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Abstract: Polycystic ovary syndrome (PCOS) is a prevalent endocrine and metabolic disorder affecting women of 
reproductive age. We provide an overview of how mitochondrial DNA (mtDNA) copy number variation (CNVs) and 
gene mutations mediate PCOS, including current research findings and clinical trial data to underscore a theoretical 
basis for further exploring its pathogenesis and developing targeted therapy. Characterized by hyperandrogenism, 
oligo-ovulation or anovulation, and polycystic ovarian morphology, PCOS is often accompanied by insulin resistance, 
metabolic syndrome, and chronic inflammation, which reduce fertility throughout the reproductive lifespan. Despite 
its diverse phenotypes, the etiology and pathophysiologic mechanisms of PCOS remain unclear. As the center of 
energy metabolism, mitochondria have emerged as a key player. Evidence suggests their structural and functional 
abnormalities may underlie diverse manifestations of PCOS. Previous studies have highlighted the critical role of 
mitochondrial morphologic alterations, functional impairments, mtDNA mutations, and CNVs in the pathogenesis 
and progression of PCOS. This review systematically summarizes the latest research on mtDNA CNVs and gene 
mutations in PCOS, identifying them as promising targets for therapeutic intervention.
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Introduction

Polycystic ovary syndrome (PCOS), also known 
as Stein-Leventhal syndrome, is a complex 
endocrine and metabolic disorder prevalent 
among women of reproductive age, with a prev-
alence ranging from 5% to 15% based on po- 
pulation and diagnostic criteria [1, 2]. The 
Rotterdam criteria, proposed by the European 
Society of Human Reproduction and Embryo- 
logy and the American Society for Reproductive 
Medicine in 2003, remain the most widely  
recognized diagnostic standard. The criteria 
include three parts: (1) oligo-ovulation and/or 
anovulation; (2) clinical and/or laboratory evi-
dence of hyperandrogenism; and (3) polycystic 
ovarian morphology on ultrasound. A PCOS 
diagnosis is confirmed when at least two of 
three criteria are met, excluding other causes 
of hyperandrogenism [3]. The clinical manifes-
tations of PCOS are highly variable due to differ-

ences in geography, ethnicity, and lifestyle. In 
addition to menstrual disorders and infertility, 
PCOS can also predispose to hirsutism, acne, 
metabolic diseases (type 2 diabetes, non-alco-
holic fatty liver disease, and metabolic syn-
drome), cardiovascular disease, cancer, various 
pregnancy complications (deep vein thrombo-
sis, preeclampsia, gestational diabetes, macro-
somia, fetal growth restriction, miscarriage, 
stillbirth, and preterm birth), and other psycho-
logical problems (anxiety and depression) [4]. 
Therefore, accurate diagnosis, effective treat-
ment, and long-term management of PCOS are 
crucial for women’s health. Although the exact 
pathogenesis of PCOS remains unclear, evi-
dence suggests that mitochondrial dysfunction 
may be a common mechanism underlying the 
heterogeneous features in PCOS women. Mi- 
tochondrial dysfunction is closely related to 
defects in oocyte developmental, hyperan-
drogenism, insulin resistance (IR), and chronic 
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inflammation in PCOS women [5]. Given the 
critical role of mitochondrial DNA (mtDNA) in 
mitochondrial function, alterations in mtDNA-
-including copy number variations (CNVs) and 
mutations--could affect cellular energy metab-
olism and reactive oxygen species (ROS) le- 
vels, thereby influencing cellular functions. This 
review will focus on the mechanisms, early 
diagnosis, and therapeutic application of mt- 
DNA, CNVs, and mutations in PCOS, providing  
a foundation for further exploration of the 
pathogenesis and targeted treatment of PCOS.

Mechanistic insight into PCOS

Emerging evidence suggests that PCOS is a 
complex endocrine disorder with a multifacto-
rial etiology, involving a complex interplay of 
genetic, lifestyle, environment, and psychologi-
cal factors [6]. Genetic predisposition plays a 
significant role in PCOS development, as evi-
denced by its familial clustering, with female 
relatives of PCOS patients at higher risk of 
developing the condition, highlighting the role 
of heritable factors [7, 8]. The PCOSKB2 data-
base has identified 241 genes and 114 single 
nucleotide polymorphisms (SNPs) implicated in 
PCOS pathogenesis, either directly or indirectly 
[9]. Genome-wide association studies (GWAS) 
have identified common genetic loci associated 
with PCOS phenotypes across various ethnic 
populations, potentially influencing processes 
such as hypothalamic-pituitary-ovarian axis 
function, insulin sensitivity, and androgen me- 
tabolism [10-12]. Additionally, PCOS is consid-
ered as a complex trait resulting from the inter-
action between inherited genetic variants and 
environmental factors. Lifestyle factors, includ-
ing diet quality, physical activity, exposure to 
endocrine-disrupting chemicals (EDCs), light 
cycle alterations, sleep disturbances, and ele-
vated stress levels, have been implicated in the 
development and progression of PCOS [13-17]. 
Furthermore, the higher concordance rate in 
monozygotic twins, familial clustering of PCOS 
cases, and the disease threshold phenomenon 
observed in long-term complications, along 
with the involvement of multiple organ systems 
and mitochondrial dysfunction, suggest a role 
of mtDNA in PCOS pathogenesis. These charac-
teristics are often associated with mitochon-
drial disorders, indicating that mtDNA may be a 
significant factor in PCOS [18-21].

PCOS is characterized by chronic inflammation. 
Local ovarian inflammation disrupts ovulation 
and contributes to systemic inflammation, 
exacerbated by excess adipose tissue [22]. 
Adiponectin, an anti-inflammatory hormone, is 
reduced in PCOS patients [23-25]. Compared 
to healthy controls, women with PCOS exhibit 
elevated levels of inflammatory markers such 
as C-reactive protein (CRP), tumor necrosis 
factor-α (TNF-α), interleukin (IL-18), interleukin 
(IL-6), Monocyte Chemotactic Protein (MCP-1), 
macrophage inflammatory protein-1α (MIP-1α), 
white blood cell (WBC), and oxidative stress 
markers [26-35]. Recent research highlights 
mitochondrial-derived reactive oxygen species 
(ROS) and chronic inflammation as core patho-
genic factors in PCOS, associated with hyper-
glycemia, anovulation, hyperandrogenism, and 
IR [36, 37]. Understanding mitochondrial func-
tion in the pathogenesis and etiology of PCOS 
will contribute to the development of better 
diagnostic tools and targeted therapy.

Biological properties of mitochondria

Mitochondria are crucial organelles in eukary-
otic cells, comprising the outer membrane, 
inner membrane, and soluble matrix. The inner 
membrane folds inward to form cristae, which 
house the electron transport chain and ATP 
synthase, crucial for energy production through 
oxidative phosphorylation. Besides energy sup-
ply, mitochondria are involved in cellular apop-
tosis, ROS regulation, calcium signaling, and 
other crucial processes [38]. Moreover, mito-
chondria are controlled by both mtDNA and the 
nuclear genome, possessing semi-autonomous 
function and self-replication capacity. mtDNA  
is a double-stranded, closed-circular molecule 
of 16,569 base pairs, comprising coding and 
non-coding regions. The coding region of mt- 
DNA encodes 13 essential polypeptides for ATP 
synthesis, 22 mitochondria transfer RNAs (mt-
tRNAs), and 2 mitochondria ribosomal RNAs 
(mt-rRNAs). The non-coding region, known as 
D-loop, contains the origin of replication and 
transcription promoters for both the heavy and 
light strands of mtDNA, and regulates mtDNA 
replication and transcription. Unlike nuclear 
DNA, mtDNA lacks protective histones and is 
highly susceptible to mutations due to its prox-
imity to ROS [39]. These mutations can impair 
mitochondrial function, leading to cellular ener-
gy deficits and oxidative stress [40]. Defects in 
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mtDNA replication, including mutations, multi-
ple deletions, and CNVs, are indicative of mito-
chondrial functional status. To date, over 200 
pathogenic mutations, deletions, insertions, 
and CNVs have been identified in human mito-
chondria, contributing to various diseases, in- 
cluding those affecting oocyte maturation and 
PCOS. Studies have found that women with 
PCOS diabetes have abnormal mtDNA copy 
number and various types of mutations [41]. 
Aberrant mtDNA has become a central focus in 
PCOS research. Elucidating the patterns of 
mtDNA variation in PCOS is crucial for better 
prevention and treatment.

mtDNA abnormalities and PCOS

Mitochondrial defects are common in PCOS, 
characterized by morphologic alterations, ac- 
cumulation of mtDNA mutation, and metabolic 
dysfunction. These defects contribute to the 
onset and development of PCOS through vari-
ous mechanisms, including abnormal energy 
metabolism, impaired biosynthesis, and oxida-
tive stress, which are reflected in PCOS clinical 
features. Ultrastructural studies have observed 

significant mitochondrial swelling and vacuola-
tion in oocytes, myocytes, and granulosa cells 
of PCOS mice models [20, 42-44]. Mitochond- 
rial damage aggravates PCOS symptoms and 
can affect the offspring through meiotic inhe- 
ritance, possibly contributing to the familial 
aggregation of PCOS and the formation of vari-
ous mtDNA haplogroup clusters. These hap-
logroup clusters exhibit different biochemical 
cellular effects, which may further influence 
susceptibility to PCOS. We focus on the correla-
tion between PCOS and functional disorders 
mediated by mtDNA gene mutations and copy 
number variations (Figure 1).

mtDNA mutations mediate PCOS

mtDNA mutations are implicated in the patho-
genesis of PCOS by affecting protein synthesis, 
respiratory chain function, and IR. A study iden-
tified a significant association between a spe-
cific 9-bp deletion mutation in the mtDNA V 
region and PCOS, suggesting a link to the high 
heterogeneity of PCOS [45]. This finding was 
consistent with previous reports of mtDNA mu- 
tations in PCOS patients, encompassing the 

Figure 1. Mitochondrial DNA copy number variation and gene mutations mediate polycystic ovary syndrome.
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D-loop, 12S mt-rRNA, 16S mt-rRNA, and mt-
tRNA genes, and genes involved in oxidative 
phosphorylation [46]. Pallavi Shukla’s use of 
next-generation sequencing (NGS) revealed 
numerous variants in PCOS patients, particu-
larly within oxidative phosphorylation complex-
es, tRNAs, and rRNAs, supporting a role of 
mitochondrial dysfunction in PCOS [47]. Ding 
discovered that the relative mitochondrial 
count was significantly lower in the PCOS-IR 
group with mutant mt-tRNA compared to the 
control group. Specific mutations, such as mt-
tRNALeu(UUR) C3275T, altered the secondary 
structure of mt-tRNA, resulting in decreased 
mtDNA copy number, reduced mitochondrial 
membrane potential, decreased ATP synthes- 
is, and increased ROS production. Moreover, 
impaired mitochondrial membrane potential 
can further promote ROS production, forming a 
vicious cycle that leads to various clinical phe-
notypes of PCOS [48-50]. These mutations 
result in mitochondrial respiratory dysfunction 
and impaired mitochondrial protein synthesis 
in pancreatic β cells, possibly triggering or 
aggravating IR [41].

In addition to mt-tRNA gene alterations, muta-
tions in the Nicotinamide adenine dinucleotide 
(NADH) dehydrogenase subunit 5 (ND5) gene 
are closely associated with IR in PCOS. Stu- 
dies have identified mutations in ND5 T12338C 
and tRNASer(UCN) C7 492T in mtDNA of PCOS 
patients, which may reduce ND5 messenger 
RNA (mRNA) expression and alter the tertiary 
structure of tRNASer(UCN). These alterations could 
contribute to the development of IR [51]. 
Disruptions in mtDNA translation or transcrip-
tion lead to oxidative stress and impaired ade-
nosine triphosphate (ATP) production through 
oxidative phosphorylation. This mitochondrial 
dysfunction compromises pancreatic β-cell 
function, resulting in decreased insulin secre-
tion. Consequently, insufficient insulin levels 
fail to suppress hepatic glucose production or 
stimulate peripheral glucose uptake, exacer-
bating IR in PCOS. This cascade of events  
represents a critical pathogenic mechanism 
underlying the disorder.

Mitochondrial dysfunction is a hallmark of 
PCOS, primarily attributed to defects in mito-
chondrial biogenesis, including mtDNA muta-
tions and alterations in rRNA, tRNA, and mRNA. 
These aberrations collectively impair mitochon-

drial protein synthesis and function, leading  
to disruptions in the oxidative phosphorylation 
pathway, uncoupling of electron transport and 
ATP generation, and alterations in ATP and ROS 
levels. Consequently, cellular homeostasis is 
disrupted, culminating in IR and a myriad of 
clinical symptoms associated with PCOS.

CNVs of mtDNA mediate PCOS

Mitochondrial function is tightly associated 
with mtDNA copy number, making it a valuable 
indicator for assessing mitochondrial function. 
Each mammalian cell typically contains 1,000-
10,000 copies of mtDNA, with transcription lev-
els largely reflecting mtDNA copy number [52]. 
mtDNA copy number serves as an indicator of 
fertilization potential and oocyte maturation, 
with alterations linked to abnormal follicular 
development and metabolic disorders in PCOS 
patients. Primordial oocytes contain approxi-
mately 500 mtDNA copies, but this number 
increases dramatically to 150,000-700,000 in 
mature MII oocytes, highlighting substantial 
variability among individual oocytes. Optimal 
mtDNA copy number and ATP production are 
essential for successful oocyte maturation  
and embryo development [53-55]. Studies 
have revealed a strong association between 
decreased mtDNA copy number and PCOS, 
with analysis revealing mutations in mt-tRNAs 
and a significant reduction in mtDNA copy num-
ber in PCOS women [41]. Further research by 
Pallavi Shukla confirmed these findings, re- 
porting a significantly lower mean mtDNA copy 
number in PCOS patients compared to controls 
(1.262 ± 0.33 vs. 1.662 ± 0.38, P < 0.0001) 
[47]. Under normal conditions, ROS produced 
during oxidative phosphorylation serve as sig-
naling molecules. However, excessive ROS can 
damage mitochondria including mtDNA, lead-
ing to decreased energy production, impaired 
repair mechanisms, and ultimately, cell death 
[56]. Oxidative stress is widely recognized as a 
critical pathophysiologic mechanism underly- 
ing PCOS [37]. Decreased expression of NADH-
ubiquinone oxidoreductase assembly factor 3 
(NDUFA3), involved in oxidative phosphoryla-
tion, has been observed in PCOS patients, cor-
relating with mtDNA copy number, follicular 
development, and IR [57]. Reduced mtDNA 
copy number leads to mitochondrial dysfunc-
tion due to insufficient mtDNA-encoded gene 
expression, characterized by loss of mitochon-
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drial membrane potential (MMP), increased 
ROS production, and decreased ATP output. 
Moreover, the impaired MMP further promoted 
the generation of excessive cellular ROS, exac-
erbating the vicious cycle [5, 58, 59].

In conclusion, mtDNA alterations play a signifi-
cant role in the pathogenesis of PCOS through 
perturbation of mitochondrial protein synthe-
sis, induction of oxidative stress, and impair-
ment of tissue and organ function. Further 
research is required to clarify the molecular 
mechanisms involved and to develop novel 
therapeutic strategies targeting mtDNA dam-
age and mitochondrial dysfunction in PCOS.

mtRNA as a therapeutic target for PCOS

Mitochondrial dysfunction and its subsequent 
metabolic abnormalities in PCOS impose a dou-
ble burden of physiologic and psychological dis-
tress on women. Due to the unclear pathogen-
esis of PCOS, individualized therapy is often 
based on patient symptoms and anticipated 
responses. Currently, primary treatment op- 
tions for PCOS encompass lifestyle interven-
tions, suppression of excessive androgen se- 
cretion, menstrual regulation, and amelioration 
of metabolic disorders [60]. As a novel thera-
peutic avenue, mitochondrial therapy holds 
promise through targeted approaches (Table 
1), such as: (1) Repair of damaged mtDNA, 
attenuation of oxidative stress, inflammatory 
response, and mtDNA damage-induced cell 
apoptosis; (2) Augmentation of energy metabo-
lism intermediates, ATP synthesis, respiratory 
chain function, and redox balance [61] (Figure 
2).

Antioxidants, such as resveratrol, vitamin C  
and E, and glutathione, are effective in reduc-
ing oxidative damage to mtDNA by enhancing 
cellular antioxidant defenses and mitigating 
ROS-induced mitochondrial injury [62-64]. Vita- 
min D modulated hormone production by down-
regulating steroidogenesis, while simultane-
ously improving ovarian and uterine morpholo-
gy in PCOS models [65-67]. Additionally, it 
enhances the defenses of antioxidants and 
hormone synthesis. Combined with MitoQ or 
probiotics, vitamin D further ameliorates PCOS 
symptoms by reducing inflammation and oxida-
tive stress markers [68]. Coenzyme Q10, an- 
other antioxidant, supports mitochondrial func-
tion and fertility in aged mice [69]. Melatonin 

improved mitochondrial function by optimizing 
mitochondrial distribution, increasing mtDNA 
copy number, and regulating mtDNA transcrip-
tion through the modulation of DNMT1 and 
mtDNA methylation [62, 70, 71]. Inositol also 
benefits mitochondrial health by improving 
metabolism and autophagy [72]. While metfor-
min decreased mtDNA copy number in PCOS 
patients, it also improved oxidative stress [73]. 
Overall, these antioxidants play a crucial role in 
mitigating oxidative stress and supporting mito-
chondrial health, with varying mechanisms and 
benefits depending on the specific compound.

Conventional drugs for mitochondrial diseases 
often face issues with efficacy, solubility, and 
selectivity. Mitochondrial division inhibitors 
(MDIs) like Mdivi1, P110, and Dynasore safe-
guard mitochondrial structure and dynamics 
but struggle with mitochondrial membrane 
delivery [74]. Nanocarrier systems, enhanced 
with targeting moieties such as triphenylphos-
phine (TPP), rhodamine, mitochondrial pene-
trating peptides (MPPs), and specific sequenc-
es, can surmount these barriers. Notably, 
MPP-modified nanoparticles have shown po- 
tential in delivering mtDNA to the mitochondrial 
matrix of cancer cells, thereby reducing mutant 
mtDNA levels and restoring mitochondrial func-
tion [71, 75-77].

Mitochondrial transplantation has promise as a 
therapeutic strategy for PCOS by directly replac-
ing defective mitochondria with healthy ones, 
thereby correcting mtDNA mutations or quanti-
ty errors and restoring ovarian energy metabo-
lism, ovulation, and hormone balance. Animal 
studies have demonstrated that transplanted 
mitochondria can effectively improve mitochon-
drial function and embryo development [72].  
In a small study by Oktay, co-injecting sort- 
ed autologous mitochondria with sperm into 
oocytes by intracytoplasmic sperm injection 
(ICSI) improved fertilization rates (78.3% vs. 
47.9%, P = 0.036) and embryo quality (3.1% vs. 
2.3%, P = 0.082) compared to previous cycles 
[78]. Nonetheless, these findings were prelimi-
nary, and further investigation with larger sam-
ple sizes and standardized protocols is needed 
to fully determine the efficacy of mitochondrial 
transplantation for PCOS.

Mitochondrial gene editing offers a promising 
approach for treating mitochondrial heteroplas-
my, having advantages over conventional thera-
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Table 1. mtRNA-targeted therapies for PCOS
Treatment approach Mechanism of Action Description of Effects
Antioxidants Vitamin D [65-68] Modulate hormone production, enhance antioxidant 

defenses, and improve morphology
Improve ovarian and uterine morphology in PCOS models, 
reduce inflammation and oxidative stress markers

Coenzyme Q10 [69] Support mitochondrial function and fertility Improve mitochondrial function and fertility in aged mice
Melatonin [62, 70, 71] Optimize mitochondrial distribution, increases mtDNA 

copy number, regulates transcription
Enhance mitochondrial function

Inositol [72] Improve metabolism and autophagy Promote mitochondrial health
Metformin [73] Decrease mtDNA copy number, improve oxidative stress Improve oxidative stress in PCOS patients

Nanocarrier Systems [71, 75-77] Enhance delivery of mtDNA using targeting moieties Enhance mtDNA delivery efficiency, improve mitochondrial 
function

Mitochondrial Transplantation [72, 78] Replace defective mitochondria with healthy ones Improve mitochondrial function and embryo development, 
increase fertilization rates and embryo quality

Mitochondrial Gene Editing [79-84] Deliver or repair mtDNA to correct genetic defects Precisely correct mutations, enhance mitochondrial function, 
though challenges remain
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Figure 2. Mitochondrial function restoration as a therapeutic target for polycystic ovary syndrome.

pies in precision and effectiveness. Key strate-
gies include: (1) delivering wild-type mtDNA to 
correct or compensate for genetic defects by 
introducing functional mtDNA copies [79, 80]; 
(2) eliminating heteroplasmic mutant mtDNA 
using gene editing tools to excise mutated 
mtDNA and facilitate the replication of wild-
type mtDNA [81-83]; and (3) directly repairing 
mutated mtDNA with base editing techno- 
logy precisely to correct pathogenic mutations 
without disrupting the mtDNA genome [84]. 
Mitochondria-targeted base editors represent 
powerful tools for research and therapeu- 
tic application. Although clinical mitochondrial 
gene therapy currently focuses on monogenic 
disorders with well-defined genetic causes [85, 
86], the complex and multifaceted nature of 
PCOS, with its various mtDNA mutations and 
unclear etiology, presents challenges for apply-
ing mitochondrial gene editing for its treat- 
ment.

Summary

Mitochondria are crucial organelles in human 
cells and their dysfunction results from mor-
phologic alterations, genetic mutations, decre- 
ased biogenesis, or increased production of 
harmful byproducts. This contributes to oxida-
tive stress and damage, thereby exacerbating 
PCOS. Conversely, PCOS can further aggravate 
mitochondrial dysfunction through various me- 
chanisms, forming a vicious cycle. Preliminary 
research in animal models and human stu- 
dies suggests that restoring mtDNA may offer  
a promising therapeutic approach for PCOS. 
However, further investigation is necessary to 
confirm its safety and efficacy. Screening and 
evaluating biomarkers to predict disease pro-
gression will provide essential evidence for 

developing targeted precision therapies aimed 
at mitochondria.
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