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Abstract: Objective: To investigate the biological role of miR-132 in a murine model of chronic obstructive pulmo-
nary disease (COPD) via activation of the SIRT1/FoxO1 axis. Methods: COPD was induced in C57BL/6J male mice 
by exposing them to cigarette smoke (CS) for 8 weeks. A miR-132 knockout mouse model was used to assess the 
role of miR-132 in CS-induced COPD. Lung tissue apoptosis was evaluated using TUNEL assays and histopathology, 
along with lung functional tests which were performed to assess CS-induced lung injury. Results: Elevated miR-132 
expression was observed in lung tissues and bronchoalveolar lavage fluid in COPD mice. miR-132 depletion im-
proved lung function, restored lung tissue morphology, and reduced apoptosis. Target prediction software identified 
miR-132 as a potential repressor of SIRT1. In COPD mice, SIRT1 and FoxO1 expression were reduced, but miR-132 
knockout restored their levels. Conclusion: Inhibition of miR-132 may serve as a therapeutic strategy for CS-induced 
COPD.
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Introduction

Chronic obstructive pulmonary disease (COPD) 
is a progressive lung disease characterized by 
chronic airflow obstruction that is irreversible 
[1-3]. MicroRNA (miRNA), a class of non-coding 
RNA, can silence target gene mRNA post-tran-
scriptionally [4, 5]. Recent studies have increas-
ingly highlighted the role of miRNAs in COPD 
development and progression [6]. Elevated lev-
els of miR-132 have been observed in the blood 
of COPD patients, and a negative correlation 
has been reported between serum miR-132 
levels and FEV1/FVC% [7, 8]. However, the pre-
cise role of miR-132 in COPD remains unclear 
in murine models.

In this study, we hypothesized that miR-132 
removal could attenuate lung injury caused by 
cigarette smoke (CS) exposure. To test this, we 

generated miR-132 knockout (KO) mice and 
investigated the role of miR-132 in a CS-induc- 
ed murine model of COPD. Our findings could 
improve the understanding of COPD pathogen-
esis and underscore the therapeutic potential 
of targeting miR-132 in COPD treatment.

Materials and methods

CS-exposed mice

Eight-week-old male C57BL/6J mice (20-25 g) 
were randomly assigned to a CS-exposure 
group or a control group (n=8 per group). The 
CS-exposed group was used to assess miR-132 
expression in a COPD model. miR-132KO and 
wild-type (WT) mice were obtained from the 
Model Animal Research Center of Nanjing 
University (Nanjing, China). Both miR-132KO and 
WT mice (n=8 per group) were exposed to CS 
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for 2 hours, twice a day, 6 days a week, for 8 
weeks to induce COPD, as described previously 
[9]. At the end of the experiment, mice were 
euthanized via intraperitoneal injection of an 
overdose of pentobarbital. The study was app- 
roved by the Hunan Provincial People’s Hospital 
Animal Experiments Committee.

Lung function testing

Lung function in miR-132KO and WT mice was 
measured using the Buxco Fine Pointe Series 
Whole Body Plethysmography system. Each 
test took approximately 30 minutes per mou- 
se. The following parameters were recorded: 
peak inspiratory flow (PIF), peak expiratory flow 
(PEF), end-inspiratory phase (EIP), minute venti-
lation (MV), inspiratory duration (Ti), and expira-
tory duration (Te).

Histopathology analysis

Lung tissues from each group were rinsed with 
0.9% saline, fixed in 10% neutral buffered for-
malin, and embedded in paraffin. Sections (5 
μm thick) were stained with hematoxylin and 
eosin (H&E) for histological evaluation. Lung 
tissue injuries were assessed using a micro-
scope and graded based on the modified 0-5 
Jablonsky scale, as previously described, with 
10 fields examined per lung sample [10, 11].

Immunohistochemistry

Sections were incubated overnight at 4°C with 
a primary antibody against SIRT1 (sc-74465; 
1:100; Santa Cruz Biotechnology, CA, USA) and 
a rat monoclonal antibody against FoxO-1 (sc-
515244; 1:100; Santa Cruz Biotechnology, CA, 
USA). After washing, sections were treated with 
a secondary antibody (FSX-100; 1:100; Olym- 
pus, Tokyo, Japan) for 30 minutes at room tem-
perature. The percentage of cells positively 
stained for SIRT1 and FoxO-1 was calculated by 
multiplying the staining intensity by the number 
of positively stained cells using ImageJ soft-
ware [12].

Bronchoalveolar lavage fluid (BALF) collection

Each mouse underwent three lavages with  
0.8 mL saline, collecting approximately 1.8-2.0 
mL in total. Saline was instilled into the lungs 
via a cannula inserted into the trachea, and 
after lavage, the supernatant was collected 

and stored at -80°C for subsequent miR-132 
analysis.

TUNEL assay for lung tissues

An apoptosis detection kit was used to assess 
cell death in lung tissues using the terminal 
deoxynucleotidyl transferase (TdT)-mediated 
dUTP nick-end labeling (TUNEL) assay (11684- 
817910; Roche, California, USA) [13].

Quantitative real-time polymerase chain reac-
tion (qRT-PCR)

Quantitative real-time PCR (qRT-PCR) was us- 
ed to determine gene expression levels, em- 
ploying SYBR Premix Ex Taq (Takara) in the IQ5 
Multicolor Real-Time PCR Detection System 
(Bio-Rad Laboratories, Hercules, CA, USA). The 
following primers were used: miR-132: for- 
ward 5’-GCCGCTAACAGTCTACAGCCAT-3’; rever- 
se 5’-GTGCAGGGTCCGAGGT-3’. U6: forward 
5’-CTCGCTTCGGCAGCACA-3’; reverse 5’-AACG- 
CTTCACGAATTTGCGT-3’.

The comparative Ct method was used to calcu-
late relative expression levels, with U6 serving 
as the internal control for miR-132 expression.

Western blotting analysis

Proteins of interest, including Bax (ab216494; 
1:1000; Abcam, Boston, USA), Bcl-2 (BLL- 
100187E; 1:1000; Baililai, Shanghai, China), 
and Caspase-3 (ab13847; 1:500; Abcam, Bos- 
ton, USA), were analyzed. After washing and 
incubation with secondary antibodies (LBW- 
00151; Yiji, Shanghai, China), membranes were 
treated with an ECL kit (E422; Vazyme, Nanjing, 
China), and the resulting bands were analyzed 
using Image Lab™ Software.

Statistical analysis

Statistical analyses were performed using 
Prism 9 software (GraphPad, USA). Data are 
presented as mean ± SD (Standard Deviation). 
A t-test was used to compare differences be- 
tween the two groups, while one-way analysis 
of variance (ANOVA) and two-way analysis of 
variance (ANOVA) followed by Tukey’s post hoc 
test was applied for comparisons among three 
or more groups. A p-value of < 0.05 was consid-
ered statistically significant.
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Figure 1. The increased expression of miR-132 in lung tissues and Bronchoalveolar lavage fluid (BALF) of smoking 
cigarettes (CS)-exposed mice. C57BL/6J mice were administrated with CS exposure 2 hours per day for 8 weeks, 
n=8 per group. A-C. Lung function text including MV, PEF, PIF. D. Haematoxylin and eosin-stained sections showing 
the lung injury in vivo (400×, scale bars =100 µm). E, F. The mRNA expression levels of miR-132 in lung tissues 
and BALF of mice exposed to CS. Results are expressed as mean ± SD, **P < 0.01, ****P < 0.0001, vs respective 
controls. Abbreviations: PIF: peak inspiratory flow; PEF: peak expiratory flow; MV: minute ventilation; CS: smoking 
cigarettes; BALF: Bronchoalveolar lavage fluid; SD: Standard Deviation; p: p value.

Results

Elevated miR-132 levels in the lung tissues 
and BALF of mice exposed to CS

A mouse model of CS-induced COPD was con-
structed, and H&E staining along with lung 
function assays were conducted to assess lung 
damage. Figure 1A-D shows that the COPD 
group exhibited significant airflow obstruction 
and lung function decline, while the control 
group maintained normal lung function and 
structure. Additionally, miR-132 expression was 

measured in lung tissues and BALF. As expect-
ed, miR-132 levels were elevated in both BALF 
and lung tissues of COPD mice (Figure 1E, 1F), 
indicating the involvement of miR-132 in COPD 
progression.

Deletion of miR-132 improved pulmonary func-
tion of COPD mice

To investigate the effect of miR-132 on lung tis-
sues affected by COPD, miR-132KO mice were 
generated and exposed to CS, alongside WT 
mice. qRT-PCR confirmed the effective KO of 
miR-132. Figure 2A shows significantly reduced 
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Figure 2. The deletion of miR-132 improved pulmonary function of Chronic obstructive pulmo-
nary disease (COPD) mice. miR-132KO mice and WT mice were administrated with CS expo-
sure 2 hours per day for 8 weeks, n=8 per group. A. qRT-PCR analysis of miR-132 expression 
in the lung tissues, liver, heart, and kidney of miR-132KO mice and WT mice. B. H&E staining 
sections showing the lung injury in vivo (400×, scale bars =100 µm). C. Pulmonary function 
parameters including MV, PIF, PEF, EIP, Ti and Te were determined. Results are expressed as 
mean ± SD, **P < 0.01, ***P < 0.001, ****P < 0.0001, vs COPD WT mice. Abbreviations: 
PIF: peak inspiratory flow; PEF: peak expiratory flow; EIP: end-inspiratory phase; MV: minute 
ventilation; Ti: inspiratory duration; Te: expiratory duration; SD: Standard Deviation; CS: smok-
ing cigarettes; COPD: Chronic obstructive pulmonary disease; WT: wild type; p: p value.
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Figure 3. The deletion of miR-132 alleviated CS-induced lung apoptotic response. miR-132KO mice and WT mice 
were administered CS exposure 2 hours per day for 8 weeks, n=8 per group. (A) The western blot images and (B) 
protein quantification of Bax, Caspase-3, Bcl-2 in the lung tissues of WT and miR-132KO mice. (C) Apoptosis ratio of 
Lung tissues was determined by TUNEL staining (green). n=3 (400×, scale bars =100 µm). Results are expressed as 
mean ± SD, **P < 0.01, ***P < 0.001, ****P < 0.0001, vs COPD WT mice. Abbreviations: SD: Standard Deviation; 
COPD: Chronic obstructive pulmonary disease; WT: wild type; CS: smoking cigarettes; p: p value.

miR-132 levels in the lungs, liver, heart, and 
kidneys of miR-132KO mice. Lung function tests 
revealed that PEF, PIF, and MV were significant-
ly increased in miR-132KO mice compared to 
COPD WT controls (Figure 2C). Furthermore, 
miR-132KO COPD mice exhibited reduced patho-
logical damage and inflammatory cell infiltra-
tion (Figure 2B). These findings suggest that 
miR-132 deletion enhances respiratory func-
tion in COPD mice.

miR-132 deletion mitigated CS-induced lung 
apoptosis

In COPD, miRNAs can influence lung function by 
regulating apoptosis and inflammation in lung 
tissues. We examined the effect of miR-132 
deletion on apoptosis using TUNEL assays and 
western blotting. As anticipated, TUNEL stain-
ing showed a significant reduction in apoptotic 
cells in the lung tissues of miR-132KO COPD 
mice (Figure 3C). Additionally, miR-132 deletion 
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Figure 4. The deletion of micRNA-132 protects 
against CS-related COPD via activation of SIRT1/
FoxO-1 axis. SIRT1 and FoxO-1 expression in lung 
tissues of mice in each group, n=3 per group. (A) Im-
munohistochemistry staining and (B) quantification 
of SIRT1 and FoxO-1 in lung tissues of mice in each 
group (400×, scale bars =100 µm). Results are ex-
pressed as mean ± SD, ###P < 0.001, ####P < 0.0001, 
vs Control mice; ****P < 0.0001, vs COPD WT mice. 
Abbreviations: SD: Standard Deviation; CS: smoking 
cigarettes; COPD: Chronic obstructive pulmonary dis-
ease; WT: wild type; p: p value.

altered the expression of apoptosis-related  
proteins, further attenuating the apoptotic 
response (Figure 3A, 3B).

miR-132 deletion protected against CS-related 
COPD via activation of the SIRT1/FoxO-1 axis

Although our data suggest that miR-132 dele-
tion delays COPD progression by reducing 
apoptosis and lung tissue damage in COPD 
mice, the precise molecular mechanism 
remains unclear. We hypothesized that the 
SIRT1/FoxO-1 signaling pathway is involved in 
miR-132-mediated COPD progression. To test 
this, we performed immunohistochemistry to 
detect SIRT1 and FoxO-1 in lung tissues of miR-
132KO and WT mice. We assessed the effects 
of CS exposure on SIRT1 and FoxO-1 expres-
sion in COPD and control groups. The COPD 

group exhibited a significant decrease in SIRT1 
and FoxO-1 levels compared to controls (Figure 
4A, 4B). However, miR-132 deletion restored 
SIRT1 and FoxO-1 expression in COPD mice 
(Figure 4A, 4B). These findings indicate that 
miR-132 deletion protects against cell death by 
activating the SIRT1/FoxO-1 signaling pathway 
in the lung tissues of COPD mice.

Discussion

Previous studies have linked abnormal miRNA 
expression to COPD [14-17]. In this study, we 
investigated the biological role and regulatory 
mechanism of miR-132 in a CS-induced COPD 
mouse model. Our data suggest that miR-132 
deletion alleviates CS-induced lung apoptosis 
and injury by activating the SIRT1/FoxO-1 sig-
naling pathway.
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miR-132 is a multifunctional miRNA involved  
in regulating various pathological processes, 
including immune response and inflamma- 
tion [18]. It also regulates apoptosis in lung  
endothelial cells [7]. In this study, we assessed 
miR-132 levels in lung tissues and BALF of 
CS-exposed mice. CS exposure significantly 
increased miR-132 expression in both lung tis-
sues and BALF, indicating that CS induces miR-
132 production and release. Notably, previous 
studies have shown that miR-132 can be trans-
ported via exosomes [19]. Emerging evidence 
suggests that exosomes protect miRNAs in 
solution, ensuring their stability in body fluids 
[20-24]. Moreover, miRNAs can use exosomes 
for long-distance communication, modulating 
biological functions. It would be intriguing to 
explore whether exosome-mediated miR-132 
transport plays a role in COPD progression by 
regulating intercellular communication in lung 
tissues.

Mice exposed to CS for 2 months exhibited 
COPD-like symptoms, including lung function 
decline and structural damage [25-27]. Dele- 
tion of miR-132 significantly improved these 
manifestations, reducing the progression of pu- 
lmonary function decline and structural altera-
tions caused by CS exposure.

Higher levels of apoptotic cells have been ob- 
served in the lung tissues of COPD patients, 
particularly in alveolar, bronchiolar, and endo-
thelial cells [28]. The TUNEL assay and western 
blot analysis confirmed that miR-132 deletion 
reduced CS-induced apoptosis in lung tissues. 
These findings are consistent with previous 
reports demonstrating the pro-apoptotic eff- 
ects of miR-132 in lung endothelial cells [8].

in COPD prevention. In this study, we found that 
the reduced expression of SIRT1 caused by CS 
exposure was partially restored by miR-132 
deletion. SIRT1 activation leads to FoxO-1 
expression, which improves apoptotic respons-
es in myocardial tissues [36, 37]. Therefore,  
we propose that miR-132 deletion increases 
SIRT1 expression, which subsequently pro-
motes FoxO-1 expression, alleviating apoptosis 
in lung tissues. Our findings showed that miR-
132KO partially restored the decreased expres-
sion of FoxO-1 caused by CS exposure, similar 
to its effects on SIRT1. Collectively, the pro-
apoptotic function of miR-132 is linked to its 
inhibition of the SIRT1/FoxO-1 signaling path-
way (Figure 5).

In conclusion, miR-132 inhibited airway remod-
eling caused by CS in mice by reversing apopto-
sis and improving lung function, and this effect 
was partially mediated by the activation of the 
SIRT1/FoxO-1 axis. These results suggest that 
miR-132 may be a potential therapeutic target 
for the prevention and treatment of COPD.
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SIRT1, a NAD+-dependent his-
tone deacetylase, is known  
to regulate aging, stress resil-
ience, and inflammation [18, 
29]. miR-132 has been reported 
to specifically target SIRT1, neg-
atively impacting its expression 
in neuronal and endothelial 
cells [30]. Previous studies have 
shown reduced SIRT1 levels in 
COPD patients [31, 32], and 
activation of SIRT1 has been 
found to protect against CS- 
induced COPD in mice [33-35]. 
Thus, SIRT1 plays a critical role 
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