
Am J Transl Res 2024;16(10):6106-6118
www.ajtr.org /ISSN:1943-8141/AJTR0158357

https://doi.org/10.62347/UJYU8551

Original Article
Preoperative CT radiomic model combined with clinical 
and CT imaging features to predict the spread through 
air spaces in T1 invasive lung adenocarcinoma

Pengliang Xu1*, Huanming Yu1*, Hongxing Zhao2, Hupo Bian2, Dan Jia3, Shengxu Zhi1, Xiuhua Peng2

1Department of Thoracic Surgery, The First People’s Hospital of Huzhou, Huzhou, Zhejiang, The People’s Republic 
of China; 2Department of Radiology, The First People’s Hospital of Huzhou, Huzhou, Zhejiang, The People’s 
Republic of China; 3Department of Respiratory Medicine, The First People’s Hospital of Huzhou, Huzhou, Zhejiang, 
The People’s Republic of China. *Equal contributors.

Received June 9, 2024; Accepted September 26, 2024; Epub October 15, 2024; Published October 30, 2024

Abstract: Purpose: This study aimed to explore the effectiveness of preoperative computed tomography (CT) ra-
diomic models combined with clinical and CT imaging features for predicting spread through air spaces (STAS) in 
patients with T1 lung adenocarcinoma. Methods: The preoperative CT and clinical data of 219 patients with T1 
invasive lung adenocarcinoma confirmed by surgery were retrospectively analyzed and randomly divided into train-
ing and test sets at a ratio of 7:3. Univariable and multivariable logistic analyses were performed on the clinical 
and CT manifestations to screen independent predictive factors for STAS (+), and a clinical model was constructed. 
Radiomic features were extracted from the tumor (T), peritumoral (P) and tumor-peritumoral (TP) regions to con-
struct radiomic models (Model T, Model P and Model TP), and the optimal radiomic model was identified. A com-
bined model was then built on the basis of the best radiomic score (Radscore) and clinically independent predictors. 
For each model, the effectiveness in predicting STAS (+) was assessed with receiver operating characteristic (ROC) 
curve analysis, including calculation of the area under the curve (AUC), and a nomogram was created. Calibration 
curve analysis was used to assess model calibration, and decision curve analysis (DCA) was used to evaluate the 
clinical value of the model. Results: Emphysema, the preoperative carcinoembryonic antigen (CEA) level, and the 
consolidation tumor ratio (CTR) were identified as independent predictors of STAS (+) (all P < 0.01). Model T was 
considered the optimal radiomic model. In the training set, the AUC of the combined model was greater than that 
of the clinical model (0.93 vs. 0.85, P < 0.01). However, no significant difference in the AUC was found between 
the combined model and Model T (0.93 vs. 0.92, P > 0.05). In the test set, the AUC of the combined model was 
greater than that of the clinical model (0.92 vs. 0.85, P < 0.05), but there was no significant difference compared to 
the AUC of Model T (0.92 vs. 0.90, P = 0.13). The AUC of Model T was greater than that of the clinical model in the 
training set (0.92 vs. 0.85, P < 0.01), but this difference was not significant in the test set (0.90 vs. 0.85, P = 0.35). 
The clinical model, radiomic Model T, and combined model all had high degrees of calibration. Finally, the clinical 
net benefit of the combined model was greater than that of the other two models with the threshold ranged from 
0.10 to 0.40. Conclusion: The preoperative CT radiomics model combined with clinical and CT imaging features can 
effectively predict STAS in T1 invasive lung adenocarcinoma patients.
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Introduction

The prognosis of lung adenocarcinoma, one of 
the most common types of non-small cell lung 
cancer [1], is closely related to early and accu-
rate tumor detection and prediction. Especially 
in the early stage of lung adenocarcinoma, that 
is, stage T1, when the tumor size is small (≤ 3 
cm) and has not invaded beyond the lung lobes, 

accurate prediction of tumor behaviors - espe-
cially the risk of spread through air spaces 
(STAS) - is crucial for guiding clinical treatment 
and assessing disease prognosis [2]. STAS re- 
fers to the spread of tumor cells along the air-
ways, a phenomenon that has been proven to 
be an independent risk factor for postoperative 
recurrence and poor outcomes in patients with 
lung adenocarcinoma [3, 4].

http://www.ajtr.org
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Although traditional clinical and imaging fea-
tures play a role in predicting survival outcomes 
in patients with lung adenocarcinoma, these 
features often fail to fully reveal the biological 
behavior of the tumor. Previous research has 
indicated that the presence of STAS can be  
predicted through the evaluation of computed 
tomography (CT) scans [5]. This phenomenon 
has been linked with certain CT characteristics, 
such as solid nodules, centrally located low 
attenuation areas, poorly defined opacities, air 
bronchograms, and a high consolidation-to-
tumor ratio. Nonetheless, these qualitative  
CT characteristics are subject to individual 
interpretation bias, which could result in mis-
classification errors. With the development of 
radiomics, computers are able to extract histo-
logical features from CT images, efficiently 
quantify image information, reduce the impact 
of subjective judgments, and enhance predic-
tive accuracy [6-8]. By extracting high-dimen-
sional quantitative features from conventional 
medical images, radiomics can reveal the mi- 
croscopic heterogeneity of tumors and their 
environment, thereby providing more compre-
hensive biological information on tumor be- 
havior [9-11]. Some studies have shown that 
radiomics can quantify tumor characteristics 
and predict STAS in patients with lung cancer. 
Jiang et al. [12] were the first to apply a 
radiomics-based random forest (RF) model 
based on CT images to predict STAS in lung 
adenocarcinoma, achieving an area under the 
curve (AUC) of 0.754 (with a sensitivity of 0.880 
and specificity of 0.588). Chen et al. [13] devel-
oped a CT-based radiomic naïve Bayes model 
that also performed well in the presurgical pre-
diction of STAS in stage I lung adenocarcinoma 
patients (external validation AUC = 0.69). Han 
et al. [14] applied the same radiomic approach 
to presurgical stage IA lung adenocarcinoma 
(LUAD) patients, achieving AUC values of 0.812 
and 0.850 in the training and test sets, respec-
tively, with logistic regression. These studies 
relied primarily on various radiomic features, 
including shape, intensity, and texture, which 
were then fed into the corresponding machine 
learning algorithms to predict STAS. However, 
these methods also focused only on regions 
within the tumor, which overlooks subtle chan- 
ges in the peritumoral microenvironment. 
Conversely, our study considers the potential 
impact of the peritumoral area. Therefore, we 
performed radiomic analysis on tumor, peritu-

moral microenvironment, and the combined 
tumor and peritumoral microenvironment are- 
as and then integrated clinical factors and CT 
characteristics to construct a joint prediction 
model. Through this method, we expect our 
model to provide patients with more precise 
treatment selection and prognosis assess-
ment, particularly by playing a key role in the 
treatment decision-making process for early-
stage lung adenocarcinoma.

Materials and methods

General information

This study was conducted according to the 
tenets of the Declaration of Helsinki. The study 
protocol was approved by the Ethics Commit- 
tee of Huzhou First People’s Hospital, which 
waived the need for informed patient consent. 
A retrospective analysis was conducted on 219 
patients with solitary or part-solitary T1-stage 
invasive lung adenocarcinoma diagnosed by 
postoperative pathology from January 2019 to 
October 2023. The cohort included 113 males 
and 106 females aged 29 to 83 years, with an 
average age of 64.9±7.1 years. Among them, 
116 patients were STAS (+), and 103 patients 
were STAS (-). The patients were divided into 
training and test sets at a 7:3 ratio; ultimately, 
154 patients were included in the training set 
(82 STAS (+) and 72 STAS (-)), and 65 patients 
were included in the test set (34 STAS (+) and 
31 STAS (-)). The data in the training set and the 
test set were not significantly different (Table 
1).

Inclusion criteria: (i) Maximum tumor diameter 
no greater than 3 cm on preoperative CT  
imaging, according to the 8th edition of the 
lung cancer TNM staging guidelines; (ii) CT 
imaging data obtained within one month before 
surgery; (iii) Pathological diagnosis of invasive 
lung adenocarcinoma.

Exclusion criteria: (i) Neoadjuvant therapy; (ii) 
Multiple pulmonary nodules on preoperative CT 
images; (iii) Past or current history of other 
malignant tumors; (iv) CT images that could not 
be fully read by 3D Slicer software; and (v) 
Distant metastasis (Figure 1).

Clinical data: The clinical information of the 
patients was collected from the electronic med-
ical records system of our hospital and includ-
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ed age, sex, smoking history, and CEA and 
CA125 levels.

Instruments and methods

Chest scans were performed using a German 
Siemens Definition AS 64-slice 128-slice spiral 
CT. The scanning range extended from the tho-
racic inlet to the diaphragm. The subject was 
placed in a supine position, then instructed to 
inhale deeply and hold their breath. The scan-
ning parameters were as follows: tube voltage 
of 120 kV, tube current of 120 mA, window 
width of 1300-1500, window level of -600 to 
-700, pitch of 1.0, and rack rotation time of 
0.33 seconds per 360 degrees. The lung win-
dow was reconstructed with the lung method, 
with a reconstruction thickness and slice spac-
ing of 1.25 mm. The mediastinal window recon-
struction thickness and slice spacing were 5 
mm.

Image analysis

Traditional imaging features were independent-
ly evaluated by two experienced chest radio- 
logists (with 5 and 10 years of experience in 
lung nodule diagnosis) who were blinded to the 

pathological and clinical information of the 
patients. When the two radiologists had incon-
sistent interpretations of the imaging features, 
a consensus was reached through discussion.

The evaluated imaging features included le- 
sion location, composition (solid or part-solid), 
maximum diameter on three-dimensional im- 
aging, margin (clear/blurred), lobulation (pres-
ent/absent), spiculation (present/absent), cavi-
tation (present/absent), the air bronchogram 
sign (present/absent), vessel convergence 
(present/absent), pleural retraction (present/
absent), and peritumoral ground-glass opaci-
ties (present/absent). Lobulation was defined 
as the presence of at least 3 arc-shaped pro-
trusions greater than 2 mm in height alternat-
ing with indentations, resulting in a lobed 
appearance, which may be related to uneven 
peripheral tumor growth and differentiation. 
The maximum diameter was measured on coro-
nal and sagittal views after multiplanar recon-
struction (MPR) from three orthogonal direc-
tions. Spiculation was defined as the presence 
of small, approximately 2 mm spike-like projec-
tions or linear opacities, in a fine linear or dense 
brush-like pattern, extending from the margin 
of the mass into the lung parenchyma, which 
may represent thickened interlobular septa 
containing coarse lymphatics or tumor-associ-
ated fibrotic scarring. Cavitation was defined as 
the presence of an area of extremely low den-
sity (< 5 mm) within the lesion. The air broncho-
gram sign was defined as visualization of an 
air-filled bronchus within the lesion. Vessel con-
vergence was defined as the convergence of 
vessels toward the lesion or the direct continu-
ation of vessels into the lesion. Pleural retrac-
tion was defined as the presence of single or 
multiple linear bands of varying thickness con-
necting the lesion to the pleura, with or without 
pleural puckering or indentation. The peritu-
moral ground-glass opacity sign was defined as 
the presence of a hazy, indistinct high-density 
area surrounding the lung tumor, with a density 
between that of the normal lung parenchyma 
and the solid tumor. The images were pro-
cessed on a GE AW4.6 workstation equipped 
with Thoracic VCAR software, which facilitates 
a detailed analysis of the lung parenchyma. The 
threshold limits were carefully set, with an 
upper limit of 3072 HU and a lower limit of 
-1024 HU. The emphysema threshold was spe-
cifically set to -950 HU to accurately assess the 

Table 1. The clinical and radiological features of 
patients in the training set and the test set

Characteristics Test set  
(n = 65)

Training set 
(n = 154)

P 
value

Gender 0.991
    Male n (%) 33 (50.8) 80 (51.9)
    Female n (%) 32 (49.2) 74 (48.1)
Age 64.9±9.58 64.5±9.15 0.362
Lymph code 0.11±0.31 0.12±0.32 0.576
Emphysema 0.34±0.47 0.36±0.48 0.217
Smoke 0.24±0.43 0.28±0.45 0.054
CEA 0.21±0.41 0.18±0.39 0.116
CA125 0.05±0.22 0.05±0.22 0.858
Diameter 1.68±0.64 1.67±0.65 0.671
Location 2.84±1.49 2.89±1.53 0.409
Lobulation sign 0.69±0.47 0.66±0.48 0.106
Bubble sign 0.40±0.49 0.41±0.49 0.943
Satellite lesion 0.04±0.19 0.04±0.19 0.769
Vascular convergence 0.57±0.50 0.56±0.50 0.789
Spiculation 0.47±0.50 0.45±0.50 0.223
Air bronchogram 0.28±0.45 0.28±0.45 0.973
Pleural indentation 0.39±0.49 0.39±0.49 0.886
CTR 1.84±0.60 1.85±0.63 0.694
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presence and extent of emphysematous chan- 
ges. The system automatically generates the 
lung air volume (LAV%) for the entire lungs and 
for specific segments, including the upper, mid-
dle, and lower lobes of the right lung and the 
upper and lower lobes of the left lung. This 
meticulous approach to image collection, fea-
ture assessment, and quantitative analysis 

ensures robustness and reproducibility in our 
radiological evaluations.

Pathological examination

On the basis of the 2015 World Health 
Organization classification of lung cancer and 
the study by Kadota et al., we developed the 

Figure 1. Flowchart of the pa-
tient selection procedure.



A predictive model for STAS

6110 Am J Transl Res 2024;16(10):6106-6118

following criteria for defining STAS. Hematoxy- 
lin and eosin (H&E) staining was performed, 
and tumor cells were observed in airway spac-
es without substantial stromal invasion. Two 
pathologists simultaneously reassessed the 
included patients’ slides following H&E staining 
with a multiheaded microscope. In cases of dis-
agreement or inconsistency, a consensus was 
reached through discussion. STAS was defined 
as the presence of tumor cells within the nor-
mal alveolar spaces adjacent to the main tu- 
mor, which appeared as microvascular clus-
ters, small solid nests, or single cells. To avoid 
confusion with cells artificially displaced during 
tumor handling, at least three tumor sections 
were examined under the microscope, and the 
margins of the tumor were first identified at low 
magnification in each section. According to the 
presence or absence of STAS, the study popula-
tion was divided into two groups: patients with 
STAS and patients without STAS.

Tumor image segmentation and feature extrac-
tion: Tumor segmentation was manually per-
formed with 3D Slicer (version 5.7.0, https://
www.slicer.org) by a radiologist with 5 years of 
clinical experience who was blinded to the 
patients’ clinical and pathological information. 
The segmentation involved initially delineating 
the tumor ROI (ROIT) on the lung window images 
that contained the largest cross-sectional area 
of the tumor. The software then automatically 
expanded this boundary by 5 mm to obtain the 
tumor-peritumoral region ROI (ROITP); the area 
of the peritumoral region (ROIP) was then calcu-
lated by subtracting the area of ROIT from that 
of ROITP. The chest wall soft tissue, bones, and 
mediastinal overlaps within the 5 mm periph-
ery of the tumor were then manually excluded. 
Image preprocessing included resampling all 
images to a voxel size of 1×1×1 mm to stan-
dardize the voxel spacing. Data normalization 
was achieved through z score standardization 
(zero-mean normalization).

Feature extraction was performed with the 
radiomics extension in 3D Slicer for each 
lesion, yielding a total of 899 features. These 
included first-order statistics, shape, gray le- 
vel dependence matrix (GLDM), gray level co-
occurrence matrix (GLCM), gray level run length 
matrix (GLRLM), gray level ize zone matrix 
(GLSZM), neighboring gray tone difference 
matrix (NGTDM), and wavelet-based features. 

These features allow the quantitative analysis 
of various dimensions of the tumor for charac-
terizing its properties. To validate the extracted 
features, a second radiologist with 10 years of 
diagnostic imaging experience randomly select-
ed the imaging data of 30 patients for ROI 
delineation and radiomic feature extraction.

Feature selection and model development: Af- 
ter the features were extracted from both the 
ROIT and ROIP with the above feature extraction 
methods, a feature fusion approach was em- 
ployed to obtain the ROITP feature set. These 
features were then randomly divided into train-
ing and test sets at a 7:3 ratio. Prior to feature 
screening, the features of the training set were 
normalized and scaled to the same order of 
magnitude. Thereafter, feature screening was 
performed on the training set, which consisted 
of the following three steps:

(1) Mann-Whitney U test and feature screening: 
All radiomic features were subjected to the 
Mann-Whitney U test and feature screening. 
Only radiomic features with a p value less than 
0.05 were retained.

(2) Spearman correlation analysis: For features 
with high repeatability, the Spearman rank cor-
relation coefficient was calculated to assess 
the correlation between them. If the correla- 
tion coefficient between any two features was 
greater than 0.9, only one of the features was 
retained.

Greedy recursive deletion: To maximize the abil-
ity to describe the features, a greedy recursive 
deletion strategy was adopted, whereby the 
most redundant feature in the current set was 
deleted at each step.

(3) Least absolute shrinkage and selection 
operator (LASSO) regression: A LASSO model 
was then used to construct feature signatures 
from the exploratory dataset. On the basis of 
the regularization parameter λ, LASSO con-
tracts all regression coefficients toward zero 
and sets the coefficients for many unrelated 
features exactly to zero. The optimal λ was 
determined via 10-fold cross-validation, identi-
fying the value of λ that produced the smallest 
cross-validation error.

The features that retained nonzero coefficients 
after LASSO were used for regression model fit-
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ting and combined into an “imaging omics  
signature”. A logistic regression classifier was 
then applied to build radiomic models (Model T, 
Model TP, and Model P), calculate the radiomic 
score (Radscore), and select the best radiomic 
model.

Statistical analysis

Statistical analysis was performed with SPSS 
25.0 software and R software (version 4.4.0).

Continuous variables are expressed as the 
means ± standard deviation (SD) and ranges, 
whereas qualitative variables are expressed as 
raw numbers, proportions and percentages. 
The normality of the continuous variables was 
tested with the Kolmogorov-Smirnov test. 
Differences between normally distributed con-
tinuous variables were analyzed with the t  
test, whereas those between nonnormally dis-
tributed continuous variables were analyzed 
with the Mann-Whitney U test. Qualitative vari-
ables were compared with the chi-square test. 
Univariable and multivariable logistic regres-
sion analyses were performed on the clinico-
pathological and CT features. The Spearman 
correlation coefficient (r) was subsequently 
used to represent correlations between each 
pair of features. Intraobserver and interobserv-

er consistency were evaluated with the intra-
class correlation coefficients (ICCs) via the 
absolute agreement method. ICCs > 0.75 indi-
cated that there was good consistency between 
the two readers. Receiver operating character-
istic (ROC) curve analysis was used to evaluate 
the prediction performance of each model. The 
DeLong test was applied to evaluate significant 
differences between the AUC values of the ROC 
curves. Calibration curve analysis was used to 
evaluate the degree of calibration of each 
model, and the clinical value of the models was 
evaluated with decision curve analysis (DCA). 
Statistical significance was established for a 
two-tailed P value of less than 0.05.

Results

Construction of the clinical model

Emphysema, the preoperative CEA level, and 
the consolidation-to-tumor ratio (CTR) were 
identified as independent clinical predictors of 
STAS (+) (all P < 0.01, Table 2). These variables 
were used to construct the clinical model.

Construction of the radiomic models

Following assessment with the ICC, 899 fea-
tures were retained from the ROIT, ROITP, and 

Table 2. Logistic regression analysis identified independent clinical and CT predictors for spread 
through air spaces (STAS) (+)

Characteristics
Univariable logistic regression Multivariable logistic regression

OR (95% CI) P value OR (95% CI) P value
Gender 2.891 (1.678, 5.046) < 0.001
Age 1.025 (0.997, 1.056) 0.079
Lymph code 11.585 (3.290, 73.564) 0.001
Emphysema 4.887 (2.636, 9.437) < 0.001 4.729 (1.888, 12.667) 0.001
Smoke 4.202 (2.115, 8.889) < 0.001
CEA 1.071 (4.396, 32.188) < 0.001 8.992 (2.707, 36.491) < 0.001
CA125 1.069 (0.312, 3.812) 0.914
Diameter 4.417 (2.673, 7.646) < 0.001
Location 1.173 (0.980, 1.408) 0.083
Lobulation sign 3.004 (1.681, 5.483) < 0.001
Bubble sign 0.805 (0.467, 1.385) 0.435
Satellite lesion 1.501 (0.359, 7.469) 0.584
Vascular convergence 0.984 (0.575, 1.683) 0.954
Spiculation 2.852 (1.653, 4.987) < 0.001
Air bronchogram 1.404 (0.775, 2.573) 0.266
Pleural indentation 1.932 (1.115, 3.387) 0.020
CTR 0.095 (0.041, 0.188) < 0.001 0.185 (0.069, 0.449) < 0.001
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bined model than that for the clinical model 
(0.93 vs. 0.85, Z = -3.99, P < 0.001), but the 

Figure 2. Overall design flowchart of this study.

Table 3. The efficacy of a radiomics model in predicting STAS (+)
Model AUC (95% CI) Sensitivity Specificity Accuracy
Training set
    T 0.912 (0.866, 0.958) 0.800 0.913 0.892
    TP 0.900 (0.850, 0.949) 0.841 0.917 0.844
    P 0.855 (0.832, 0.937) 0.854 0.791 0.824
Test set
    T 0.898 (0.808, 0.987) 0.935 0.882 0.892
    TP 0.863 (0.759, 0.968) 0.941 0.774 0.831
    P 0.878 (0.791, 0.964) 0.735 0.903 0.800

Figure 3. Nomogram for the combined model.

ROIP, respectively. Using the minimum redun-
dancy maximum relevance (mRMR) method 

and LASSO, the optimal ra- 
diomic features were select-
ed, resulting in the use of 8, 
3, and 3 features for con-
structing Models T, TP, and P, 
respectively (Figure 2). Model 
T predicted STAS (+) in the 
training and test sets with 
AUCs of 0.91 and 0.90, res- 
pectively, which were slightly 
higher than those of Model TP 
(0.90 and 0.86) and Model P 
(0.86 and 0.88). However, the 
differences were not statisti-
cally significant (all P > 0.05). 
Model T was ultimately cho-
sen as the optimal radiomic 
model (Table 3).

Construction of the combined 
model

A combined model was con-
structed using the Radscore 
from Model T and the inde-
pendent clinical predictors. 
Figure 3 presents the nomo-
gram derived for this com-
bined model. The AUC in pre-
dicting STAS (+) in the training 
set was greater for the com-
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difference between the combined model and 
Model T was not significant (0.93 vs. 0.91, Z = 
-1.32, P = 0.19). In the test set, the AUC for the 
combined model was greater than that for the 
clinical model (0.93 vs. 0.86, Z = -0.93, P = 
0.35) and Model T (0.93 vs. 0.90, Z = -1.51, P = 
0.13), but the differences were not statisti- 
cally significant. The differences in the AUCs 
between the clinical model and Model T were 
statistically significant in the training set (Z = 
-2.81, P < 0.01) but not in the test set (Z = 
-0.36, P > 0.05) (Figure 4 and Table 4). Cali- 
bration curve analysis indicated that the clini-
cal model, Model T, and the combined model all 
exhibited high calibration (Figure 5). DCA dem-
onstrated that, over a threshold range from 
0.10 to 0.40, the combined model offered bet-
ter clinical net benefits than the clinical and 
radiomic models, as illustrated in Figure 6.

preoperative CT-based radiomic models com-
bined with clinical and CT imaging features in 
predicting the risk of STAS in patients with 
T1-stage invasive lung adenocarcinoma. The 
results demonstrated that the combined mo- 
del, incorporating both radiomic features and 
traditional clinical features, had greater accu-
racy and clinical value in predicting STAS than 
the individual model components. Moreover, 
the developed nomogram converted the mod-
el’s complex regression equations into an easi-
ly interpretable visual format, simplifying the 
preoperative evaluation of STAS status.

Through univariable and multivariable logistic 
regression analyses, we identified emphysema, 
preoperative CEA level, and consolidation-to-
tumor ratio (CTR) as independent predictors of 
STAS. These findings are consistent with the 

Figure 4. Receiver operating characteristic (ROC) curves of the clinical model, Model T, and the combined model for 
predicting spread through air spaces (STAS) in the (A) training set and (B) testing set.

Table 4. The efficacy of a various model in predicting STAS (+)
Model AUC (95% CI) Sensitivity Specificity Accuracy
Training set
    T 0.912 (0.866, 0.958) 0.800 0.913 0.892
    Clinical 0.854 (0.799, 0.910) 0.812 0.768 0.792
    Combined 0.927 (0.886, 0.967) 0.847 0.884 0.864
Test set
    T 0.898 (0.808, 0.987) 0.935 0.882 0.892
    Clinical 0.858 (0.772, 0.944) 0.806 0.794 0.800
    Combined 0.930 (0.861, 0.999) 0.935 0.853 0.892

Discussion

STAS significantly impacts the re- 
currence-free survival (RFS) and 
overall survival (OS) of lung cancer 
patients [15-17]. Precisely identi-
fying the presence of this invasive 
characteristic before surgery can 
aid in choosing the most suitable 
surgical approach, ultimately im- 
proving patient outcomes and 
extending survival [18, 19]. This 
study investigated the efficacy of 
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Figure 5. Calibration curves for the clinical model, Model T, and the combined model in the training and testing sets. A: Clinical model calibration curve in the training 
set; B: Model T calibration curve in the training set; C: Combined model calibration curve in the training set; D: Clinical model calibration curve in the testing set; E: 
Model T calibration curve in the testing set; F: Combined model calibration curve in the testing set.
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literature, indicating the important role of these 
clinical and imaging features in the prognosis 
of T1-stage lung adenocarcinoma. Unlike the 
findings of other studies, we also identified 
spiculation, the pleural indentation sign, and 
vascular convergence as predictors of STAS, 
although they were not ultimately found to be 
independent predictors. Multivariable logistic 
regression analysis verified that the CTR was 
an independent risk factor for predicting STAS, 
which aligns with findings from previous studies 
[20, 21]. Compared with the tumor diameter 
and solid component diameter, the CTR pro-
vides a better representation of tumor aggres-
siveness. A higher CTR is associated with an 
increased probability of STAS, in agreement 
with clinical T staging, which emphasizes the 
diameter of the solid component over the total 
tumor diameter [22, 23]. The present study 
also revealed a correlation between the pres-
ence of STAS and CEA level; 64.6% (75/116) of 
patients with CEA levels below 5 μg/L and 
35.3% (41/116) of patients with CEA levels of 5 
μg/L or higher were STAS (+), whereas 95.1% 
(98/103) of patients with CEA levels below 5 
μg/L and 4.9% (5/103) of patients with CEA lev-
els of 5 μg/L or higher were STAS (-). These find-
ings indicate that patients with CEA levels of 5 
μg/L or higher have an increased likelihood of 
being STAS (+), which is consistent with the con-
clusions of previous studies [24, 25]. Notably, 
emphysema was also identified as an indepen-
dent predictor of STAS, which is also consistent 
with the findings of previous studies [23].

mentation and feature extraction demonstrat-
ed the powerful capabilities of radiomics in 
quantitative tumor characterization. By pre- 
cisely segmenting the tumor and its peritumor-
al region and extracting a comprehensive set  
of features, we obtained 899 distinct radio- 
mic features, including GLDM, shape, GLCM, 
GLRLM, GLSZM, NGTDM, first-order statistic, 
and wavelet-based features. These features 
enabled a detailed characterization of various 
tumor dimensions, such as shape, texture, and 
intensity distribution, providing rich information 
that could enhance the accuracy of tumor diag-
nosis. Moreover, this comprehensive analysis 
could be used to differentiate tumor type, eval-
uate disease prognosis, and predict treatment 
responses.

In this study, Model T yielded high AUC values in 
both the training and testing sets (0.91 and 
0.90, respectively), significantly outperforming 
the model utilizing only clinical features (AUC of 
0.85 in both sets). By resampling images to a 
voxel size of 1×1×1 mm and applying z score 
standardization, the researchers ensured the 
consistency and comparability of the imaging 
data. Additionally, the reliability of the extracted 
features was validated through repeat segmen-
tation and feature extraction by two experi-
enced radiologists, and the final features were 
selected on the basis of an ICC greater than 
0.75, ensuring that the features were stable 
and consistent. Taken together, these findings 
indicate the substantial potential of radiomic 

Figure 6. Decision curve analysis (DCA) plot depicting the clinical net benefits 
of each model.

However, relying solely on 
these clinical features may 
not fully capture the tumor’s 
biological behavior, undersco- 
ring the need to incorporate 
radiomic features. Radiomics 
has emerged as a pivotal area 
of research in medical imag-
ing analysis, particularly in 
oncology. 3D Slicer has been 
widely used for radiomic anal-
ysis in various diseases [26-
28]. However, no studies have 
used this program in delineat-
ing ROIs or the radiomic plu-
gin for extracting radiomic 
features in predicting airway 
dissemination. In this study, 
the use of 3D Slicer (version 
5.7.0) software for tumor seg-
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features extracted by 3D Slicer in predicting 
STAS.

While Model T demonstrated excellent predic-
tive ability on its own, the combined model, 
incorporating clinical features with Model T, 
achieved the highest AUC values in both the 
training and testing sets (0.93 and 0.92, 
respectively). Although the differences in the 
AUCs were not statistically significant com-
pared with those of Model T alone, DCA reveal- 
ed that the combined model yielded the  
greatest net clinical benefits, particularly within 
the threshold range of 0.10 to 0.40. These find-
ings suggest that the combined model may 
offer greater practicality and reliability in clini-
cal applications than the individual models. 
Calibration curve and decision curve analyses 
further validated the reliability and clinical 
value of the models. All the models exhibited a 
high degree of calibration, indicating consistent 
performance across the different datasets.

The robustness and accuracy of our radiomic 
model might have been affected by differences 
in CT scanning parameters (such as differences 
in contrast administration or the reconstruction 
kernels used) or by demographic differences 
within the dataset (such as the prevalence of 
STAS-positive tumors or type of CT lesions) 
[29]. These factors can impact the stability and 
reliability of the extracted radiomic features. 
Nonetheless, we assumed that these CT-relat- 
ed differences did not decisively impact our 
study’s outcomes. This assumption is support-
ed by the results from our internal validation 
set, which was composed of the data from CT 
scans obtained with different scanners and 
protocols; in this validation set, the combined 
model demonstrated a greater AUC (0.878) 
than the clinical model (0.854) in preopera- 
tively predicting STAS. This finding aligns with 
results from a previous study that assessed the 
performance of a radiomic model using data 
characterized by significant heterogeneity in 
terms of CT device manufacturer and type and 
CT protocol [30]. From the initial phases of 
devising the study design, it is crucial to avoid 
selection bias. The inclusion and exclusion cri-
teria need to be clearly defined and strictly 
adhered to, and it is imperative that these crite-
ria lead to an unbiased study sample that can 
be generalized beyond that of the study 
institution.

This study has several limitations. First, the 
relatively small sample size may affect the gen-
eralizability of the results. Second, given the 
retrospective nature of the study, there is 
potential for selection bias. Finally, the study 
was conducted at a single center. Future multi-
center studies with larger sample sizes are 
needed to validate our findings.

Conclusions

In conclusion, preoperative CT-based radiomic 
models combined with clinical and CT imaging 
features can effectively predict the risk of STAS 
in T1-stage invasive lung adenocarcinoma. The 
combined model demonstrated excellent pre-
dictive accuracy and clinical utility, suggesting 
its potential for broader application in clinical 
practice. Improved risk assessment through 
the use of such models can allow clinicians to 
devise more precise treatment plans, thereby 
improving patient outcomes.
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