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Abstract: Objective: Aggregating evidence convincingly establishes the predominant genetic basis underlying con-
genital heart defects (CHD), though the heritable determinants contributing to CHD in the majority of cases remain 
elusive. In the current investigation, BMP10 was selected as a prime candidate gene for human CHD mainly due to 
cardiovascular developmental abnormalities in Bmp10-knockout animals. The objective of this retrospective study 
was to identify a new BMP10 mutation responsible for CHD and characterize the functional effect of the identi-
fied CHD-causing BMP10 mutation. Methods: Sequencing assay of BMP10 was fulfilled in a cohort of 276 pro-
bands with various CHD and a total of 288 non-CHD volunteers. The available family members from the proband 
harboring an identified BMP10 mutation were also BMP10-genotyped. The effect of the identified CHD-causative 
BMP10 mutation on the transactivation of TBX20 and NKX2.5 by BMP10 was quantitatively analyzed in main-
tained HeLa cells utilizing a dual-luciferase reporter assay system. Results: A novel heterozygous BMP10 mutation, 
NM_014482.3:c.247G>T;p.(Glu83*), was identified in one proband with patent ductus arteriosus (PDA), which was 
confirmed to co-segregate with the PDA phenotype in the mutation carrier’s family. The nonsense mutation was not 
observed in 288 non-CHD volunteers. Functional analysis unveiled that Glu83*-mutant BMP10 had no transactiva-
tion on its two representative target genes TBX20 and NKX2.5, which were both reported to cause CHD. Conclusion: 
These findings provide strong evidence indicating that genetically compromised BMP10 predisposes human beings 
to CHD, which sheds light on the new molecular mechanism that underlies CHD and allows for antenatal genetic 
counseling and individualized precise management of CHD.
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Introduction

Congenital heart defect (CHD), a wide spectrum 
of cardiovascular malformations resulting from 
anomalous development of the heart and car-
diac valves as well as endo-thoracic large ves-
sels, signifies the most prevalent kind of birth 
aberration in humans, occurring in roughly 1% 
of live neonates and in approximately 10% of 
miscarriages worldwide [1, 2]. Besides, when 
minor cardiovascular developmental deformi-
ties are encompassed, such as atrial septal 

aneurysm, patent foramen ovale, right aortic 
arch, and aortic bicuspid valve (the most com-
mon form of congenital cardiovascular abnor-
malities, occurring in 1% to 2% of people), the 
prevalence of CHD is as high as ~5% among live 
births [3-5]. As a vast collection of cardiovascu-
lar developmental anomalies, CHD is clinically 
assorted to >26 diverse isoforms, including  
patent ductus arteriosus (PDA), aortic/pulmo-
nary atresia, aortic/pulmonary stenosis, aortic 
coarctation, aortopulmonary window, atrial/
ventricular septal defect, tetralogy of Fallot (the 
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commonest cyanotic CHD), atrioventricular 
septal defect, single ventricle, endocardial 
cushion defect, transposition of the major 
arteries, double outlet right ventricle, aortic 
arch interruption, abnormal coronary artery 
connection, cor triatriatum, and left heart hypo-
plasia/left ventricular noncompaction/spongy 
myocardium [2, 6-11]. Though some minor 
types of CHD do resolve spontaneously [2], 
severe types of CHD may give rise to degraded 
health-correlated quality of life [12-15], im- 
paired exercise capacity [16-18], pulmonary 
arterial hypertension [19-21], acute brain injury 
and delayed neurodevelopment [22-25], throm-
boembolic/ischemic cerebral stroke [26-28], 
acute renal injury and chronic kidney disease 
[29-31], liver fibrosis and dysfunction [32], 
infective endocarditis [33-37], chronic/conges-
tive heart failure [38-40], miscellaneous supra-
ventricular and life-threatening ventricular dys-
rhythmias [41-45], and even premature cardiac 
demise [46-50]. Over the past decades, enor-
mous advancements have been won in surgical 
and trans-catheter interventional therapies for 
CHD as well as in perioperative intensive care 
of CHD patients, which allow ~95% of live new-
borns inflicted with CHD (including those with 
complex CHD) to survive to adulthood, and as  
a consequence of longer life expectancy, now 
adults have already outnumbered children 
among the individuals living with CHD [51-56]. 
However, in comparison with the general popu-
lation, adult survivors with CHD are associated 
with higher incidences of late comorbidity and 
mortality, including cerebrovascular thrombo-
embolism, pulmonary hypertension, chronic 
renal disease, infective endocarditis, conges-
tive heart failure, cardiac arrhythmias, cancer, 
and premature cardiac death [55-59]. There- 
fore, CHD has caused substantial mortality and 
morbidity as well as imposing vast economic 
encumbrance on individuals and society, under-
scoring the urgent necessity to ascertain the 
etiologies accountable for CHD [2].

In vertebrate embryos, the heart is the first 
functioning organ to develop, and cardiac de- 
velopment experiences an exceedingly sophis-
ticated biological process that involves a finely 
controlled sophisticated network, principally 
comprising cardiac structural proteins, tran-
scription factors, signal-transducing molecules, 
and epigenetic modifiers [1, 60-64]. It has been 
validated that both non-heritable risk factors 

and inherited defectives may perturb this  
heart-forming process, leading to an extensive 
assortment of CHD [1, 3, 60-66]. It is estimat-
ed that acquired/environmental pathogenic 
factors contribute to ~10% of CHD, though their 
molecular mechanisms underlying CHD are 
largely obscure [1]. Well-established non-genet-
ic factors that predispose someone to CHD 
include maternal disorders (obesity, essential 
hypertension, hyperlipidemia, diabetes melli-
tus, hyperhomocysteinemia, phenylketonuria, 
acute febrile illness, viral infections, epilepsy, 
pre-eclampsia, autoimmune imbalance, con-
nective tissue disease, thyroid disease, and 
mental health disease), maternal medications 
(anti-depressant, anti-hypertensive, anti-con-
vulsant, and anti-infective drugs), maternal 
ingestion of toxic substance (marijuana, alco-
hol, and tobacco), maternal malnutrition (folate 
deficiency), and maternal exposure of air pollut-
ants, toxic chemicals, and heavy metals during 
the first trimester of pregnancy [1, 64, 67-70]. 
However, an ever-growing body of evidence 
substantiates that inherited components exert 
a predominant impact on the incidence of CHD 
[1, 3, 60-62]. In addition to chromosomal aneu-
ploidies (Turner syndrome, trisomy 18, Down 
syndrome, DiGeorge syndrome, and trisomy 
13) and copy number variations (losses and 
gains), deleterious mutations in more than 100 
genes, encompassing TBX20 and NKX2.5, 
have been causally implicated in CHD [1, 3, 
60-62, 71-101]. Nevertheless, in the majority 
of cases, the heritable determinants for CHD 
remain indefinite [1], which underscores the 
conspicuous genetic heterogeneity of CHD and 
renders it warranted to discern new genes 
underpinning CHD.

Recently, research on the Bmp10-knockout 
animals unveiled the critical role of Bmp10 in 
regulating cardiovascular development [102-
104]. In mice, Bmp10 knockout led to embry-
onic lethality mainly due to cardiac hypoplasia 
(hypoplastic ventricular walls) [102]. Morpho- 
logical and histological analyses of Bmp10-
deficient murine embryos and hearts revealed 
that myocardial growth was retarded with 
expanded pericardiac sacs, thinned myocardi-
um (ventricular hypertrabeculation because of 
dramatic reduction in myocardial proliferation), 
and severe edema [102]. Additionally, acellular 
endocardial cushions developed in both the 
atrioventricular canal and outflow tract, result-
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ing in failure to form normal endocardial cush-
ions and ventricular trabeculae [102]. Besides, 
in the developing myocardium of Bmp10-
deficient mice, the expression levels of multiple 
essential cardiogenic transcription factors, 
including NKX2.5 and MEF2C, were strikingly 
diminished [102]. Furthermore, a BMP10-
conditioned medium could rescue Bmp10-null 
hearts in culture [102]. By utilizing conven- 
tional knockout as well as specific antibodies 
against BMP9 or BMP10, Chen and colleagues 
[103] demonstrated that BMP10 and BMP9 
were concurrently expressed in the developing 
cardiovascular system with partially overlap-
ping physiological roles, showing functional 
redundancy. Yet, analysis of Bmp109/9 mice, in 
which Bmp10 was displaced by Bmp9 (Bmp9 
knocked in at the Bmp10 locus), showed that 
Bmp10 possessed an exclusive function in car-
diovascular morphogenesis, which couldn’t be 
substituted or fully compensated by ectopic 
expression of Bmp9 [103]. Specifically, 
Bmp109/9 hearts presented with hypoplasia 
with markedly thinner ventricular wall and 
apparent pericardial edema, and most 
Bmp109/9 hearts also manifested pronounced 
ventricular septal defects, in addition to signifi-
cantly decreased myocardial proliferation and 
growth, enlarged heart volume, and changed 
cardiac shape [103]. Levet and partners [104] 
examined the impacts of Bmp10 and Bmp9 on 
the closure of the ductus arteriosus in mice  
and observed that Bmp9 knockout caused an 
imperfect closure of the ductus arteriosus. 
Furthermore, at postnatal day 1 and day 3, 
administration of an anti-BMP10 neutralizing 
antibody aggravated the remodeling anomaly 
and resulted in a reopening of the ductus arte-
riosus at postnatal day 4 in these pups [104]. 
Collectively, these results from experimental 
animals establish a pivotal role of BMP10 in 
proper cardiac organogenesis, especially in the 
myocardial growth, ventricular chamber matu-
ration, and closure of ductus arteriosus, and 
prompt the hypothesis that a BMP10 mutation 
contributes to CHD in humans.

Materials and methods

Human study subjects

The present retrospective human research was 
implemented in conformity with the ethical 
principles outlined in the Declaration of Hel- 
sinki. The protocols applied to this human 

research were approved by the local institution-
al review board of Tongji Hospital, Shanghai 
(approved protocol code: LL(H)-09-07). Written 
informed consent was provided by the research 
participants or their parents/legal guardians at 
the time of initial recruitment, prior to the com-
mencement of the present human research. In 
compliance with approved guidelines and regu-
lations, the personal identities of the consent-
ing research participants were encrypted and 
secured. For the current human research, a 
cohort of 276 probands affected with various 
CHD was enlisted from the Chinese population 
of Han ethnicity, in addition 288 unrelated Han-
race non-CHD volunteers were employed as 
control individuals. The available relatives of 
the CHD-affected probands were also enrolled. 
Each research participant was examined at 
least by a cardiologist and a pediatrician. 
Detailed personal, medical, and familial histo-
ries were retrieved, and thorough physical 
examinations, including echocardiography and 
electrocardiography, were completed for all 
study subjects. The affected individuals’ con-
genital cardiovascular malformations were 
classified in terms of the nomenclature of  
the International Classification of Diseases, 
Eleventh Revision (ICD-11) [105]. The inclusion 
criteria for the patient group were having a 
diagnosis of CHD documented by the echocar-
diogram or confirmed by surgical proceedings 
and providing a signed informed consent form. 
The criteria for exclusion were patients with 
such syndromic CHD as Alagille syndrome, 
Down syndrome, Edward syndrome, Turner syn-
drome, DiGeorge syndrome, Patau syndrome, 
and Noonan syndrome. Patients with defined 
causes explainable for CHD were also exclud-
ed. The non-CHD individuals with a familial his-
tory of CHD were excluded from the control 
group. Demographic and clinical data along 
with 2 mL of whole blood were collected from 
each eligible study subject.

Sequencing analysis of human BMP10

Extraction of genomic DNA from the study par-
ticipants’ blood leucocytes was fulfilled by 
employing the GeneJETTM Genomic DNA Puri- 
fication Kit (Thermo Scientific, USA) as per the 
manual. The unique oligonucleotide primers 
applied to amplify the whole coding regions as 
well as the splicing boundaries of BMP10 
(NC_000002.12) were described elsewhere 
[106]. Amplification of BMP10 from each 



BMP10 mutation underpinning congenital heart defects

112 Am J Transl Res 2024;16(1):109-125

research subject’s genomic DNA through poly-
merase chain reaction (PCR) was conducted 
under the SimpliAmpTM Thermal Cycler appara-
tus (Applied Biosystems, USA) using the Ac- 
cuPrimeTM Taq DNA Polymerase Kit (Invitrogen, 
USA) along with the BMP10-specific primers, 
according to the manufacturer’s instructions. 
The amplicons were resolved via 1.4% agaro- 
se gel electrophoresis and purified with the 
GeneJETTM Gel Extraction Kit (Thermo Scienti- 
fic, USA) following the protocol. The amplified 
products purified are subject to sequencing 
analysis as described previously [106]. Sanger 
sequencing analysis of BMP10 was performed 
in all the study participants, including 276 CHD-
affected index patients and 288 non-CHD vol-
unteers as well as the available pedigree mem-
bers of the proband who carried an identified 
BMP10 mutation. Additionally, for an identified 
BMP10 mutation, several online population 
genetics databases, including the Genome 
Aggregation Database (gnomAD; http://gno-
mad-sg.org/gene/ENSG00000163217?datas- 
et=gnomad_r2_1/; logged in on 15 Septemb- 
er 2023), and the Single Nucleotide Polymor- 
phism database (SNP; https://www.ncbi.nlm.
nih.gov/snp/?term=BMP10/; logged in on 15 
September 2023), were retrieved to authenti-
cate its novelty.

Construction of gene expression vectors

The wild-type human BMP10-pcDNA3.1 vector 
(WT) was constructed as described previously 
[106]. The Glu83*-mutant BMP10-pcDNA3.1 
vector (Glu83*) was generated through PCR-
based site-targeted mutagenesis utilizing the 
GENEART® Site-Directed Mutagenesis System 
(Invitrogen, USA) along with a complimentary 
pair of primers (forward: 5’-AAGGTGGACCCA- 
CCATAGTACATGTTGGAAC-3’; reverse: 5’-GTTCC- 
AACATGTACTATGGTGGGTCCACCTT-3’) and was 
verified by direct sequencing assay. The TBX20-
luc and NKX2.5-luc vectors, where the promot-
ers of the human TBX20 and NKX2.5 genes 
transactivate the expression of firefly luciferase 
reporter, respectively, were created as des- 
cribed elsewhere [94]. All the constructed 
eukaryotic expression vectors were confirmed 
by direct sequencing assay.

Cellular transfection with gene expression vec-
tors and reporter gene assay

The HeLa cells were cultured as described pre-
viously [106]. Cells were grown in a 24-well 
plastic plate (Corning, USA) at a density of 1 × 

105 cells per well, incubated for 36 h to reach 
~80% confluency, and then transfected with 
various expression vectors through the Lipo- 
fectamine® LTX & PLUSTM Reagent (Invitrogen, 
USA). As an internal control vector that ex- 
presses renilla luciferase, pGL4.75 (Promega, 
USA) was applied for normalizing/standardizing 
transfection efficiency. The empty pcDNA3.1 
vector was used as an external negative con-
trol. As described in detail previously [106], 12 
ng of pGL4.75 (Promega), 1.2 μg of TBX20-luc 
or NKX2.5-luc, and 0.4 μg of each gene expres-
sion vector (empty pcDNA3.1 vector, wild-type 
human BMP10-pcDNA3.1 vector, or Glu83*-
mutant human BMP10-pcDNA3.1 vector, singly 
or in combination) were used. Transfected cells 
with various expression vectors were harvested 
36 h post cellular transfection and then lysed 
in the cell lysis buffer. The dual-luciferase activ-
ities of cellular lysates were quantitatively 
gauged on the GloMax® Luminometer using the 
Dual-Glo® Luciferase Assay Systems (Promega, 
USA) according to the instructions. The activi-
ties of the TBX20 and NKX2.5 promoters were 
expressed by the ratios of firefly luciferase 
activities to renilla luciferase activities. Cellular 
transfection with each expression vector was 
executed in three independent replicates.

Statistical analysis

For continuous/quantitative variables, resul-
tant parameters are expressed as mean ± SD. 
Categorical/qualitative variables are presented 
by frequency number (n) and percentage (%). 
Quantitative parameters were compared with 
independent Student’s t-test between the two 
groups. When quantitative parameters were 
compared among ≥ 3 groups, a one-way analy-
sis of variance (ANOVA) with a Tukey-Kramer 
HSD post hoc test was applied. Qualitative 
parameters were compared utilizing Pearson’s 
chi-square test or Fisher’s exact test between 
the two groups. A two-tailed P-value of less 
than 0.05 indicated a statistically significant 
difference. All statistical analyses were accom-
plished by exploiting the SPSS software, ver-
sion 22.0 (SPSS, USA).

Results

Demographic and phenotypic characteristics 
of the recruited probands affected with CHD

In this human research, a cohort of 276 pro-
bands suffering from a wide variety of CHD 
(121 female probands and 155 male probands, 
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with an average age of 4.1 ± 2.7 years) was 
clinically analyzed in contrast to 288 unrelated 
volunteers without CHD (127 female volunteers 
and 161 male volunteers, with a mean age of 
4.2 ± 2.6 years). All the research participants 
were recruited from the Chinese Han-race pop-
ulation in Shanghai, China. The included CHD-
affected probands possessed definite echo- 
cardiographic evidence, whilst the enlisted con-

from Family C01) of the mutation-carrying pro-
band also suffered from a congenital ventricu-
lar septal defect (VSD). All the five affected rela-
tives (III-2, III-4, II-3, II-7, and I-1 from Family 
C01) of the mutation-carrying proband under-
went transcatheter cardiovascular interven-
tional repair for CHD. The mutation was neither 
observed in 288 non-CHD control people nor 
released in such genetics databases as SNP 

Table 1. Demographic and phenotypic characteristics 
of the 276 probands affected with congenital heart 
defects

Parameters Number 
or mean

Percentage 
or range

Demographics
    Female probands 121 43.8
    Male probands 155 56.2
    Age (years) 4.1 ± 2.7 0.5-9.6
    Positive family history of CHD 38 13.8
Distribution of distinct types of CHD
    ASD 66 23.9
    VSD 62 22.5
    PDA 55 19.9
    TOF 29 10.5
    DORV 7 2.5
    AS 3 1.1
    TGA 3 1.1
    PS 2 0.7
    PTA 1 0.4
    VSD + PDA 17 6.2
    DORV + VSD 11 4.0
    TGA + VSD 7 2.5
    ASD + PDA 6 2.2
    VSD + ASD 4 1.4
    TOF + ASD 2 0.7
    PTA + VSD 1 0.4
Arrhythmias
    AVB 21 7.6
    AF 9 3.3
Medical treatment
    Catheter-based therapy for CHD 130 47.1
    Cardiac surgery for CHD 108 39.1
    Follow-up examination 38 13.8
Data are shown as a mean ± standard deviation, frequency number, 
percentage, or range. CHD: congenital heart defects/disease; ASD: 
atrial septal defect; VSD: ventricular septal defect; PDA: patent 
ductus arteriosus; TOF: tetralogy of Fallot; DORV: double outlet of 
right ventricle; AS: aortic stenosis; TGA: transposition of the great 
arteries; PS: pulmonary stenosis; PTA: persistent truncus arteriosus; 
AVB: atrioventricular block; AF: atrial fibrillation.

trol volunteers’ echocardiograms were 
normal, without proof showing cardiovas-
cular structural malformations. Of the 276 
probands inflicted with CHD, 38 probands 
had a familial history of CHD, whereas the 
288 control individuals’ parents explicitly 
denied a familial history of CHD. No study 
individuals had recognized secondary pre-
cipitating factors prone to CHD, encom-
passing maternal hyperhomocysteinemia, 
phenylketonuria, diabetes mellitus, hypo-
thyroidism, essential hypertension, acute 
febrile illness, epilepsy, pre-eclampsia, 
nutritional deficiency, connective tissue 
disease, as well as exposure to therapeu-
tic drugs, toxicants, and ionizing radiation 
during the first trimester of gestation, and 
most CHD-affected probands underwent 
catheter-based cardiac intervention or 
cardiac surgery. The demographic and 
phenotypic characteristics of the 276 pro-
bands affected with CHD are summed in 
Table 1.

Discovery of a CHD-causing mutation in 
BMP10

Through sequencing assay of the coding 
regions along with the splicing junction 
boundaries of the BMP10 gene in 276 
index patients affected with distinct kinds 
of CHD, a new BMP10 mutation, namely 
NM_014482.3:c.247G>T;p.(Glu83*), was 
discovered to be in a heterozygous status 
in one seven-year male index patient with 
congenital PDA. PCR-sequencing analysis 
of BMP10 in the available pedigree mem-
bers of the mutation carrier revealed that 
the nonsense mutation was in co-segre-
gation with the PDA phenotype, which was 
inherited in an autosomal dominant pat-
tern in the whole family (arbitrarily desig-
nated as Family C01), with complete 
(100%) penetrance. Additionally, two PDA-
inflicted family members (II-7 and III-4 
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and gnomAD, highlighting the novelty of the 
identified BMP10 nutation linked to CHD. The 
sequencing chromatogram traces indicating 
the heterozygous c.247G>T mutation in BMP10 
and its control in a homozygous status are dis-
played in Figure 1. The pedigree of the proband 
harboring the identified BMP10 mutation is 
illustrated in Figure 2. In Family C01, there was 
a total of 14 family members available, encom-
passing seven male family members and the 
same number of female family members, with 
ages varying between 2 and 59 years. All the 
seven affected pedigree members from Family 
C01 had echocardiogram-documented PDA 

including empty pcDNA3.1 vector as an ex- 
ternal negative control (-), wild-type human 
BMP10-pcDNA3.1 vector (BMP10), and Gl- 
u83*-mutant human BMP10-pcDNA3.1 vector 
(Glu83*), singly or in combination, BMP10 and 
Glu83* transcriptionally activated the promot-
er of the TBX20 gene by ~9-fold and ~1-fold, 
respectively (BMP10 vs Glu83*: t = 10.5275; P 
= 0.0005). When BMP10 and Glu83* were 
together transfected, the elicited transactiva-
tion effect was ~4-fold (BMP10 vs Glu83* + 
BMP10: t = 5.7909; P = 0.0044). Unanimous 
statistical results were yielded when multiple 
comparisons were conducted (F = 50.966, P = 

Figure 1. A novel BMP10 mutation accountable for congenital cardiovascular deformities. The sequence chromato-
gram traces revealed the heterozygous BMP10 mutation identified in the CHD-affected index patient (Mutant) as 
well as its homozygous control from an unaffected individual (Wild-type). A vertical arrow directs the nucleotide 
position where the mutation occurs. A rectangle delimits a codon of the BMP10 gene.

Figure 2. Pedigree inflicted with cardiovascular developmental malforma-
tions. An oblique arrow directs the proband. “+” signifies a carrier of the 
heterogeneous BMP10 mutation; “-” denotes a non-carrier.

and experienced catheter-ba- 
sed interventional therapy for 
closure of PDA. No estab-
lished environmental patho-
genic factors susceptible to 
CHD were identified in all pedi-
gree members. The clinical 
phenotypic profile and BMP10 
mutation status of the CHD-
affected members from Fa- 
mily C01 are summarized in 
Table 2.

Functional impairment of 
Glu83*-mutant BMP10 in 
transactivation of TBX20

As depicted in Figure 3, in 
HeLa cells transfected with 
multiple expression vectors, 
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1.289 × 10 -6). Specifically, for (-) vs BMP10, t = 
7.4367; P < 0.0001; for (-) vs Glu83*, t = 
0.0967; P = 0.9998; for (-) vs BMP10 + (-), t = 
3.3800; P = 0.0016; for (-) vs Glu83* + BMP10, 
t = 3.1200; P = 0.0030; for BMP10 vs Glu83*, 
t = 7.3400; P < 0.0001; for BMP10 vs BMP10 + 
(-), t = 4.0567; P = 0.0004; for BMP10 vs 
Glu83* + BMP10, t = 4.3167; P = 0.0002; for 
Glu83* vs BMP10 + (-), t = 3.2833; P = 0.0020; 
for Glu83* vs Glu83* + BMP10, t = 3.0233; P 
= 0.0037; for BMP10 + (-) vs Glu83* + BMP10, 
t = 0.2600; P = 0.9917.

Failure of Glu83*-mutant BMP10 to transcrip-
tionally activate NKX2.5

As presented in Figure 4, in HeLa cells trans-
fected with multiple expression vectors, in- 

t = 5.9300; P = 0.0001; for (-) vs Glu83* + 
BMP10, t = 5.5267; P = 0.0001; for BMP10 vs 
Glu83*, t = 11.1800; P < 0.0001; for BMP10 
vs BMP10 + (-), t = 5.3900; P = 0.0001; for 
BMP10 vs Glu83* + BMP10, t = 5.7933; P = 
0.0001; for Glu83* vs BMP10 + (-), t = 5.7900; 
P = 0.0001; for Glu83* vs Glu83* + BMP10, t 
= 5.3867; P = 0.0001; for BMP10 + (-) vs 
Glu83* + BMP10, t = 0.4033; P = 0.9768.

Discussion

In the current human investigation, via Sanger 
sequencing assay of the BMP10 gene in a larg-
er cohort of 276 probands affected with dis-
tinct types of CHD, a new heterozygous BMP10 
mutation, termed NM_014482.3:c.247G>T;p.
(Glu83*), was found in one seven-year male 

Table 2. Clinical phenotypic profile and BMP10 mutation status of the pedigree members from Family 
C01 suffering congenital cardiovascular structural deformities
Individual (Family C01) Sex Age (years) Cardiovascular structural aberrations BMP10 mutation (Glu83*)
I-1 Male 59 PDA +/-
II-3 Male 33 PDA +/-
II-7 Male 27 PDA, VSD +/-
III-2 Male 7 PDA +/-
III-4 Female 2 PDA, VSD +/-
PDA: patent ductus arteriosus; VSD: ventricular septal defect; +/-: heterozygote for the BMP10 mutation.

Figure 3. Functional failure of BMP10 caused by the Glu83* mutation. 
Dual-reporter gene analysis of the transactivation of the TBX20 promoter-
driven luciferase in maintained HeLa cells by wild-type human BMP10-pcD-
NA3.1 vector (BMP10) or Glu83*-mutant human BMP10-pcDNA3.1 vector 
(Glu83*), separately or together, revealed that Glu83* lost transactivation 
of TBX20. For each expression vector, reporter assay experiments were re-
peated three times in triplicate. Here, “a” and “b” signify P < 0.001 and P < 
0.005, respectively, in comparison with BMP10 (0.4 μg).

cluding empty pcDNA3.1 as  
a negative control (-), wild-ty- 
pe human BMP10-pcDNA3.1 
(BMP10), and Glu83*-muta- 
nt human BMP10-pcDNA3.1 
(Glu83*), singly or together, 
BMP10 and Glu83* transacti-
vated the promoter of the 
NKX2.5 gene by ~13-fold and 
~1-fold, respectively (BMP10 
vs Glu83*: t = 12.3295; P = 
0.0002). When BMP10 and 
Glu83* were together expres- 
sed, the elicited transcription 
activity was ~7-fold (BMP10 
vs Glu83* + BMP10: t = 
6.0492; P = 0.0039). Con- 
gruous statistical results were 
acquired when multiple com-
parisons were implemented 
(F = 88.45, P = 9.20 × 10 -8). 
Specifically, for (-) vs BMP10, t 
= 11.3200; P < 0.0001; for (-) 
vs Glu83*, t = 0.1400; P = 
0.9996; for (-) vs BMP10 + (-), 
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proband with congenital PDA. Sequencing 
assay of BMP10 in the pedigree members 
available from the index patient harboring the 
BMP10 mutation revealed that the mutation 
was co-segregated with congenital PDA in the 
mutation carrier’s whole family. The nonsense 
BMP10 mutation was neither observed in the 
576 referential chromosomes from 288 non-
CHD volunteers nor released from such genet-
ics databases as HGMD, dbSNP, and gnomAD. 
Quantitative measurement of reporter gene 
activities in the HeLa cells grown in vitro 
unveiled that Glu83*-mutant BMP10 failed to 
transcriptionally activate its two representative 
target genes TBX20 and NKX2.5, which were 
both commonly implicated with CHD [1, 3, 
60-62]. These findings present convincing evi-
dence supporting that genetically defective 
BMP10 predisposes humans to CHD.

The human BMP10 gene was located on chro-
mosome 2p13.3, which encodes a growth fac-
tor peptide with 424 amino acid residues, an 
important player of the BMP family of ligands, 
pertaining to the TGFβ superfamily that pro-
foundly mediates the genesis, growth, and mat-
uration of cardiovascular system [106, 107]. 
The members of the BMP family regulate a 
diverse array of developmental events through-

much more enriched in the myocardial trabecu-
lae, though throughout the heart the expres-
sion of BMP10 can be detected [102]. It has 
been validated that BMP10 induces intracellu-
lar signaling through the receptor complex of 
ALK1 with morphogenetic protein receptor 
(type II) or activin receptor (type 2A) [104, 111]. 
Recent investigations have demonstrated that 
BMP10 activates two critical intracellular sig-
naling pathways, namely the canonical pathway 
regulated by SMAD and the noncanonical path-
way regulated by STAT3 [107], and elicits the 
expression of multiple downstream genes para-
mount to normal cardiovascular development 
via the SMAD-binding consensus sequences 
located in the promoters of downstream genes, 
such as NKX2.5, MEF2C, and TBX20 [102, 
112, 113], three key genes to proper cardiovas-
cular morphogenesis and deleterious muta-
tions in all the three genes have been identified 
to be accountable for CHD [114-121]. In the 
present human research, the found Glu83* 
mutation was predicted to create a truncated 
BMP10 protein without key structural domains, 
and biological analysis indicated that Glu83*-
mutant BMP10 lost the ability to activate  
the expression of NKX2.5 and TBX20. These 
results suggest that BMP10 haploinsufficiency 

Figure 4. Diminished ability of Glu83*-mutant BMP10 to transcriptionally 
activate NKX2.5. In the HeLa cells grown in vitro, a dual-reporter gene gauge 
of the activation of the NKX2.5 promoter-driven luciferase by wild-type hu-
man BMP10 expression vector (BMP10) or Glu83*-mutant human BMP10 
expression vector (Glu83*), alone or in combination, unveiled that Glu83* 
possessed no ability to transactivate NKX2.5. For each expression plasmid 
utilized for reporter gene analysis, three cellular transfection experiments 
were fulfilled in triplicate. Here “c” denotes P < 0.001 and “d” indicates P < 
0.005, in comparison with BMP10 (0.4 μg).

out embryogenesis in a broad 
range of species ranging from 
insects to mammals [106, 
107]. Although all the BMP 
family members share a simi-
lar protein structure, each 
BMP member possesses a 
different profile of tissue ex- 
pression and a unique physio-
logical role [108, 109]. To 
date, no less than six mem-
bers of the BMP family were 
substantiated to be expres- 
sed in the developing heart, 
encompassing BMP2, BMP5, 
BMP6, BMP4, BMP7, and 
BMP10, of which merely BM- 
P10 was validated to be spe-
cifically and amply expressed 
in the developing heart [102, 
110]. BMP10 is abundantly 
expressed in the hearts of 
humans as well as mice and 
chicks [107], and in the 
embryonic hearts, BMP10 is 
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is one of the molecular mechanisms underpin-
ning CHD in humans.

It may be attributed to cardiovascular develop-
mental anomalies that genetically defective 
BMP10 gives rise to CHD. In mice, homozygous 
knockout of Bmp10 brought about embryonic 
demise because of severe defects in cardiovas-
cular development, although the mice with het-
erozygous deletion of Bmp10 were viable with 
fertile function [102]. In the Bmp10-deficient 
embryos of mice, cardiac organogenesis was 
arrested with pronounced cardiac hypoplasia 
without ventricular trabeculae, mainly due to a 
strikingly diminished proliferation of Bmp10-
null embryonic cardiomyocytes, and the anom-
alous morphogenesis of endocardial cushion 
was observed in the outflow tract and atrioven-
tricular canal, which was terminated at the 
acellular stage [102]. Moreover, in mice, a dou-
ble ablation of Bmp10 and Bmp9 led to vascu-
lar defects with high-output cardiac failure and 
pulmonary hemosiderosis, though the mice 
with a single ablation of Bmp10 or Bmp9 
appeared to be normal with no obvious cardio-
vascular defects [122]. Additionally, analysis  
of Bmp109/9 mice, where Bmp10 was replaced 
by Bmp9 (Bmp9 knocked in at the Bmp10 
locus), unveiled that Bmp10 had an exclusive 
role in cardiovascular development, which 
couldn’t be substituted or fully compensated by 
ectopic expression of Bmp9 [103]. Specifically, 
Bmp109/9 hearts manifested hypoplasia with 
dramatically thinner ventricular walls and obvi-
ous pericardial edema, and most Bmp109/9 
hearts also had congenital VSD, in addition to 
markedly reduced myocardial proliferation and 
growth as well as changed cardiac shape [103]. 
Notably, Levet and colleagues [104] explored 
the effects of Bmp10 and Bmp9 on the closure 
of the ductus arteriosus in mice and found that 
Bmp9 knockout resulted in an imperfect clo-
sure of the ductus arteriosus. Furthermore, at 
postnatal day 1 and day 3, administration of  
an anti-BMP10 neutralizing antibody exacer-
bated the anomalous remodeling and caused a 
reopening of the ductus arteriosus at postnatal 
day 4 in these pups [104]. Taken together, 
these observational data from experimental 
animals establish an essential role of BMP10 
in cardiovascular morphogenesis, especially in 
myocardial growth, ventricular chamber matu-
ration, and closure of ductus arteriosus.

Noticeably, rare BMP10 variations have been 
involved in dilated cardiomyopathy in humans 

[106, 123]. Gu et al. [106] recruited a multi-
generational pedigree suffering from autoso-
mal-dominant dilated cardiomyopathy from the 
Chinese population of Han ethnicity and con-
ducted a whole-exome sequencing assay of the 
DNAs available from the pedigree members. 
Consequently, a de novo rare BMP10 mutation, 
NM_014482.3:c.166C>T;p.(Gln56*), was iden-
tified and confirmed by sequencing analysis to 
co-segregate with dilated cardiomyopathy in 
the family. Functional deciphering through dual-
luciferase activity measurements showed that 
Gln56*-mutant BMP10 had no transcriptional 
activation on its two representative target 
genes TBX20 and NKX2.5 [106]. Nakano et al. 
[123] enrolled 36 patients suffering from famil-
ial dilated cardiomyopathy, 97 patients suffer-
ing from non-familial dilated cardiomyopathy, 
and 46 cases with hypertensive dilated cardio-
myopathy, and performed the analyses of all 
exons of the human BMP10 gene encompass-
ing flanking 5’- and 3’-untranslated regions by 
using the single-strand conformation polymor-
phism, clone sequencing, and BamHI enzyme 
digestion methods. As a result, in addition to 
two common single nucleotide polymorphisms, 
a novel rare BMP10 variant, namely NM_ 
014482.3:c.977C>T;p.(Thr326Ile), was discov-
ered in a case suffering from hypertensive 
dilated cardiomyopathy and then detected in 
his/her father with hypertensive dilated cardio-
myopathy. The significant association of this 
BMP10 variation (c.977C>T) with hypertensive 
dilated cardiomyopathy was further confirmed 
by analyzing a larger population (1,382 elderly 
consecutive cases, including 616 hypertensive 
and 766 normotensive cases). The biological 
assay demonstrated that the Thr326Ile variant 
significantly decreased the ability of BMP10 to 
bind Titin-cap (Tcap) at Z discs of myocardial 
cells and facilitated the extracellular secre- 
tion of BMP10 (the intracellular amount of 
endogenous BMP10 was markedly decreased 
by the Thr326Ile variation) [123]. In the pre- 
sent research, a new BMP10 mutation, namely 
NM_014482.3:c.247G>T;p.(Glu83*), was fou- 
nd in a pedigree affected with PDA, separately 
or in combination with VSD, hence expanding 
the phenotypic spectrum correlated to BMP10 
mutations.

There are many studies which have reported 
that BMP10, a cardiac-restricted BMP family 
member, plays a critical role in regulating the 
development of the heart. The most interesting 
feature of BMP10 is its transient presence in 
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the developing trabecular myocardium [102] 
and the BMP10-TBX20 signaling cascade is 
important for ventricular wall development  
and maturation [112]. NKX2.5 is one of the 
BMP10-activated cardiogenic transcription fac-
tors [124]. In this study, a novel BMP10 muta-
tion (c.247G>T;p.Glu83*) was identified in a 
family suffering from PDA/VSD, and quantita-
tive analysis of dual-luciferase activities in 
maintained HeLa cells unveiled that Glu83*-
mutant BMP10 had no transactivation on its 
two representative target genes TBX20 and 
NKX2.5. Hence, the current study firstly indi-
cates that BMP10 loss-of-function mutation 
predisposes to CHD in humans, mainly by 
reducing the expression of TBX20 and NKX2.5.

There are some limitations to the present inves-
tigation. Firstly, a novel heterozygous BMP10 
mutation, NM_014482.3:c.247G>T;p.(Glu83*), 
was found in a family with PDA/VSD. There is a 
need to further investigate the mechanism that 
causes mutations in this gene. Secondly, a del-
eterious BMP10 mutation was identified via 
candidate gene analysis. Hence, it cannot be 
ruled out that other genetic defects may also 
contribute to the pathogenesis of CHD. Whole 
genome or exome sequencing analysis may 
help address this issue. Thirdly, the subcellular 
distribution of the Glu83*-mutant BMP10 pro-
tein, as well as its ability to bind the promoters 
of target genes, remains to be clarified. Finally, 
the pathogenic effect of the BMP10 mutation is 
still to be further investigated in a genetically 
modified animal model, such as a mouse model 
with the mutation knocked in.

Conclusion

The present human investigation firstly indi-
cates BMP10 as a novel gene causative for 
human CHD and adds new insight into the 
molecular pathogenesis of human CHD, which 
is conducive to prenatal genetic diagnosis, 
early clinical prophylaxis, and timely prognostic 
risk assessment of CHD in a subset of patients.
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