergence of a tumor 
[15].

One such gene that has garnered considerable 
attention in the context of cancer is BCL2 
Associated X (BAX). BAX, a pro-apoptotic mem-
ber of the BCL-2 family, plays a central role in 
regulating programmed cell death, or apoptosis 
[16, 17]. Its primary function is to promote 
apoptosis by activating the mitochondrial path-
way, thereby facilitating the release of cyto-
chrome c and other pro-apoptotic factors [18]. 
BAX accomplishes this by permeabilizing the 
mitochondrial outer membrane, a critical step 
in the intrinsic apoptotic pathway [19]. Dy- 
sregulation of BAX expression or function has 
been implicated in various cancer types, con-
tributing to uncontrolled cell proliferation and 
resistance to apoptosis [20-22].

As a central player in the apoptotic cascade, 
BAX has been the focus of extensive research 
aimed at elucidating its role in cancer develop-
ment, progression, and response to therapy 
[23]. Understanding how BAX expression and 
activity are modulated in different cancer types 
is essential for uncovering potential therapeu-
tic strategies and prognostic markers. The inte-
gration of bioinformatics tools with experimen-
tal validation offers a comprehensive approach 
to investigate the multifaceted role of BAX in 
cancer.

In this study, we present a thorough analysis of 
BAX gene expression and its implications in  
a pan-cancer context. Leveraging large-scale 
genomic datasets and experimental validation, 
we explore the significance of BAX in the devel-
opment and progression of various cancer 
types. Our investigation spans different facets 
of BAX’s involvement in cancer, including its 
expression profiles, prognostic value, mutation-
al status, and potential impact on the tumor 
microenvironment. The combination of bioinfor-
matics and experimental approaches will pro-
vide a more comprehensive understanding of 
BAX in cancer, potentially uncovering novel 
insights that can inform future diagnostic and 
therapeutic strategies.

Methodology

Analysis of BAX expression in pan-cancer view 
point

UALCAN is a powerful and user-friendly web 
resource designed to facilitate the exploration 
of gene expression in cancer [24]. This plat- 
form provides an invaluable tool for research-
ers seeking to unravel the expression profiles 
of genes like BAX. In our study, UALCAN played 
a pivotal role by enabling us to conduct a com-
prehensive pan-cancer analysis of BAX gene 
expression. This analysis allowed us to assess 
BAX’s expression patterns across a diverse 
spectrum of cancer types, shedding light on  
its potential roles in tumor development and 
progression.

Prognostic analysis of BAX in pan-cancer view 
point

GEPIA2 (Gene Expression Profiling Interactive 
Analysis 2) is a web-based tool that empowers 
researchers for in-depth analysis of gene 
expression and survival data using The Cancer 
Genome Atlas (TCGA) and Genotype-Tissue 
Expression (GTEx) datasets [25]. In our study, 
we harnessed the capabilities of GEPIA to con-
duct comprehensive pan-cancer prognosis 
analysis of the BAX gene. This invaluable 
resource allowed us to assess the impact of 
BAX expression on overall survival across a 
wide range of cancers. 

Relevance of BAX expression with clinical 
variables

UALCAN is a powerful platform for in-depth 
exploration of cancer-related gene expression 
[26]. In our study, UALCAN played a pivotal role 
in elucidating the expression profile of BAX 
expression across different clinical variables 
within specified cancer types. 

Methylome analysis of BAX

OncoDB is a valuable resource for researchers 
delving into epigenetic alterations in cancer 
[27]. In our study, we harnessed the capabili-
ties of OncoDB to perform promoter methyla-
tion analysis of the BAX gene within specified 
cancer types. This platform provided us with 
access to extensive datasets and analytical 
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tools to explore the methylation status of the 
BAX gene’s promoter region. 

Genetic alteration analysis of BAX

cBioPortal is a robust and user-friendly plat-
form widely utilized for exploring genetic altera-
tions in various cancers [28]. In our study, we 
harnessed the power of cBioPortal to conduct 
mutational analysis of the BAX gene across 
specified cancer types. This invaluable tool 
allowed us to investigate alterations in BAX, 
including mutations, copy number variations, 
and structural variants. Such insights are cru-
cial for understanding the role of BAX in cancer 
development and progression, facilitating our 
quest to unravel the genetic underpinnings of 
this critical gene in the context of oncology.

TIMER2

TIMER2 is a robust and widely used database 
that has played a pivotal role in the realm of 
immunogenomics [24]. This valuable resource 
provides a comprehensive collection of immune 
infiltration data across multiple cancer types, 
enabling researchers to delve into the com- 
plex interplay between tumor-infiltrating lym-
phocytes and cancer progression. In a recent 
study, TIMER2 was employed to investigate the 
Pearson correlation between BAX, a critical 
regulator of apoptosis, and the infiltration level 
of CD8+ T cells in various tumor microenviron- 
ments.

Pathway analysis of BAX-related genes

STRING, a powerful bioinformatics tool [29], 
enabled us to unravel the complex web of inter-
actions between BAX and its related genes. 
Through this platform, we constructed a Pro- 
tein-Protein Interaction (PPI) network, providing 
a comprehensive view of the molecular part-
ners influencing BAX’s functionality.

Next, we harnessed the DAVID tool [30] to 
unravel the functional significance of BAX-
related genes. This platform allowed us to con-
duct comprehensive pathway analysis, reveal-
ing the intricate biological processes influenced 
by these genes.

Drug prediction analysis of BAX

DrugBank proves indispensable for cancer 
researchers, providing an accessible interface 

for drug prediction analysis [31]. In our inve- 
stigation, we harnessed the capabilities of 
DrugBank to delve into the realm of drug pre-
diction analysis concerning the BAX gene.

Validation of BAX gene expression through 
quantitative reverse transcription polymerase 
chain reaction (RT-qPCR) analysis

We acquired 15 pairs of fresh LIHC tissue sam-
ples and corresponding adjacent noncancer-
ous tissues from 15 patients. These specimens 
were collected by highly skilled surgeons and 
meticulously examined by experienced patho- 
logists at the Nishtar Medical College, Multan, 
Pakistan, during the period spanning from 
January to June in 2023. We ensured the  
ethical considerations by obtaining written 
informed consent from all patients or their legal 
guardians. The collected tissue samples were 
promptly frozen upon retrieval and safely stored 
at -80°C for subsequent analysis, preserving 
their integrity for research purposes.

To validate the findings of our bioinformatics 
analysis related to the BAX gene, we performed 
RT-qPCR to measure BAX gene expression in 
LIHC samples and control samples. Following 
the manufacturer’s protocol, total RNA was 
extracted from LIHC tissues using RNAiso Plus 
(Takara, China). Subsequently, cDNA was syn-
thesized from the total RNA using the transcrip-
tor cDNA synthesis kit (Roche, Germany). We 
assessed the relative mRNA levels of BAX us- 
ing the Stormstar SybrGreen qPCR Master Mix 
(DBI, Germany). To ensure accurate measure-
ments, we normalized the expression levels of 
BAX to the internal reference gene GAPDH. 
Relative mRNA expression levels were calcu-
lated using the 2-ΔΔct method, and all PCR 
assays were conducted in triplicate. The primer 
sequences employed for gene expression vali-
dation through RT-qPCR are presented below. 

GAPDH-F 5’-ACCCACTCCTCCACCTTTGAC-3’, GA- 
PDH-R 5’-CTGTTGCTGTAGCCAAATTCG-3’; BAX- 
F 5’-TTTGCTTCAGGGTTTCATCC-3’, BAX-R 5’-CA- 
GTTGAAGTTGCCGTCAGA-3’.

Statistics details

For enrichment analysis, we used Fisher’s  
exact test for computing statistical difference. 
Correlational analyses were carried out using 
Pearson method. For comparisons, a student 
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t-test was adopted in the current study. All the 
analyses were carried out in R version 3.6.3 
software.

Results

Analysis of BAX expression in pan-cancer view 
point

During our extensive pan-cancer investigation 
into the expression of the BAX gene, we noted a 
noteworthy and uniform increase in all 33 can-
cer types we examined (as depicted in Figure 
1). This significant discovery highlights a broad 
surge in BAX gene expression in diverse cancer 
types, emphasizing its potential importance 
within the realm of cancer development.

Prognostic analysis of BAX in pan-cancer view 
point

In our comprehensive pan-cancer prognostic 
analysis of the BAX gene, we made a notable 
observation concerning its impact on overall 
survival (OS). Our results indicated a consistent 
and intriguing association between up-regulat-
ed BAX gene expression and poor OS in two 
specific cancer types, namely Liver Hepato- 
cellular Carcinoma (LIHC) and Skin Cutaneous 
Melanoma (SKCM) within the context of all 33 
cancer types we examined (Figure 2). This find-
ing underscores the potential significance of 
BAX as a prognostic marker in these particular 
cancers, suggesting that its overexpression 

may serve as an adverse prognostic indicator 
for patients. 

Relevance of BAX expression with clinical 
variables

Subsequently, we conducted an expression 
analysis of the BAX gene in patients diagnos- 
ed with LIHC and SKCMS, stratified by various 
clinical variables such as cancer stage, race, 
and gender. Our findings revealed a significant 
up-regulation of BAX expression in LIHC and 
SKCM patients across different cancer stages, 
racial backgrounds, and genders when com-
pared to control samples (Figure 3). This con-
sistent up-regulation of BAX underscores its 
potential role as a key player in the molecular 
landscape of these cancers, irrespective of the 
clinical parameters we assessed. Further in- 
vestigation is required to elucidate the precise 
implications of these findings for disease pro- 
gression.

Methylome and genetic alteration analysis of 
BAX

In our study, we advanced our research by con-
ducting a comprehensive analysis of the pro-
moter methylation and genetic mutational sta-
tus of the BAX gene. To achieve this, we utilized 
the OcoDB and cBioportal databases, renown- 
ed resources for accessing genetic and epigen-
etic information. Our findings in this analysis 
revealed intriguing insights into the methylation 

Figure 1. The mRNA-level pan-cancer expression analysis of the BAX gene conducted using UALCAN. Significance 
was determined with a p-value <0.05. In the figure, the blue boxplot depicts BAX expression in normal samples, 
while the red boxplot illustrates BAX expression in cancerous samples. BAX = BCL2 Associated X.
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Figure 2. The pan-cancer analysis of overall survival (OS) outcomes associated with the BAX gene, conducted using 
GEPIA2. A. A survival map depicting BAX gene outcomes across 33 cancer types. B. Survival graphs displaying BAX 
gene outcomes in LIHC and SKCM. The significance level was established with a p-value <0.05. BAX = BCL2 Associ-
ated X, LIHC = Liver Hepatocellular Carcinoma, SKCM = Skin Cutaneous Melanoma.

Figure 3. Assessment of BAX gene expression across LIHC and SKCM patients stratified by various clinical param-
eters. A. The BAX gene expression among LIHC patients with different clinical variables. B. The BAX gene expression 
among SKCM patients with diverse clinical parameters. Significance was determined using a p-value <0.05. BAX = 
BCL2 Associated X, LIHC = Liver Hepatocellular Carcinoma, SKCM = Skin Cutaneous Melanoma.

status of the BAX gene in LIHC and SKCM 
patients when compared to control samples. 

Promoter methylation analysis outcomes de- 
monstrated that the BAX gene exhibited a 
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Figure 4. Results from the analysis of promoter methylation and genetic alterations in the BAX gene among LIHC 
and SKCM patients. A. Findings from the promoter methylation analysis of the BAX gene employing OncoDB. B. Out-
comes of the genetic alteration analysis of the BAX gene using cBioPortal. Significance was determined using a p-
value <0.05. BAX = BCL2 Associated X, LIHC = Liver Hepatocellular Carcinoma, SKCM = Skin Cutaneous Melanoma.

reduced level of methylation in the promoter 
region of the BAX gene in these cancer types 
(Figure 4A). Hypomethylation of the promoter 
region often correlates with increased gene 
expression [32], which could help explain our 
earlier findings of up-regulated BAX expression 
in LIHC and SKCM. 

Furthermore, our genetic mutational analysis 
did not reveal a high prevalence of genetic 
mutations in the BAX gene in LIHC (1.7%) and 

SKCM (2.35%) (Figure 4B). This suggests that 
while promoter hypomethylation may be a con-
tributing factor to BAX up-regulation in these 
cancer types, genetic mutations in the BAX 
gene itself may not be a common driver of 
oncogenesis in LIHC and SKCM. These com-
bined results shed light on the complex inter-
play of epigenetic and genetic factors in the 
regulation of BAX and provide valuable insights 
into the molecular landscape of LIHC and 
SKCM.
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Figure 5. Investigation into pathways and examination of the Pearson correlation between BAX expression and the 
infiltration level of CD8+ T immune cells in LIHC and SKCM. A. Protein-Protein Interaction (PPI) network featuring 
proteins associated with BAX and pathway terms linked to BAX. B. Pearson correlation results of BAX with the infil-
tration level of CD8+ T immune cells in LIHC and SKCM. Significance was determined using a p-value <0.05. BAX = 
BCL2 Associated X, LIHC = Liver Hepatocellular Carcinoma, SKCM = Skin Cutaneous Melanoma.

Exploration of BAX-associated signaling path-
ways

Continuing our investigation, we extended our 
analysis by constructing a PPI network for the 
BAX gene using data from the STRING data-
base. The PPI network unveiled nine distinct 
proteins that interact with BAX (Figure 5A). 
These interactions are pivotal in understanding 
the functional role of BAX and its involvement 
in cellular pathways. Subsequently, we con-
ducted a Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis of the BAX gene and 
its interacting partners using the DAVID tool. 
The results of this analysis demonstrated that 
these genes collectively participate in intriguing 
pathways, including pathways “BCL (B cell lym-
phoma) and BIM protein N-terminus, apoptosis 

regulator proteins, BCL (B cell lymphoma), P53 
DNA binding domain, bcl-2 homology region 2, 
and P53 tetrameristion, etc. (Figure 5A)”. These 
findings provide a deeper understanding of the 
functional context of BAX and its associated 
proteins, shedding light on the intricate cellular 
pathways where BAX plays a crucial role.

Correlation between BAX expression and infil-
tration level of CD8+ T cells

In the subsequent phase of our study, we har-
nessed the power of the TIMER2 database to 
delve into the Pearson correlation between 
BAX gene expression and the infiltration level  
of CD8+ T cells in LIHC and SKCM. The analysis 
yielded compelling results, highlighting a nota-
ble and positive correlation between BAX over-
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Table 1. DrugBank-based BAX-associated drugs

Sr. No Hub 
gene Drug name Effect Reference Group

1 BAX Celecoxib Decrease expression 
of BAX mRNA

A20938 Approved
Dronabinol A22087

Cyclosporine A20661
Doxorubicin A21894
Calcifediol A22310
Resveratrol A23864

BAX = BCL2 Associated X.

Figure 6. Evaluation of BAX gene expression in LIHC 
samples paired with adjacent controls using RT-
qPCR. Significance was determined using a p-value 
<0.05. BAX = BCL2 Associated X, LIHC = Liver Hepa-
tocellular Carcinoma.

expression and the infiltration level of CD8+ T 
cells in both LIHC and SKCM (Figure 5B). This 
positive correlation emphasized the potential 
significance of BAX in the immune microenvi-
ronment of these cancer types.

Drug prediction analysis of BAX

In the subsequent phase of our study, we con-
ducted a drug prediction analysis targeting the 
BAX gene with the aim of identifying experi- 
mentally approved drugs that could potentially 
reverse the expression of BAX in the treatment 
of LIHC and SKCM. Our results unveiled a list of 
promising drug candidates, including Celecoxib, 
Dronabinol, Cyclosporine, Doxorubicin, Calci- 
fediol, and Resveratrol, which demonstrated 
the capability to reduce the expression of BAX 
in the context of LIHC and SKCM (Table 1). 

These findings hold signifi-
cant promise for potential 
therapeutic interventions, as 
they provide insights into 
pharmaceutical agents that 
may play a pivotal role in 
modulating BAX expression. 
Further research and valida-
tion studies are necessary to 
explore the efficacy and 
safety of these drugs in clini-
cal settings.

Validation of BAX gene expression through 
RT-qPCR

Lastly, to validate BAX gene expression, we per-
formed RT-qPCR analysis of this gene using 15 
LIHC samples paired with adjacent controls. 
The outcomes of our RT-qPCR analysis un- 
equivocally demonstrated a significant and 
consistent increase in BAX gene expression 
within the LIHC samples when compared to the 
adjacent control tissues (Figure 6). This find- 
ing stands as a pivotal validation of the initial 
observations derived from our bioinformatics 
analysis, which strongly indicated an up-regula-
tion of the BAX gene in the context of LIHC.

Discussion

Cancer, a multifaceted and life-threatening dis-
ease, has been a subject of intense scientific 
scrutiny for decades [33]. It encompasses a 
diverse group of malignancies characterized by 
uncontrolled cell growth, which can lead to dev-
astating consequences [34]. The understand-
ing of cancer has evolved, highlighting the  
need for a comprehensive approach to identify 
shared molecular features across various can-
cer types. The pan-cancer analysis of BAX gene 
expression was conducted to elucidate its 
potential role as a universal player in cancer 
development, prognosis, and therapy. 

The most striking findings of our study are the 
uniform increase in BAX gene expression 
across 33 cancer types examined in pan-can-
cer view. This observation emphasized the 
potential importance of BAX in the develop-
ment and progression of diverse cancer types. 
BAX, a pro-apoptotic gene, is typically associ-
ated with promoting programmed cell death, 
which is often disrupted in cancer [35, 36]. The 
consistent up-regulation of BAX in various can-
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cers suggests that it may be harnessed by can-
cer cells to evade apoptosis and promote their 
uncontrolled growth. 

In addition to the pan-cancer analysis, our 
study focused on the prognostic implications of 
BAX gene expression. Notably, we observed a 
consistent association between up-regulated 
BAX and poor OS in LIHC and SKCM patients 
out of analyzed 33 cancer types. This finding 
suggests that BAX may serve as an adverse 
prognostic indicator for patients with these 
specific cancer types. Previous studies also 
suggested that overexpressed BAX is prognos-
tic indicator of worst OS in cancer patients [37-
39]. However, no study deciphers the underly-
ing mechanism of BAX relevance with poor OS 
of cancer patients and there has been no 
research that elucidates the fundamental 
mechanism responsible for the connection 
between BAX and poor OS of the cancer 
patients. Therefore, understanding the mecha-
nisms by which increased BAX expression in- 
fluences disease progression in these cancers 
is critical. It may involve the suppression of 
apoptosis, contributing to treatment resistance 
and aggressive tumor growth. These findings 
can guide personalized treatment strategies 
and clinical decision-making for patients with 
LIHC and SKCM.

To gain a more comprehensive understanding 
of BAX regulation, we examined both the pro-
moter methylation and genetic mutational sta-
tus of the BAX gene. In LIHC and SKCM, we 
found hypomethylation of the BAX gene’s pro-
moter region, which often correlates with in- 
creased gene expression [40, 41]. This may 
explain the observed up-regulation of BAX in 
these cancer types, supporting the idea that 
epigenetic modifications contribute to its over-
expression [42, 43]. In contrast, our genetic 
mutational analysis revealed a relatively low 
prevalence of BAX gene mutations in LIHC and 
SKCM. In previously published research, it has 
been noted that mutations in the BAX gene are 
infrequent among individuals with cancer [44, 
45]. This scenario suggests that while epigen-
etic factors, particularly promoter hypomethyl-
ation, may contribute to BAX up-regulation, 
genetic mutations in the BAX gene itself are not 
a common driver of oncogenesis in LIHC and 
SKCM. These results highlight the complex 
interplay of epigenetic and genetic factors in 
the regulation of BAX expression.

The exploration of BAX-associated signaling 
pathways using a PPI network and KEGG analy-
sis revealed participation of BAX and BAX-
associated genes in various pathways, includ-
ing those related to apoptosis regulation and 
the P53 pathway [46, 47]. These findings deep-
en our understanding of how BAX functions in 
the intricate landscape of cellular processes.

Our analysis of the correlation between BAX 
expression and the infiltration level of CD8+ T 
cells in LIHC and SKCM showed a notable and 
positive correlation. This suggests that BAX 
may play a role in shaping the immune microen-
vironment of these cancers. The presence of 
CD8+ T cells in the tumor microenvironment is 
often associated with a better prognosis, as 
they are key effectors of the anti-tumor im- 
mune response [48, 49]. The positive correla-
tion observed between BAX and CD8+ T cell 
infiltration, on the other hand, yielded contrast-
ing outcomes, as the presence of CD8+ T 
immune cells did not lead to improved progno-
ses for patients with LIHC and SKCM.

Our drug prediction analysis identified a list  
of experimentally approved drugs (Celecoxib, 
Dronabinol, Cyclosporine, Doxorubicin, Calcife- 
diol, and Resveratrol) with the potential to 
reverse the expression of BAX in LIHC and 
SKCM. These findings open the door to poten-
tial therapeutic interventions that could target 
BAX expression to improve patient outcomes. 
However, these predictions require further vali-
dation and testing in preclinical and clinical set-
tings to determine their safety and efficacy.

Conclusion

In conclusion, our study on BAX gene expres-
sion and its implications in various cancer 
types sheds light on the importance of BAX in 
cancer development, prognosis, and potential 
therapeutic strategies. The uniform increase in 
BAX expression across diverse cancer types 
emphasizes the need for further research into 
the mechanisms responsible for this phenom-
enon. The prognostic implications of BAX in 
LIHC and SKCM suggest a role for BAX in dis-
ease progression and treatment response, 
necessitating personalized approaches. The 
interplay of epigenetic and genetic factors in 
BAX regulation, its involvement in signaling 
pathways, and its impact on the immune micro-
environment all contribute to a more compre-
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hensive understanding of the role of BAX in 
cancer. Furthermore, the drug predictions pro-
vide promising avenues for targeted therapy, 
but these require rigorous validation. 
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