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Abstract: Purpose: The stromal cell protein metalloproteinase 9 (MMP9), associated with extracellular matrix degra-
dation and remodeling, promotes tumor invasion and metastasis and regulates cell adhesion molecule and cytokine 
activity. This study evaluated MMP9 in pan-cancer and screened for compounds and drug candidates that can inhib-
it it. Methods: MMP9 expression in pan-cancer tissues was evaluated in a pan-cancer dataset from the University of 
California Santa Cruz database, along with the correlation between MMP9 and the tumor microenvironment (TME), 
RNA modification genes, and tumor mutation burden. MMP9 crystal structures were downloaded, and a ligand-
based pharmacophore model was constructed. A machine learning model was constructed for further screening. 
The identified compounds were pooled into Discovery Studio 4.5 for absorption, distribution, metabolism, and excre-
tion (ADME) and toxicity prediction. Molecular docking was used to demonstrate the binding affinity and mechanism 
between the compounds and MMP9, and the stability of the ligand-receptor complex was assessed. Results: The 
expression levels of MMP9 differed between tumor tissues. Prognostic analysis showed that high MMP9 expression 
indicates poor survival and tumor progression in glioma (GMBLGG), pan-kidney (KIPAN; KICH+KIRC+KIRP), uveal 
melanoma (UVM), low-grade glioma (LGG), adrenocortical carcinoma (ACC), and liver hepatocellular carcinoma 
(LIHC). MMP9 expression in GMBLGG, KIPAN, UVM, LGG, ACC, and LIHC was positively correlated with the TME. The 
ligand-based pharmacophore model and the machine learning model identified 49 small molecules. ADME and tox-
icity prediction identified CEMBL82047 and CEMBL381163 as potential MMP9 inhibitors, showing robust binding 
affinity with MMP9. The resulting complexes are stable in the natural environment. Conclusion: CHEMBL82047 and 
CHEMBL381163 are ideal compounds for inhibiting MMP9. The findings of this study will contribute to the design 
and improvement of MMP9-targeting drugs.
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Introduction

Tumors are formed when normal cells prolifer-
ate and differentiate abnormally under the 
action of various initiating and promoting fac-
tors. Tumors, especially malignant ones, de- 
stroy normal tissues and organs and can cause 
gradual organ dysfunction until failure or death 
due to compression, consumption, or destruc-
tion [1]. Malignant cancer is one of the leading 
causes of death worldwide [2], with an extreme-
ly low cure rate in developed and developing 
countries [3, 4]. Although great progress has 
been made in cancer therapy, many patients 

still have poor prognoses and low survival rates. 
Thus, novel therapeutic methods and drugs are 
urgently needed.

Matrix metalloproteinase-9 (MMP9), a member 
of the zinc-dependent endopeptidase family, is 
a gelatinase involved in a variety of biological 
processes (e.g., proteolytic extracellular matrix 
(ECM) degradation, cell-ECM and cell-cell inter-
actions, and cell surface cleavage activities). In 
addition, it degrades and regulates ECM pro-
teins and releases bioactive proteins, including 
cytokines, chemokines, and growth factors [5, 
6]. MMP9 degrades type IV collagen and dis-
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rupts basement membranes associated with 
tumor invasion and metastasis. The expression 
level of MMP9 mRNA is significantly higher in 
nasopharyngeal carcinoma tissues than in 
nasopharyngeal tissues, and MMP9 overex-
pression accelerates tumor growth by inducing 
angiogenesis and enhanced local cell invasion 
and metastasis by degrading the ECM [7]. In 
esophageal cancer, MMP9 overexpression is 
significantly correlated with the depth of tumor 
infiltration, lymphatic infiltration, lymph node 
metastasis, and the degree of pathological dif-
ferentiation [7]. The ECM is a key component of 
the local tumor microenvironment (TME) and 
undergoes extensive remodeling during breast 
cancer evolution. MMP9 is reported as a key 
player in ECM remodeling during cancer initia-
tion and progression through a variety of mech-
anisms [8].

Currently, several chemotherapeutic agents 
target MMP9. MMP9-IN-1, a highly selective 
MMP9 inhibitor with oral efficacy [9, 10], selec-
tively inhibits MMP9 to control the develop-
ment, progression, invasion, and metastasis of 
nasopharyngeal carcinoma, but it also affects 
the function of the human respiratory system 
and reduces the activity of other proteases  
and cytokines because of its strong and effec-
tive inhibitory effect [7, 11]. JNJ0966 is anoth- 
er highly selective MMP9 inhibitor that blocks 
the conversion of MMP9 zymogen to a catalyti-
cally active enzyme [12]. However, it is currently 
only used in scientific research. Other MMP9 
inhibitors exist but with extensive effect tar-
gets, which means they have more side effects. 
Therefore, novel MMP9-targeting drugs are 
needed.

This study combined a pharmacophore model 
and a machine learning model to screen for 
novel MMP9 inhibitors. Pharmacophores are 
combinations of characterized three-dimen-
sional structural elements [13, 14] and have 
been used to design and screen new drugs on 
the basis of specific ligand structures [15, 16]. 
Machine learning is used to predict or classify 
drugs using data analysis [17] and is helpful in 
many fields, such as clinical data processing 
[18, 19]. We explored the role of MMP9 in  
pan-cancer and assessed the relevance of 
MMP9 in the tumor immune microenvironment 
and mRNA modifications. We then constructed 
a pharmacophore model and a machine learn-

ing model to screen for inhibitors of MMP9, fol-
lowed by absorption, distribution, metabolism, 
excretion (ADME) and toxicity analysis, protein-
ligand docking, and molecular dynamics (MD) 
simulation. This research provides a novel 
investigation strategy and a group of therapeu-
tic candidates for MMP9, which might serve as 
a strong foundation for further agonist research.

Methods

Analysis of the expression level of MMP9 in 
pan-cancer datasets

The unified and standardized pan-cancer data-
set TCGA (The Cancer Genome Atlas) Pan-
Cancer (PANCAN, N = 10535, G = 60499) was 
downloaded from the University of California 
Santa Cruz (UCSC) database (https://xen-
abrowser.net/). The expression data of the 
ENSG00000100985 (MMP9) gene was ex- 
tracted from each sample, and the samples 
from normal solid tissue, primary blood-derived 
cancer - peripheral blood, and primary tumors 
were further screened, followed by log2 
(x+0.001) transformation of each expression 
value. Cancers with fewer than three samples 
were excluded. The difference in expression 
between normal and tumor samples in each 
tumor was calculated using R software (ver- 
sion 3.6.4), and significance analysis was per-
formed using unpaired Wilcoxon rank sum and 
signed rank tests. Finally, a plot showing the 
differences in MMP9 expression between can-
cers was created.

Identification of the correlation between 
MMP9 expression levels and survival in pan-
cancer

Several metrics (overall survival [OS] and pro-
gression-free survival [PFS]) were selected 
from TCGA samples to investigate the associa-
tion between MMP9 expression and patient 
outcomes. A high-quality prognostic dataset 
(TCGA) was obtained from a previously pub-
lished TCGA prognosis study published in Cell; 
cancers with fewer than 10 samples and sam-
ples with a follow-up time of less than 30 days 
were excluded. The R software package “sur-
vival” was used to obtain a forest map for Cox 
to analyze the relationship between MMP9 
gene expression and survival in each tumor. 
The patients with each tumor type in the TCGA 
dataset were divided into two groups according 
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to the best cut-off value of MMP9 to compare 
the prognostic differences. The prognostic dif-
ferences between the two groups were further 
analyzed using the “survfit” function of the R 
software package “survival”, and the log-rank 
test was used to evaluate significant prognostic 
differences between the samples of different 
groups.

Association between MMP9 expression and 
the TME in pan-cancer

The gene expression profiles of each tumor 
were extracted separately, and the expression 
profiles were mapped to “Gene Symbol”. The  
R software package “ESTIMATE” was used to 
calculate the stromal, immune, and ESTIMATE 
scores of each patient with each tumor type 
according to gene expression. The corr.test 
function of the R software package “psych” was 
used to calculate the Pearson’s correlation 
coefficient between genes and immune inva-
sion and immune cell invasion scores in each 
tumor to determine whether immune invasion 
scores were significantly correlated.

Correlation between MMP9 expression and 
mRNA-modifying genes in pan-cancer

The expression data of the marker genes of the 
MMP9 gene and three types of RNA modifica-
tion genes (m1A, m5C, and m6A) in each sam-
ple were extracted. Primary blood-derived can-
cer - peripheral blood samples and primary 
tumor samples were screened, and the Pear- 
son correlation coefficients between MMP9 
and the marker genes of the five types of 
immune pathways were calculated by filtering 
all normal samples and transforming each 
expression value. These data were used to esti-
mate the role of RNA modifications in cancer 
using the gene expression dataset and further 
summarize their therapeutic potential for 
abnormal deposition in cancer.

Association between MMP9 expression and 
tumor mutation burden in pan-cancer

Simple nucleotide variation data were down-
loaded from the database and processed. A 
simple nucleotide variation dataset was used 
to plot the mutational landscape of MMP9 in 
four tumor types. Tumor mutation burden (TMB) 
scores were calculated using mutation data of 
four tumor samples from TCGA, and patients 

were divided into low-TMB and high-TMB groups 
according to the TMB score quartile. Dif- 
ferentially expressed genes (DEGs) were identi-
fied in the low- and high-TMB groups.

Construction and verification of pharmacody-
namic mass models

Pharmacophore models are useful for screen-
ing ideal compounds, and two types of pharma-
cophore models are known: structure-based 
pharmacological models derived directly from 
the X-ray structure of protein - ligand complex- 
es and ligand-based pharmacological models 
derived from the structure of known active 
compounds. The crystal structures of human 
MMP9 receptors with different ligands (pro- 
tein data bank [PDB] IDs: 2OW0, 2OW1, 4H3X, 
and 4WZV) were analyzed using LigandScout 
v4.3, which provides automated construction 
of three-dimensional pharmacophores. Ligand- 
Scout identifies 3D chemical features; ligand 
options containing hydrogen bond donors 
(HBDs) and acceptors (HBAs) are shown as  
concentrated vectors, along with negative and 
positive ignitable spheres. Moreover, lipophilic 
regions are indicated by spheres. In addition, to 
expand selectivity, the LigandScout indicator 
incorporates spatial data about regions into 
each promising inhibitor. Pharmacophore sig-
natures were entered into the web server 
Pharmit (http://pharmit.csb.pitt.edu/) to search 
for and identify small molecules that bind to  
the target molecule (MMP9 receptor) on the 
basis of structural and chemical similarities 
between small molecules. By combining the 
code from the PDB, 1,752,844 possible small 
molecules are obtained. Then, the deep learn-
ing model was built by DeepScreening (http://
deepscreening.xielab.net/) for further screen-
ing, and the performance of the model was 
evaluated using test loss, accuracy, recall, pre-
cision, the F1 (F1-score), and Matthew’s corre-
lation coefficient (MCC).

ADME and toxicity prediction

The ADME module of Discovery Studio 4.5 was 
used to calculate the ADME of selected com-
pounds, along with their water solubility, blood-
brain barrier permeability, cytochrome P-450 
2D6 (CYP2D6) inhibition, hepatotoxicity, human 
enteric absorption, and plasma protein binding 
levels. The topcat module of Discovery Studio 
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4.5 was used to calculate the potential com-
pounds’ toxicity and other properties, such as 
the National Toxicology Program rodent carci-
nogenicity, the Ames mutagenicity, the devel-
opmental toxicity potential, the median oral 
lethal dose (LD50), and the chronic oral mini-
mum observed adverse reaction level (LOAEL) 
in rats. These pharmacological properties were 
considered when selecting appropriate drug 
candidates for MMP9.

Protein molecule docking

Molecular docking was assessed using the 
Glide module of the Schrödinger kit to collect 
the active conformation of small molecules 
interacting with the MMP9 receptor. Top-level 
compounds from the pharmacophore screen-
ing were prepared in Maestro using the  
LigPrep module to obtain the starting struc- 
ture for docking. Ligand-acceptor interactions 
included hydrogen bond interactions, van der 
Waals interactions, π-π stacked interactions, 
and ionic interactions. The molecular docking 
results were analyzed according to the binding 
energy (kcal/mol) between small molecules 
and amino residues and the number of binding 
interactions.

Molecular dynamics simulation

The best binding conformations of the ligand-
MMP9 complexes among the potential com-
pounds predicted by the molecule docking pro-
gram were submitted to the MD simulation 
using Discovery Studio 4.5. The ligand-acce- 

ture) and atmospheric pressure; 25ps-MD sim-
ulation (production mode) at NPT (atmospheric 
pressure and temperature). The Particle Grid 
Ewald (PME) algorithm was used to calculate 
remote electrostatic, and the Linear Constraint 
Solver (LINCS) algorithm was used to fix all 
bonds involving hydrogen. With the initial com-
plexity setting as a reference, the trajectories of 
the root mean square deviation (RMSD), poten-
tial energy, and structural features were deter-
mined by the Discovery Studio 4.5 analysis tra-
jectory protocol.

Results

MMP9 expression in pan-cancer

The complete data analysis process is depict- 
ed in Figure 1. We analyzed the expression 
data of 26 cancer types and found that MMP9 
was highly expressed in the vast majority of 
tumor samples. The expression differed signifi-
cantly between most tumors, including glio- 
blastoma multiforme (GBM), cervical squa-
mous cell carcinoma and endocervical ad- 
enocarcinoma (CESC), lung adenocarcinoma 
(LUAD), colon adenocarcinoma (COAD), co- 
lon adenocarcinoma/rectum adenocarcinoma 
esophageal carcinoma (COADREAD), breast 
invasive carcinoma (BRCA), esophageal carci-
noma (ESCA), stomach and esophageal carci-
noma (STES), kidney renal papillary cell carci-
noma (KIRP), kidney pancreas carcinoma 
(KIPAN), stomach adenocarcinoma (STAD), 
prostate adenocarcinoma (PRAD), uterine cor-
pus endometrial carcinoma (UCEC), head and 

Figure 1. Mind map of this study.

ptor complex was placed into 
an orthogonal box and sol-
vated with an explicit perio- 
dic boundary-solvated water 
model. To simulate the physi-
ological environment, sodium 
chloride was added to a sys-
tem with an ionic strength of 
0.145. The system was then 
subjected to a CHARMM force 
field for analogy-based ligand 
parameterization. For this sys-
tem, the following simulation 
protocols were applied: 1000 
minimization steps for the 
fastest descent and conjugate 
gradient; 5ps equilibrium sim-
ulation at 300 K (slow drive 
2ps from 50 K initial tempera-
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neck squamous cell carcinoma (HNSC), kidney 
renal clear cell carcinoma (KIRC), lung squa-
mous cell carcinoma (LUSC), liver hepatocellu-
lar carcinoma (LIHC), rectum adenocarcinoma 
(READ), pheochromocytoma and paraganglio-
ma (PCPG), bladder urothelial carcinoma 
(BLCA), kidney chromophobe carcinoma (KICH), 
and cholangiocarcinoma (CHOL) (P < 0.05). 
MMP9 was highly expressed in brain low-grade 

glioma (LGG), cervical squamous cell carcino-
ma and endocervical adenocarcinoma (CESC), 
and pancreatic adenocarcinoma (PAAD); how-
ever, because of the small sample size of the 
control group (normal), no significant differenc-
es were detected. Furthermore, the expression 
of MMP9 in thyroid carcinoma (THCA) did not 
differ significantly from that of normal samples 
(Figure 2A).

Figure 2. Pan-cancer analysis of MMP9 expression. A. Differential expression of MMP9 between tumor and normal 
tissues in pan-cancer analysis. MMP9 expression correlates with overall survival time (OS). B. Survival curves of 
MMP9 expression in GBMLGG, KIPAN and UVM. L represents low expression of MMP9 group, and H represents 
high expression of MMP9 group. C. Pan-cancer cohort (GBMLGG, KICH, KIRC, KIRP, KIPAN and UVM). Correlation 
between MMP9 expression and immune scores.
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Pan-cancer prognostic analysis of MMP9

To further explore the association between 
MMP9 and the prognosis of pan-cancer, we 
performed prognostic analysis on 39 cancer 
types. The OS results (Supplementary Figure 
1A) showed that for glioma (GMBLGG), KIPAN, 
uveal melanoma (UVM), LGG, adrenocortical 
carcinoma (ACC), liver hepatocellular carcino-
ma (LIHC), BLCA, and testicular germ cell 
tumors (TGCTs), higher MMP9 expression was 
associated with a lower survival rate (P < 0.05). 
For skin cutaneous melanoma (SKCM) and 
SKCM-M, higher MMP9 expression was as- 
sociated with a higher survival rate, suggesting 
that MMP9 is a beneficial factor for these two 
tumor types (P < 0.05). For the other 28 tu- 
mors, expression was not significantly associ-
ated with survival (P > 0.05). We also plotted 
the survival curves of GMBLGG, KIPAN, UVM, 
LGG, ACC, KIRC, LIHC, BLCA, and TGCT (Figure 
2B, Supplementary Figure 1B, 1C). In addi- 
tion, we analyzed the PFS of pan-cancer 
(Supplementary Figure 1D) and found that for 
GMBLGG, KIPAN, KIRC, UVM, LGG, ACC, THCA, 
GBM, and KICH, higher MMP9 expression was 
associated with faster tumor progression (P < 
0.05); for lymphoid neoplasm diffuse large 
B-cell lymphoma (DLBC) and ovarian serous 
cystadenocarcinoma (OV), higher MMP9 ex- 
pression was associated with slower tumor  
progression, suggesting that MMP9 is a sup-
pressor of tumor development in these can- 
cers (P < 0.05). For the other 28 tumors, MMP9 
expression was not significantly associated 
with tumor progression (P > 0.05). In summary, 
higher MMP9 expression was associated with a 
lower survival rate and tumor progression in 
GMBLGG, KIPAN, UVM, LGG, ACC, and LIHC.

Correlation between MMP9 expression, the 
TME, and immune infiltration

The TME is composed of various components, 
such as immune cells, non-immune stromal 
cells, and ECM proteins, including innate 
immune cells, adaptive immune cells, extracel-
lular immune factors, and cell surface mole-
cules. TME, also known as the tumor immune 
microenvironment (TIME), has unique internal 
interactions and plays an important role in 
tumor biology [20, 21]. To further explore the 
correlation between MMP9 and tumor immune 
infiltration, we performed immune analysis on 
six tumors with MMP9 expression. We found 

that MMP9 expression in GMBLGG, KIPAN, 
UVM, LGG, ACC, and LIHC was positively corre-
lated with the immune score, ESTIMATE score, 
and stromal score (Figure 2C, Supplementary 
Figure 2).

In addition, we analyzed the correlation of 
MMP9 expression with immune cells in each 
tumor (Figure 3A). We found that macrophag- 
es were significantly associated with MMP9 
expression. Specifically, M0 macrophages  
were significantly positively correlated with 
MMP9 expression in all six tumors; classically 
activated M1 macrophages were positively cor-
related with MMP9 expression in GMBLGG, 
KIPAN, UVM, LGG, and ACC; alternative activat-
ed M2 macrophages were positively correlated 
with MMP9 expression in GMBLGG and LGG. 
High macrophage expression leads to the 
release of more cytokines (such as epidermal 
growth factor (EGF)), which promotes the 
metastasis and invasion of cancer cells [22, 
23]; this may explain the high correlation 
between MMP9 expression and metastasis. 
Monocytes were negatively correlated with 
MMP9 expression in five tumors but not in  
ACC, suggesting that the ability to recognize 
and kill tumor cells was inhibited [24]. Activated 
natural killer cells were negatively correlated 
with MMP9 expression in GMBLGG, KIPAN, 
KIRC, and ACC, indicating that their ability to kill 
tumor cells decreases when tumors express 
more MMP9. Furthermore, MMP9 expression 
was positively correlated with regulatory T cells 
(Tregs) in GMBLGG, KIPAN, UVM, LGG, and 
KIRC, which could suppress the immune sys-
tem [25].

Correlation of MMP9 expression with RNA 
modification genes

Chemical RNA modifications play an important 
role in fundamental cellular processes, such as 
cell differentiation, protein production, cell  
signaling, and the maintenance of circadian 
rhythms [26, 27], and these modifications can 
be critical in tumor suppression or tumor-pro-
moting effects. We found that GBMLGG was 
positively correlated with most of the genes in 
m1A modification, with significant differences 
between tumor types; the gene ALKBH3 was 
positively associated with MMP9 expression in 
four tumors - GBMLGG, KIPAN, ACC, and LGG - 
with statistically significant differences be- 
tween tumors (Figure 3B). ALKBH3 can pro-
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mote the proliferation, migration, and invasion 
of cancer cells [28]. In m6A modification (Figure 
3C), MMP9 expression was positively correlat-
ed with most genes in GBMLGG, with signifi-

cant differences between tumor types. TR- 
MT61A was positively correlated with MMP9 
expression in four tumors - GBMLGG, KIPAN, 
ACC, and LGG - with statistically significant dif-

Figure 3. A. Pan-cancer cohort (GBMLGG, KICH, KIRC, KIRP, KIPAN 
and UVM). Analysis of the relationship between MMP9 expression 
and immune cell infiltration. B-D. Correlation between m1A, m5C 
and m6A mRNA modification genes and the expression of MMP9 in 
Pan-cancer cohort (GBMLGG, KICH, KIRC, KIRP, KIPAN and UVM).
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ferences between tumors (Figure 3C). A58 in 
m1tRNA is composed of the RNA-binding com-
ponent TRMT6 and the catalytic component 
TRMT61A, which is crucial for maintaining 
m1tRNA stability, affects translation initiation, 
and has profound effects on various biological 
processes [29]. In m5C modification (Figure 
3D), MMP9 expression was positively correlat-
ed with most genes in GBMLGG, with sig- 
nificant differences between tumor types. 
DNMT3B was positively correlated with MMP9 
in four tumors - GBMLGG, KIPAN, ACC, and LGG 
- with significant differences between tumors 
(Figure 3D). DNMT3B is involved in de novo 
DNA methylation in embryonic stem cells and 
early embryos. It is overexpressed in several 
human tumors and is an indicator of early 
tumor recurrence and poor prognosis in hepa-
tocellular carcinoma [30].

Correlation of MMP9 expression with TMB

We further performed single nucleotide poly-
morphism (SNP) analysis by dividing patients 
into two groups: a high MMP9 expression gro- 
up and a low MMP9 expression group. In LGG 
(Supplementary Figure 3A), the genes IDH1, 
TP53, and ATRX had high mutation frequencies 
(> 20%), and EGFR, MYH13, EPPK1, MYO15A, 
SI, KIAA1109, CDH17, SLCO1B1, SYNE2, 
CFAP47, SSPO, and ZFHX4 also had higher 
mutation rates and more mutation types in  
the high MMP9 expression group. In KIRC 
(Supplementary Figure 3B), the genes VHL  
and PBRM1 had high mutation frequencies (> 
20%), and the mutation types were mostly mis-
sense mutations, frameshift deletion muta-
tions, nonsense mutations, splice site muta-
tions, and in-frame insertions. THSD7B, 
ADGRV1, XPO7, LAMC2, and UBR4 also had 
higher mutation rates and mutation types in 
the MMP9 high expression group. TP53, 
CTNNB1, and MUC16 showed high mutation 
frequencies (> 20%) in ACC (Supplementary 
Figure 3C) as well as higher mutation rates in 
the high MMP9 expression group. DST, FAT4, 
ASXL3, CNTNAP5, and NF1 also had higher 
mutation rates and more mutation types in 
high MMP9 expression group. In UVM 
(Supplementary Figure 3D), the genes GNAQ, 
GNA11, BAP1, and SF3B1 had high mutation 
frequencies (> 20%), whereas BAP1 had a high-
er mutation frequency in the high MMP9 
expression group. Finally, SF3B1 and EIF1AX 

showed higher mutation rates in patients with 
high MMP9 expression.

Construction and validation of the pharmaco-
phore model

To further screen for novel inhibitors of MMP9, 
we constructed a ligand-based pharmaco- 
phore model. We first considered evaluating 
the major residues obtained by analyzing the 
crystal structures (PDB IDs: 2OW0, 2OW1, 
4H3X, and 4WZV) to obtain the major residues 
of the MMP9 receptor (Figure 4A-D), identify- 
ing small active molecules and target proteins 
and the physicochemical interaction patterns 
between them and then mapping them to 3D 
array features (e.g., hydrogen bonds, lipophilic 
contacts, and ionic or aromatic interactions).

As shown in Figure 4A, the crystal structure 
2OWO exhibited two hydrophobic interactions, 
binding with the residues TYR423, LEU397, 
LEU418, VAL398, and ZN444. Two hydrogen 
bond acceptors were found with ALA189, 
GLN402, HOH503, HOH608, and LEU188. In 
addition, a positively ionized region was also 
detected. The crystal structure 2OW1 (Figure 
4B) exhibited two hydrophobic interactions, 
binding with the residues VAL398, LEU418, 
TYR423, LEU397, and ZN444. Five hydrogen 
bond acceptors were found with LEU188, 
HOH593, HOH557, ALA189, and GLN402, and 
three hydrogen bond donors were also ob- 
served, along with a positively ionized region. 
The crystal structure 4H3X (Figure 4C) exhibit-
ed two hydrophobic interactions, binding with 
the residues LEU243, TYR248, VAL223, and 
ZN301. Two hydrogen bond acceptors were 
found with LEU188 and ALA189, and three 
hydrogen bond donors with ALA189, HIS226, 
and HOH415 were also observed, along with a 
positively ionized region. The crystal structure 
4WZV (Figure 4D) exhibited two hydropho- 
bic interactions, binding with the residues 
TYR245, MET247, ZN302, VAL223, and 
TYR248. Four hydrogen bond acceptors were 
found with ALA191, HOH401, LEU188, and 
ALA189, and ALA189, HIS230, and GLU227 
hydrogen bond donors were also observed, 
along with a positively ionized region. As shown 
in Supplementary Figure 4A-D, these com-
pounds exerted the largest effect with the 
amino acid residue H401.
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Virtual screening

We performed a prospective virtual screening 
(VS) of a database of compounds of natural ori-
gin and synthetic drugs, in which we used fitted 
values as pharmacology-based screening crite-

ria. After removing duplicates, we screened 
230 small molecules with the same pharmaco-
phore from 1,752,844 small molecules. Then, 
we built a deep learning model with MMP9 and 
3479 small molecules and validated it. The 
accuracy, precision, and area under the curve 

Figure 4. Chemical structure formula and pharmacophore analysis of (A) 2OW0, (B) 2OW1, (C) 4H3X and (D) 4WZV. 
Chemical features of the co-crystal structures were analyzed for summarizing common features. Red arrows indi-
cate hydrogen bond acceptors, green arrows indicate hydrogen bond donors and yellow spheres indicate hydro-
phobes. (E) Evaluation index of deep learning model.
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(AUC) of the model gradually stabilized with 
increases in the Epoch, and finally stabilized  
at around 0.9 (Figure 4E). Recall and F1 also 
gradually stabilized around 0.9, and loss and 
MCC gradually stabilized around 0.45 and  
0.7, respectively (Supplementary Figure 4E-H). 
After screened by the machine learning model, 
49 small molecules (score = 1) from the 230 
small molecules were identified.

ADME and toxicity prediction

Pharmacokinetics is an important analytical 
method for detecting effective compounds in 
the process of drug discovery, and the analysis 
of its properties plays a key role in drug design 
(Supplementary Table 1). Water solubility pre-
dictions (defined in water at 25°C) indicated 
that 33 compounds were soluble in water. In 
addition, 21 compounds showed good human 
intestinal absorption levels. Furthermore, 40 
compounds were highly bound to plasma pro-
teins, whereas the rest were not. CYP2D6 is  
an important enzyme involved in drug metabo-
lism, and all 49 compounds were predicted to 
be non-inhibitors of cytochrome P450 2D6 
(CYP2D6). Regarding hepatotoxicity, seven 
compounds were predicted to be nontoxic. 
CHEMBL82047 and CHEMBL381163 have 
good water solubility, intestinal absorption, and 
protein binding and can act as non-inhibitors of 
CYP2D6 without hepatotoxicity (Supplementary 
Table 2). We conducted a comprehensive in- 
vestigation of the safety of these small mole-
cules; the results showed that two small mole-
cules, CEMBL82047 and CEMBL381163, are 
non-mutagenic and predicted to have less 
Ames mutagenic, rodent carcinogenic, and 
developmental toxicity potential than other 
compounds.

Protein molecular docking

To further study the binding properties of  
small molecules to proteins, we carried out 
molecular docking experiments (Figures 5, 6A, 
6B, Supplementary Figure 5A-D). As shown in 
Table 1, CEMBL82047 and CEMBL381163 
have higher binding affinity to the protein  
compared with the drugs JNJ0966 and MMP9-
IN-1. Supplementary Figure 5E, 5F shows the 
π-dependent interactions and hydrogen bonds 
determined by the structural calculations. The 
results of the structural calculation studies 
showed that CEMBL82047 forms four pairs of 

hydrogen bonds with the MMP9 residue accep-
tor, and the complex itself forms four pairs of 
π-related interactions with the MMP9 residue 
acceptor. CHEMBL381163 forms four pairs of 
hydrogen bonds and seven pairs of π-related 
interactions with the MMP9 residue acceptor 
(Tables 2 and 3).

Molecular dynamics simulation

Molecular dynamics simulation is a method for 
simulating the physical motion trajectories and 
states of atoms and molecules based on 
Newtonian mechanics. We build a molecular 
dynamics simulation module to evaluate the 
stability of small molecule-protein complexes 
under natural environment conditions. Figure 
6C, 6D shows the potential energy and RMSD 
plots for each complex. The trajectories of  
each complex reached equilibrium, and the 
potential energy and RMSD of complex- 
es CEMBL82047-MMP9 and CEMBL381163-
MMP9 reached a steady state over time. This 
indicates that the complexes can exist stably in 
the natural environment.

Discussion

Tumors are among the leading causes of death 
worldwide [2], and MMP9 is a reported cancer 
biomarker [6] that promotes tumor invasion 
and metastasis, greatly contributing to the 
occurrence and development of tumors [5, 6]. 
Although great progress has been made in the 
design and development of drugs targeting 
MMP9, these drugs have many shortcomings. 
This study systematically assessed the expres-
sion pattern and prognostic value of MMP9 in 
pan-cancer and screened for specific MMP9-
targeting drugs.

We found that the expression level of MMP9 
differed significantly between tumor samples 
and normal samples in most of the 26 cancers 
investigated. Higher MMP9 expression was 
associated with poorer survival and tumor pro-
gression in GMBLGG, KIPAN, UVM, LGG, ACC, 
and LIHC. These findings are consistent with 
those of previous reports; for example, elevat-
ed MMP9 expression in breast cancer has 
been identified as a predictor of shortened 
patient survival [31-33]; it also acts as a prog-
nostic biomarker for thyroid cancer [34]. To fur-
ther confirm the correlation between MMP9 
expression and tumors, we performed immune 
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infiltration analysis on six abovementioned 
tumors with high MMP9 expression in TCGA. 
We found that MMP9 expression in patients 
with tumors was significantly correlated with 
the stromal score, immune score, and ESTIMA- 
TE score. We also examined the relationship 
between MMP9 expression and the infiltration 
of 22 immune cell subtypes, and our findings 
showed that the level of immune cell infiltration 

was significantly correlated with MMP9 expres-
sion in most cancer types. This also demon-
strates that immune escape occurs in patients 
with tumors with high MMP9 expression; more-
over, it illustrates the mechanism of MMP9 in 
tumors. For example, macrophages were sig-
nificantly positively associated with all six 
tumors, and high macrophage expression pro-
motes cancer initiation and malignant progres-

Figure 5. Schematic drawing of interactions between ligands and MMP9. (A) Ligand interaction diagram of CHEM- 
BL82047-MMP9 complex. (B) Ligand interaction diagram of CHEMBL381163-MMP9 complex. (C) CHEMBL82047- 
MMP9 complex. (D) Schematic of intermolecular interaction of the predicted binding modes of CHEMBL82047 with 
MMP9. (E) CHEMBL381163-MMP9 complex. (F) Schematic of intermolecular interaction of the predicted binding 
modes of CHEMBL381163 with MMP9.
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sion. During tumorigenesis, macrophages cre-
ate a mutagenic and growth-promoting inflam-
matory environment; as tumors progress to 
malignant tumors, macrophages stimulate 
angiogenesis, enhance tumor cell migration 
and invasion, and suppress antitumor immuni-
ty [34]. Monocytes were negatively associated 
with six tumors, and their ability to generate 
antitumor effectors and activate antigen-pre-
senting cells was suppressed [24]. NK cells 
were also significantly inhibited in these six 
tumors, and their ability to directly kill tumor 
cells and release soluble factors affecting 

innate and adaptive immune responses was 
significantly inhibited. In the TME, Tregs can  
be induced and differentiated by traditional T 
cells; they have strong immunosuppressive 
functions, inhibit anti-tumor immunity, and pro-
mote the occurrence and development of 
tumors, which also explains why Treg levels are 
positively correlated with these tumor types 
[35]. Activated CD4 memory T cells can sup-
press anticancer immunity, thereby hindering 
protective immune surveillance of tumors and 
hindering effective antitumor immune respons-
es of tumor hosts, promoting tumor develop-
ment and progression. This finding is consis-
tent with the results of a previous study, in 
which activated CD4 memory T cell expression 
was positively correlated with tumors [36].

Exploring the mutational landscape of MMP9  
in different cancers further, we found that  
UVM, KIRC, ACC, and LGG - four types of tumors 
with high MMP9 expression - had much higher 
mutation numbers and more mutation types 

Figure 6. Schematic of intermolecular interaction of the predicted binding modes of (A) CHEMBL82047 with MMP9, 
and (B) CHEMBL381163 with MMP9. Results of molecular dynamics simulation of the compounds CHEMBL82047-
MMP9 complex and CHEMBL381163-MMP9 complex. (C) Potential energy, average backbone root-mean-square 
deviation. (D) RMSD, root-mean-square deviation.

Table 1. COCKER potential energy of com-
pounds

COCKER potential energy
CEMBL82047 -12.164
CEMBL381163 -11.623
JNJ0966 -6.629
MMP9IN1 -8.618
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than normal tissues. This also verified that 
MMP9 promotes tumorigenesis and develop-
ment. TMB reflects the number of cancer muta-
tions, and a higher TMB generally indicates  
better outcomes. Mutations are processed as 
neoantigens and presented to T cells by major 
histocompatibility complex (MHC) proteins, and 
a higher TMB results in more neoantigens, 
increasing the chances of T-cell recognition and 
improving immunotherapy efficacy [37].

Although MMP9 is highly expressed in most 
tumors and closely related to tumor metasta-
sis, only a few drugs specifically target MMP9, 
and they have many limitations. JNJ0966 is a 
specific inhibitor of MMP9; it is reportedly 
involved in the progression and development of 
various diseases, and it can regulate a series of 
physiological response processes in the body 
by regulating the expression of MMP9. However, 
as mentioned above, JNJ0966 is currently only 

Table 2. Hydrogen bond interaction parameters for each compound with MMP9 residues
Receptor Compound Donor Atom Receptor Atom Distances (Å)
2OW1 CEMBL82047 LEU188:H UNK900:O2 1.84939

ALA189:H UNK900:O2 2.5637
GLN402:HE22 UNK900:O5 2.04371
UNK900:H29 ALA189:O 2.21685

CEMBL381163 LEU188:H UNK900:O3 2.73564
GLN402:HE22 UNK900:O7 1.84541
HIS411:HD1 UNK900:O4 2.63353
UNK900:H22 ALA189:O 2.04562

JNJ0966 LEU188:H UNK900:N3 2.7175
UNK900:H1 MET422:O 2.01943

MMP9IN1 GLN227:HE21 UNK900:N2 2.6066
UNK900:H11 TYR245:O 1.90625

Table 3. π-related interaction parameters for each compound with MMP9
Receptor Compound Donor Atom Receptor Atom Distances (Å)
2OW1 CEMBL82047 HIS401 UNK900 4.2886

UNK900:C15 LEU187 4.82839
UNK900 LEU188 5.32252
UNK900 VAL398 4.8719

CEMBL381163 UNK900:H4 HIS401 2.77631
UNK900:C1 LEU397 4.16409

UNK900:C14 LEU187 4.4138
PHE110 UNK900:C15 4.14676
HIS411 UNK900 5.04727
TYR423 UNK900:C1 4.81758
UNK900 LEU188 4.80899

JNJ0966 HIS401 UNK900 4.00463
UNK900 TYR423 5.5835
ALA189 UNK900:C9 3.89591

UNK900:C9 LEU188 4.59029
UNK900:C9 VAL398 4.42465

UNK900 LEU188 4.21123
UNK900 VAL398 4.71999
UNK900 LEU397 5.13481
UNK900 LEU418 5.36355

MMP9IN1 UNK900 LEU243 5.32463
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used in scientific research [12]. Similarly, 
MMP9-IN-1, as a specific MMP9-targetingdrug, 
has not been put into clinical use on a large 
scale because of several defects, such as 
respiratory system inhibition [7, 11]. Although 
the mechanism of action of MMP9 in tumor 
progression is relatively clear, the application of 
existing drugs is not satisfactory. Therefore, it is 
necessary to use various cell biology experi-
ments and other methods to screen for and 
develop new drugs targeting MMP9.

We virtually screened 1,752,844 small-mole-
cule compounds in a natural source com- 
pound and synthetic drug database. By con-
structing a pharmacophore model, we screen- 
ed 230 small-molecule compounds with the 
same pharmacophore and then constructed a 
pharmacophore model. We used a machine 
learning model to further screen 49 small mol-
ecule compounds with high binding affinity to 
MMP9 and pooled them for further study.

The ADME and toxicity prediction results indi-
cated that CEMBL82047 and CEMBL381163 
had good water solubility, absorption levels, 
and plasma protein binding properties, with no 
hepatotoxicity or toxicity and low Ames muta-
genicity, rodent carcinogenicity, and develop-
mental toxicity, indicating their potential as 
ideal compounds. Then, we further performed 
docking analysis and the results showed that 
CEMBL82047 and CEMBL381163 had higher 
binding affinity to MMP9 than JNJ0966 and 
MMP9-IN-1. Because these two compounds 
form more chemical bonds with MMP9 than 
JNJ0966 and MMP9-IN-1, they have a higher 
interaction force and more stable binding with 
MMP9, which may enhance their inhibition of 
MMP9, thereby improving the tumor-killing 
effect. Finally, we conducted a molecular 
dynamics simulation, and the results showed 
that the potential energy and RMSD of these 
complexes reached a steady state over time, 
indicating that the two complexes remain sta-
ble in natural environments.

In conclusion, MMP9 is highly expressed in 
most cancers. Higher MMP9 expression in 
GMBLGG, KIPAN, UVM, LGG, ACC, and LIHC is 
associated with poorer survival and tumor pro-
gression. In GMBLGG, KIPAN, UVM, LGG, ACC, 
and LIHC, higher MMP9 expression is associ-
ated with increased infiltration of immune  

cells, such as macrophages and regulatory T 
cells, and more RNA modifications. In UVM, 
LGG, ACC, and LIHC, higher MMP9 expression 
indicates that the tumor has a higher TMB. A 
total of 49 candidate inhibitors against MMP9 
were screened with a ligand-based pharmaco-
phore model and a machine learning model. 
CHEMBL82047 and CHEMBL381163 have 
good water solubility, absorption levels, and 
plasma protein binding properties. They also 
have low Ames mutagenicity, rodent carcinoge-
nicity, and developmental toxicity potential, 
with no hepatotoxicity or toxicity. These mole-
cules have a high binding affinity to proteins 
and are stable in the natural environment. 
Therefore, CEMBL82047 and CEMBL381163 
show potential as MMP9-inhibiting drugs.
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Supplementary Figure 1. (A) MMP9 expression correlates with overall survival time (OS). Forest plots showing the 
correlations between OS and MMP9 expression across 39 types of cancers. (B, C) Survival curves of MMP9 ex-
pression in LGG, ACC, KRIC, LIHC, BLCA and TGCT. L represents low expression of MMP9 group, H represents high 
expression of MMP9 group. (D) Forest plots showing the correlations between Progression-free survival time (PFS) 
and MMP9 expression across 39 types of cancers.
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Supplementary Figure 2. Pan-cancer cohort (GBMLGG, KICH, KIRC, KIRP, KIPAN and UVM). Correlation between 
MMP9 expression and pan-cancer (A) estimate score and (B) stroma score.
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Supplementary Figure 3. Correlation between MMP9 expression and tumor mutation burden in (A) LGG, (B) KIRC, 
(C) ACC and (D) UVM.



MMP9 in cancer & computational screening of inhibitors

4	

Supplementary Figure 4. The interaction between MMP9 and MMP9’s inhibitors (A) 2OW0 (B) 2OW1 (C) 4H3X and 
(D) 4WZV. (E-H) Evaluation index of deep learning model. Loss, Recall, MCC and F1.

Supplementary Table 1. Adsorption, distribution, metabolism, and excretion properties of compounds
Solubility 

Level
BBB 
level

CYP2D6 Hepatotoxicity Absorption 
Level

PPB 
Level

CHEMBL344828 PubChem-10764489 3 3 0 1 0 0
CHEMBL2425940 PubChem-73293197 3 4 0 1 3 1
CHEMBL139884 PubChem-10502046 3 3 0 1 0 1
CHEMBL381554 PubChem-44409390 3 4 0 1 0 1
CHEMBL2425944 PubChem-73293200 4 4 0 1 3 0
CHEMBL82047 PubChem-10738924 3 3 0 0 0 1
CHEMBL196647 PubChem-44402021 4 4 0 1 3 1
CHEMBL381163 PubChem-44409365 3 4 0 0 1 1
CHEMBL206481 PubChem-44409389 3 4 0 1 2 0
CHEMBL207776 PubChem-21304710 3 3 0 1 0 1
CHEMBL138643 PubChem-23523890 2 4 0 1 3 1
CHEMBL382227 PubChem-44411830 2 4 0 1 1 1
CHEMBL419503 PubChem-44325156 4 4 0 1 3 0
CHEMBL252711 PubChem-44445823 4 4 0 1 3 0
CHEMBL433171 PubChem-21130561 2 4 0 0 0 1
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CHEMBL1801052 PubChem-9847113 2 4 0 1 1 1
CHEMBL234529 PubChem-25181080 3 4 0 0 3 1
CHEMBL126004 PubChem-10389610 3 4 0 1 0 1
CHEMBL236167 PubChem-23655323 3 3 0 1 0 1
CHEMBL429800 PubChem-23656291 3 3 0 1 0 1
CHEMBL358812 PubChem-10549612 4 4 0 1 2 0
CHEMBL1801395 PubChem-22707860 2 4 0 1 1 1
CHEMBL1916211 PubChem-57403331 2 2 0 1 0 1
CHEMBL1770697 PubChem-20620715 2 4 0 1 2 1
CHEMBL47728 PubChem-44291532 3 3 0 1 0 1
CHEMBL303082 PubChem-44306344 2 4 0 1 3 1
CHEMBL71227 PubChem-44309863 2 4 0 1 1 1
CHEMBL1770712 PubChem-20620688 3 4 0 1 0 1
CHEMBL164980 PubChem-11070343 3 4 0 1 1 0
CHEMBL44045 PubChem-44289352 3 3 0 0 0 1
CHEMBL362797 PubChem-22644895 3 3 0 1 0 1
CHEMBL561625 PubChem-45269631 3 3 0 1 0 1
CHEMBL35606 3 4 0 1 0 1
CHEMBL2425935 PubChem-73292710 3 4 0 1 1 0
CHEMBL2204827 PubChem-71459505 3 3 0 1 0 1
CHEMBL369302 PubChem-22644965 3 4 0 1 0 1
CHEMBL1771223 PubChem-54587429 2 4 0 1 3 1
CHEMBL92778 PubChem-9913479 2 4 0 1 1 1
CHEMBL292671 PubChem-44299758 3 4 0 1 3 1
CHEMBL1771216 PubChem-20620240 3 4 0 0 3 1
CHEMBL1801431 PubChem-10280852 PubChem-46939559 2 4 0 1 2 1
CHEMBL381505 PubChem-44409164 3 4 0 1 2 1
CHEMBL1771222 PubChem-54580544 2 4 0 1 2 1
CHEMBL1771215 PubChem-10483139 2 4 0 1 3 1
CHEMBL1771221 PubChem-54583511 2 4 0 1 2 1
CHEMBL42771 PubChem-44289604 3 3 0 1 0 1
CHEMBL1801398 PubChem-46938727 2 4 0 1 0 1
CHEMBL44250 PubChem-10572544 3 3 0 0 0 1
CHEMBL338007 PubChem-10789711 4 4 0 1 1 0
Aqueous-solubility level: 0 (extremely low); 1 (very low, but possible); 2 (low); 3 (good). Blood brain barrier level: 0 (Very high penetrant); 1 (High); 
2 (Medium); 3 (Low); 4 (Undefined). Cytochrome P450 2D6 level: 0 (Non-inhibitor); 1 (Inhibitor). Hepatotoxicity: 0 (Nontoxic); 1 (Toxic). Human-
intestinal absorption level: 0 (good); 1 (moderate); 2 (poor); 3 (very poor). Plasma protein binding: 0 (Absorbent weak); 1 (Absorbent strong).

Supplementary Table 2. Toxicities of compounds
Mouse NTP Rat NTP

AMES DTP
Female Male Female Male

CHEMBL344828 PubChem-10764489 0 0.68 0.809 0.383 1 0.978
CHEMBL2425940 PubChem-73293197 0 0 1 1 1 0
CHEMBL139884 PubChem-10502046 0 0.016 0 0.701 0.396 0.999
CHEMBL381554 PubChem-44409390 0 0 0 0 0.844 1
CHEMBL2425944 PubChem-73293200 0 0.109 1 1 1 0.001
CHEMBL82047 PubChem-10738924 0 0.964 0.439 1 0.99 0.11
CHEMBL196647 PubChem-44402021 0.59 0 1 1 1 1
CHEMBL381163 PubChem-44409365 0 0 0.062 0.023 0.964 1
CHEMBL206481 PubChem-44409389 0 0 0 0 0.623 1
CHEMBL207776 PubChem-21304710 0 0.003 0 0.898 0.498 0.946
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CHEMBL138643 PubChem-23523890 0 1 1 1 1 1
CHEMBL382227 PubChem-44411830 0.032 0.05 1 1 0 1
CHEMBL419503 PubChem-44325156 0 0.004 1 1 0.995 1
CHEMBL252711 PubChem-44445823 0 0 1 1 1 1
CHEMBL433171 PubChem-21130561 0.898 0.005 0.953 1 1 1
CHEMBL1801052 PubChem-9847113 0.076 0.352 1 1 0.424 1
CHEMBL234529 PubChem-25181080 0.985 0.028 1 0 1 0.946
CHEMBL126004 PubChem-10389610 0 0.891 1 1 0.137 0.002
CHEMBL236167 PubChem-23655323 0.003 0.012 1 1 1 0.434
CHEMBL429800 PubChem-23656291 0.003 0.012 1 1 1 0.434
CHEMBL358812 PubChem-10549612 0 0.006 1 1 0.639 0.003
CHEMBL1801395 PubChem-22707860 0 0.002 0.999 1 0.948 1
CHEMBL1916211 PubChem-57403331 0 0 0 1 1 0.98
CHEMBL1770697 PubChem-20620715 0.006 0.821 1 1 0 1
CHEMBL47728 PubChem-44291532 0 0 0 0 0.777 0
CHEMBL303082 PubChem-44306344 1 0.636 1 1 0.999 0.521
CHEMBL71227 PubChem-44309863 0 0.001 0.993 1 0.983 1
CHEMBL1770712 PubChem-20620688 0.018 0.998 1 1 0.92 1
CHEMBL164980 PubChem-11070343 0 1 0 1 1 0.273
CHEMBL44045 PubChem-44289352 0 0.752 0.999 0.999 0 1
CHEMBL362797 PubChem-22644895 0 0.001 0 0 0.071 0.649
CHEMBL561625 PubChem-45269631 0 0.009 0.001 0.984 1 0
CHEMBL35606 0 0.002 0 1 0.968 0
CHEMBL2425935 PubChem-73292710
CHEMBL2204827 PubChem-71459505 0.025 0.364 0.998 1 1 0.829
CHEMBL369302 PubChem-22644965 1 0.63 1 1 1 0.002
CHEMBL1771223 PubChem-54587429 0 0.227 1 1 0.374 0
CHEMBL92778 PubChem-9913479 1 0.005 1 1 1 1
CHEMBL292671 PubChem-44299758 0.987 1 0.903 1 1 0.002
CHEMBL1771216 PubChem-20620240 0 0.997 1 1 0.689 0
CHEMBL1801431 PubChem-10280852 PubChem-46939559 0 0.001 0.992 1 0.588 1
CHEMBL381505 PubChem-44409164 0 0.17 0 0.712 0.024 0.998
CHEMBL1771222 PubChem-54580544 0 0.776 1 1 1 0.813
CHEMBL1771215 PubChem-10483139 0 0.24 1 1 0.334 0
CHEMBL1771221 PubChem-54583511 0 0.187 1 1 1 0.996
CHEMBL42771 PubChem-44289604 0 0.875 1 0.899 0.001 1
CHEMBL1801398 PubChem-46938727 0 0.024 0.966 1 0 1
CHEMBL44250 PubChem-10572544 0.001 0.611 1 1 0.002 1
CHEMBL338007 PubChem-10789711 0 0.998 1 1 1 1
NTP < 0.3 (Non-Carcinogen); > 0.7 (Carcinogen). AMES < 0.3 (Non-Mutagen); > 0.7 (Mutagen). DTP < 0.3 (Nontoxic); > 0.7 
(Toxic).
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Supplementary Figure 5. Schematic drawing of interactions between control drugs and MMP9. (A) JNJ0966-MMP9 
complex, (B) JNJ0966 with MMP9, (C) MMP-9-IN-1-MMP9 complex, (D) MMP-9-IN-1 with MMP9. Schematic of inter-
molecular interaction of the predicted binding modes of (E) JNJ0966 with MMP9, and (F) MMP-9-IN-1 with MMP9.


