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Abstract: The intestinal microbiota is vast in type and quantity and it plays a critical role in regulating various physi-
ological functions in the host, including intestinal function, immune response and energy metabolism. Existing re-
search shows that intestinal flora is associated with various hormones, cell cycles and ovarian function-related dis-
eases in the female ovaries. Certain microorganisms within the intestinal flora can modulate the levels of hormones 
secreted by the ovary, such as estrogen and androgens. Furthermore, an imbalance in the gut microbiota can result 
in altered hormone levels in the host, potentially leading to related diseases. Studies have found that a variety of 
ovarian function-related diseases are closely related to intestinal flora, such as polycystic ovary syndrome (PCOS), 
ovarian insufficiency (POI), endometriosis (EMS) and ovarian cancer. Importantly, ovarian function-related diseases 
are notably difficult to diagnose early and often require prolonged treatment for effective management. The micro-
biota and its metabolites in patients with ovarian function-related diseases and cancers can serve as valuable bio-
markers for early diagnosis, offering novel strategies for disease screening, treatment stratification, and prognosis.

Keywords: Intestinal flora, estrogen, polycystic ovary syndrome, premature ovarian insufficiency, endometriosis, 
ovarian tumors

Introduction

The ovary is one of the crucial organs within  
the female reproductive system and it has 
reproductive and endocrine functions [1]. Nor- 
mal ovarian function has been proven to be 
closely related to women’s health, and ovarian 
dysfunction can cause a variety of diseases, 
such as PCOS (polycystic ovary syndrome),  
POI (premature ovarian insufficiency), infer- 
tility, osteoporosis and cardiovascular prob-
lems [2-4]. PCOS is the most common ovarian 
dysfunction which can affect 8-13% of women 
of childbearing age worldwide with 70% of 
cases remaining undiagnosed [5]. Diseases 
related to ovarian dysfunction are high-risk fac-
tors for humans that suffer from diabetes, 
endometrial cancer, cardiovascular and cere-
brovascular diseases [6, 7] and they seriously 

harm human health. The pathogenesis of dis-
eases related to ovarian dysfunction is complex 
and it is affected by a variety of factors, such as 
genetics, inflammation, intestinal flora, endo-
crine hormones and environmental factors [8, 
9]. In recent years, with the study of intestinal 
flora attracting extensive attention, some re- 
searchers began to pay attention to the effect 
of intestinal flora on ovarian function [10], espe-
cially the role of intestinal flora in ovarian func-
tion-related diseases.

Intestinal flora is the community of microorgan-
isms present in the human intestine, including 
bacteria, fungi, viruses and other microorgan-
isms [11]. The intestinal flora coexists with the 
human body and forms a complex and huge 
ecosystem. Intestinal flora plays an extremely 
important role in the growth and development 
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of the human body, participating in nutrient 
supply, metabolic regulation, immune regula-
tion and other physiological processes [12-14] 
(Figure 1). Specific bacterial communities in 
the intestine can participate in the metabolism 
of estrogen through the microbial-intestinal-
ovarian axis which can affect the hormone 
expression level and function of the ovaries 
[15]. Research has shown that women’s ex- 
posure to zearalenone significantly alters the 
intestinal flora of their offspring which can lead 
to changes in Bacteroidetes, Proteobacteria, 
and Firmicutes [16]. These changes cause ad- 
justments in glutathione metabolism and anti-
oxidant enzyme activity in the ovaries that in 
turn affects the development of oocytes in the 
offspring.

The intestinal flora is vital for the maturation 
and fertilization of female follicles and oocytes, 
as well as for embryo migration and implanta-
tion. At present, research on ovarian function 
mainly focuses on the biological functions of 
the ovary and various ovary-related diseases, 
some studies have shown that intestinal flora 
were closely related to patients’ metabolic indi-
cators compared with healthy controls [17], 
such as insulin resistance and body weight. 
Intestinal flora plays a crucial role in the occur-
rence and regression of female reproductive 
endocrine diseases such as PCOS and prema-

ture ovarian insufficiency (POI) [2]. Intestinal 
flora can interact with a variety of hormones 
and plays an important role in the female repro-
ductive endocrine system, such as estrogen, 
androgens, and insulin [18]. A study on intesti-
nal flora found that Clostridium can transform 
glucocorticoids to androgens [19]. Therefore, it 
is imperative to conduct in-depth research on 
the relationship between ovarian function and 
intestinal flora.

The impact of intestinal flora on hormonal 
regulation and ovarian function

Intestinal flora and estrogen

Estrogen is a crucial hormone in the human 
body and is involved in various vital physiologi-
cal functions, such as cell proliferation and 
death, lipid metabolism, energy balance, glu-
cose metabolism, immune and cardiovascular 
regulation, gametogenesis, reproduction and 
bone growth [20-22]. Research indicates that 
intestinal flora is influenced by estrogen and 
can also regulate estrogen levels through en- 
terohepatic circulation [19]. Some intestinal 
flora can secrete β-glucuronidase which is an 
enzyme that converts estrogen into its active 
form and allows it to bind to estrogen recep-
tors. Imbalances in intestinal flora can alter 
β-glucuronidase levels that can lead to an 

Figure 1. Function of intestinal flora.
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excess or deficiency of free estrogen and poten-
tially causing estrogen-related diseases [23]. A 
reduced diversity of gut flora can decrease 
β-glucuronidase activity which can lower estro-
gen levels and contributing to conditions like 
obesity, metabolic syndrome, cardiovascular 
disease, and cognitive decline [24]. Conversely, 
an increased presence of β-glucuronidase-
secreting bacteria can raise estrogen levels 
that possibly trigger endometriosis (EMS) and 
cancer [25, 26]. Studies have also found that 
specific gut bacteria, such as Clostridium, 
Ruminococcus, Bacteroides and Staphyloco- 
ccus are correlated with varying levels of es- 
trogen and its metabolites in the body [27]. 
Additionally, the liver produces conjugated 
estrogens that intestinal bacterial enzymes 
convert into their active forms which influence 
overall estrogen levels and their physiological 
effects.

A study on the E2 (estradiol) hormone in women 
found that those with elevated E2 levels had 
significantly increased diversity in their intesti-
nal flora, specifically in species like Slackia and 
Butyricimonas [28]. In men and postmeno-
pausal women, urinary estrogen levels strongly 
correlate with gut microbiota richness and 
α-diversity, with intestinal flora diversity being 
positively associated with the proportion of  
urinary estrogen metabolites [29]. Previous 
research has established a link between estro-
gen and the development of various cancers, 
including endometrial, ovarian, prostate, and 
breast cancer [30]. A recent investigation on 
breast cancer highlighted estrogen’s ability to 
induce DNA double-strand breaks in the estro-
gen receptor binding region, which can con- 
tribute to breast cancer development [30]. 
Furthermore, some intestinal flora plays a key 
role in the onset and progression of these  
cancers. A study examining the intestinal flora 
of adenocarcinoma patients found increased 
diversity and quantity of microorganisms such 
as Rikenellaceae, Alistipes, and Lachnospira 
compared to healthy individuals [31].

Intestinal flora and androgens

Androgen levels are one of the basic prerequi-
sites for healthy women [32]. Androgen defi-
ciency may cause individuals to experience 
symptoms of sexual dysfunction, such as de- 
creased sexual desire, loss of sexual response, 

or weakened sexual arousal [33]. Women with 
POI not only lack estrogen but may also have 
reduced ovarian androgens due to ovarian  
cortical atrophy [9]. Studies have found that 
Clostridium can synthesize androgens using 
glucocorticoids as raw materials [34]. Some 
bacteria can also produce 5α reductase to con-
vert testosterone into more active dihydrotes-
tosterone [35]. Some intestinal flora regulates 
androgen levels through Deglucuronidation to 
release free dihydrotestosterone from the gluc-
uronide conjugate [36]. Androgen levels can be 
affected by intestinal flora, and androgens in 
the host can also affect the composition of 
intestinal flora.

Hyperandrogenism (HA) is a key feature of 
PCOS that can lead to symptoms like acne, hir-
sutism and androgenic alopecia [37]. Various 
intestinal floras can produce enzymes involved 
in androgen metabolism, potentially affecting 
androgen levels in the body, while serum an- 
drogen levels can also impact gut flora compo-
sition. There is a strong link between gut micro-
biota and HA. Studies in patients with POI show 
that an increase in Campylobacter, Desulfo- 
bacteria, and Bacteroidetes can raise testos-
terone levels, while more Proteobacteria, Chlo- 
roflexi, and Actinobacteria can lower them [38]. 
Androgens, such as testosterone, support early 
follicular development and help improve ovari-
an reserves in women with reduced ovarian 
function [39]. Low testosterone levels have 
been linked to the development of EMS and POI 
[40]. Research also indicates that gut microbio-
ta composition strongly correlates with circu- 
lating gonadal steroid levels, especially testos-
terone. For example, excessive prenatal testos-
terone injections in female rats led to reduc- 
ed abundance of Akkermansia, Bacteroidetes, 
Lactobacilli, and Clostridium in their offspring, 
indicating an interaction between androgens 
and intestinal flora [41].

Intestinal flora and the hypothalamus-pituitary-
ovarian (HPO) axis

Communication between intestinal flora and 
the brain forms a physiological network known 
as the “gut-brain” axis, involving the central 
nervous system (CNS), enteric nervous system 
(ENS), endocrine and immune systems [42] 
(Figure 2). This axis is closely linked to the neu-
roendocrine regulation of the hypothalamus-
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pituitary-ovarian (HPO) axis which is part of the 
hypothalamus-pituitary-gonadal (HPG) system 
[43]. The pituitary gland, located at the brain’s 
base, receives signals from the hypothalamus 
via gonadotropin-releasing hormone (GnRH) to 
secrete luteinizing hormone (LH) and follicle-
stimulating hormone (FSH). FSH stimulates  
follicle maturation in the ovaries, leading to 
estrogen production, which then inhibits FSH 
secretion and triggers LH secretion. High LH 
levels ultimately lead to ovulation. Increasing 
evidence suggests that intestinal flora commu-
nicates with the CNS through the “gut-brain” 
axis, potentially influencing the HPO axis by 
modulating neurotransmitter synthesis and 
release [44].

Key neurotransmitters such as γ-aminobutyric 
acid (GABA), 5-hydroxytryptamine (5-HT) and 
dopamine (DA) can impact ovarian function 
through neural pathways [45]. Intestinal bacte-
ria like Streptococcus, Enterococcus, Esche- 
richia, Bifidobacterium, and Bacillus can syn-
thesize 5-HT, which regulates gonadotropin 
secretion by affecting GnRH neuron activity 
[46]. 5-HT is involved in ovarian hormone pro-

duction, follicle maturation, and ovulation [47]. 
Additionally, 5-HT can induce germ cell pro- 
duction and initiate egg maturation. Bacillus, 
Lactobacillus, and Streptococcus can synthe-
size DA in vitro, and Enterococcus faecalis 
expresses enzymes involved in DA biosynthesis 
[48, 49]. Bacteroidetes and Escherichia pro-
duce GABA which can influences GnRH neurons 
and reproductive function [50]. Excessive GABA 
production by gut flora can interfere with KNDy 
(Kisspeptin Neurokinin B Dynorphin) neurons 
which can affect GnRH secretion, fertility, sex 
hormone levels and menstrual cycles [51].

Diseases related to intestinal flora and ovar-
ian function

The human intestinal flora is primarily com-
posed of three types: probiotics, neutral bacte-
ria, and pathogenic bacteria [52]. Probiotics 
that mainly obligate anaerobic bacteria like 
Bacteroides, Eurobacterium, and Bifidobacte- 
rium play key roles in regulating intestinal flora, 
intestinal function and immune response, pre-
venting intestinal infection, increasing mineral 
absorption and promoting bone health, regulat-

Figure 2. Gut-microbiota-brain axis and hypothalamus-pituitary-ovarian (HPO) axis.
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ing energy metabolism, maintaining weight and 
reducing obesity [52-54].

However, an imbalance in gut flora decreases 
the expression of ZO-1 (zonula occludens-1) 
and occludin in the intestinal mucosa, leading 
to increased intestinal permeability [55]. This 
increased permeability allows particles, bacte-
ria and toxins to enter the bloodstream, poten-
tially triggering chronic inflammation, insulin 
resistance (IR), and hyperandrogenism (HA) 
[56, 57]. Short-chain fatty acids (SCFAs) that 
are key metabolites produced by intestinal flora 
are crucial for energy supply, immune regula-
tion, intestinal mucosal protection and appetite 
control [58]. Research indicates that imbalanc-
es in intestinal flora contribute to various dis-
eases, including autoimmune disorders, neuro-
degenerative conditions, cancer and ovarian 
function-related diseases [59, 60]. Recent 
studies have focused on the connection bet- 
ween gut flora and ovarian function disorders 
like PCOS [61], POI [62] and EMS [63] (Figure 3; 
Table 1).

PCOS and intestinal flora

PCOS is the most common endocrine disor- 
der with diverse clinical manifestations [2]. 
Menstrual disorders, enlarged and polycystic 

ovaries, HA, IR, hirsutism, oligomenorrhea and 
no ovulation are the main clinical features of 
PCOS [64]. A low-grade chronic inflammatory 
response is a key factor in follicle develop- 
ment disorders, with inflammatory markers like 
tumor necrosis factor-α (TNF-α) and interleu-
kin-6 (IL-6) playing a role [65]. Patients with 
PCOS experience persistent low-grade inflam-
mation which contributes to both its pathology 
and associated metabolic disorders. Diamine 
oxidase (DAO) is a highly active enzyme in  
the intestinal mucosa, and lipopolysaccharide 
(LPS) is a bacterial metabolite [66]. In healthy 
individuals, LPS levels remain relatively low, 
and both DAO and LPS are used clinically to 
assess intestinal barrier function [67]. In PCOS 
patients, serum DAO levels are significantly 
elevated, particularly in those with obesity-
related intestinal flora imbalance. This imbal-
ance can lead to the overexpression of zonulin, 
increasing intestinal permeability [68]. Higher 
permeability allows LPS to enter the blood-
stream, binding to receptors and triggering a 
chronic inflammatory response that can exac-
erbate PCOS [69].

Studies have found a link between specific 
intestinal flora and PCOS. Beneficial bacteria 
like Bifidobacterium, Blautia, and Holdemania 

Figure 3. Molecular mechanism of diseases related to intestinal flora and ovarian function.
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Table 1. Changes in intestinal flora content in the host and diseases related to ovarian function

Disease Species
Intestinal flora
Increase Descend

PCOS Human Bacteroides Escherichia coli
Mouse Firmicutes Bacteroidetes

POI Human Firmicutes, Brucella, Faecalis Bacillus, Bacteroides
Mouse Akkermansia, Bacteroidetes, Lactobacilli, Clostridium

EMS Human Leptothrix, Pasteurella, Gardnerella
Mouse Actinobacillus, Firmicutes, Bifidobacteria, Burkella

are linked to a reduced risk, while an increased 
abundance of Lachnospiraceae correlates with 
adverse PCOS outcomes [70]. PCOS patients 
show decreased alpha diversity in intestinal 
flora with notable shifts in microbial abun-
dance. Alterations in beta diversity can also 
impact intestinal barrier function and inflam-
mation, such as by increasing the relative ab- 
undance of Porphyromonas which can affect 
intestinal permeability [71]. In individuals with 
PCOS, especially those exhibiting insulin resis-
tance, the diminished abundance of beneficial 
bacteria such as Prevotella correlates with dis-
ruptions in sex hormone balance and increased 
inflammatory responses [72]. This imbalance 
of intestinal flora impairs intestinal barrier func-
tion and exacerbates PCOS symptoms.

IR is a key clinical feature of PCOS, and abnor-
mal glucose and lipid metabolism are common 
in these patients [73]. Studies suggest that 
intestinal flora imbalance may contribute to IR 
and compensatory hyperinsulinemia in PCOS, 
with Actinobacteria showing a strong correla-
tion with the insulin resistance index (HOMA-IR) 
[74, 75]. Patients with IR exhibit a more signifi-
cant reduction in intestinal flora diversity, an 
increase in Bacteroidetes, and a notable de- 
crease in Firmicutes [76]. Certain bacterial 
groups are closely related to blood lipids, glu-
cose levels, endocrine and metabolic disor-
ders, potentially playing a role in alleviating 
PCOS symptoms, such as Proteobacteria, Ac- 
tinobacteria and Chloroflexi [77].

HA is a core pathological feature of PCOS, 
where excessive androgens disrupt follicle 
development that can lead to anovulation or 
infrequent ovulation [78]. Some studies have 
found that as the diversity of intestinal flora 
decreases, the balance of intestinal commen-
sal bacteria is disrupted which may lead to cor-
responding changes in the abundance of some 

intestinal flora related to testosterone and met-
abolic disease markers [79]. In HA conditions, 
PCOS patients often exhibit gut flora imbalanc-
es. In a study using 5α-dihydrotestosterone 
(5α-DHT) to establish a PCOS rat model, both 
regular and high-fat diet groups demonstrated 
increased androgen levels and changes in ovar-
ian morphology [80]. Compared to controls, 
these rats showed dysregulated gut flora, ele-
vated inflammatory markers, and higher HOMA-
IR than healthy rats. These findings suggest 
that gut flora imbalance and HA may interact in 
a vicious cycle, exacerbating the clinical symp-
toms of PCOS.

POI and intestinal flora

Primary ovarian insufficiency (POI) is character-
ized by the decline of ovarian function in wo- 
men under the age of 40 and is often accompa-
nied by hypergonadotropic amenorrhea result-
ing from estrogen deficiency [9]. Research on 
the gut microbiome in POI patients has reveal- 
ed alterations in the microbial spectrum, in- 
cluding a decrease in Firmicutes, Brucella, and 
Fecalobacteria, alongside an increase in Ba- 
cteroidetes compared to healthy individuals 
[81]. Additionally, POI patients exhibited sig- 
nificantly reduced estradiol levels. Correlation 
analysis indicated associations between cer-
tain intestinal flora and serum levels of estra-
diol, FSH, luteinizing hormone, and anti-Mülleri-
an hormone. POI patients not only lack estro- 
gen but may also experience reduced ovarian 
androgens due to cortical atrophy. A meta-anal-
ysis further demonstrated that women with POI 
are at risk of lower concentrations of total tes-
tosterone, dehydroepiandrosterone sulfate and 
androstenedione [82].

The pathogenesis of POI is complex, but analy-
ses have found that 10% to 55% of POI pa- 
tients also suffer from autoimmune diseases 
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[83]. Among POI cases, 4% to 30% may develop 
autoimmune conditions, such as autoimmune 
thyroiditis, type 1 diabetes, Addison’s disease, 
and systemic lupus erythematosus [83-85]. 
The intestinal flora plays a key role in autoim-
mune processes, including immune system 
regulation, immune cell development, anti-in- 
flammatory effects, intestinal barrier function 
and immune tolerance modulation [86]. Au- 
toimmune diseases in POI patients are related 
to the regulation of cytokines such as Treg, IFN-
γ, and Th17 [87]. Short-chain fatty acids (SCFAs) 
produced by gut flora promote the expression 
and differentiation of Treg cells, facilitating 
anti-inflammatory responses that regulate im- 
mune function [88]. Notably, POI patients ex- 
hibit a significant increase in Treg cells after 
treatment, indicating changes in their immuno-
modulatory effects [89].

EMS and intestinal flora

EMS is a chronic estrogen-dependent disease 
caused by the retrograde entry of shed endo-
metrial tissue into the lower abdominal cavity 
[90], and its incidence tends to be younger and 
rising [91]. The abnormal endocrine microenvi-
ronment of EMS lesions is considered to be its 
main feature [92]. Estrogen directly promotes 
anti-apoptotic and proliferative effects in EMS 
lesions, contributing to a pro-inflammatory 
environment [93]. Increased estrogen synthe-
sis is linked to various enzymatic pathways, 
and intestinal flora can regulate estrogen levels 
through the secretion of β-glucuronidase [94]. 
Intestinal flora imbalance can lead to increas- 
ed β-glucuronidase activity which can lead to 
increased estrogen levels. This rise in estrogen 
triggers the invasive growth of ectopic endo- 
metrial tissue, accelerating the proliferation of 
endometriotic lesions. Intestinal flora can also 
regulate estrogen levels by producing SCFA 
[95]. Butyrate is one of the more abundant 
SCFAs, and butyrate can regulate the synthesis 
of progesterone and E2 in primordial germ cells 
(PGCs) through the cAMP signaling pathway to 
promote the synthesis of estrogen. In vitro 
studies indicate that low concentrations of 
butyric acid stimulate progesterone secretion 
in PGCs, whereas higher concentrations signifi-
cantly inhibit progesterone production [96].

The abnormal inflammatory microenvironment 
accelerates the colonization and invasion of 

ectopic endometrial tissue [92]. Normally, the 
intestinal flora maintains epithelial integrity, 
offering protection against bacterial invasion 
while exhibiting complex antibacterial and im- 
munomodulatory functions. However, an imbal-
ance in the intestinal flora can lead to the pro-
duction of endotoxins like lipopolysaccharides 
(LPS) by Gram-negative bacteria [66]. LPS pro-
motes the expression of adhesion molecules 
between the endometrium and pelvic peritone-
al cells, facilitating ectopic endometrial adhe-
sion and invasion. Dysbiosis in EMS patients 
can further trigger an inflammatory response, 
increasing the number of peritoneal macro-
phages [97]. These macrophages secrete large 
amounts of TGF-β that can promote the secre-
tion of extracellular matrix proteins like fibro-
nectin and collagen [98]. Additionally, an im- 
balance in the intestinal flora in EMS patients  
is associated with a significant increase in 
Streptococcus bovis, which releases toxic pro-
teins with pro-inflammatory effects [99]. The 
persistent inflammation caused by the shed-
ding of endometrial tissue disrupts the diver- 
sity of the gut microbiota and impairs intestinal 
barrier function. This disturbance creates a 
vicious cycle that contributes to disease pro-
gression and exacerbates gut dysbiosis.

The reflux of endometrial tissue into the abdom-
inal cavity as foreign matter in healthy women 
triggers a response from immune cells in the 
peritoneal fluid [100]. This immune response 
clears up endometrial tissue or cells that ca- 
use reflux of menstrual blood. However, EMS 
patients have immune tolerance and refluxed 
EMS tissues or cells can escape immune clear-
ance [101]. The escaped EMS tissue or cells 
can grow and develop into ectopic lesions in 
the pelvis or abdomen. Studies have found that 
a large number of bacterial endotoxins caused 
by intestinal flora disorders continue to stimu-
late and activate immune signaling-related 
pathways that leads to the overexpression of 
PD-1 and PD-L1 [102]. This induces immune T 
cell exhaustion and contributes to the occur-
rence and development of EMS.

Ovarian tumors and intestinal flora

Ovarian tumors are the most common gyneco-
logical tumors in women and the leading ca- 
use of gynecological cancer deaths worldwide 
[103]. The embryonic development and compo-
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sition of ovarian tissue is complex that can 
result in many histological types, more than 30 
[104]. Patients with ovarian tumors often exhib-
it heightened sensitivity to changes in the intes-
tinal flora and may present with gastrointesti-
nal symptoms in the early stages of the disease, 
such as abdominal pain, bloating, indigestion, 
constipation and early satiety [105, 106].

LPS, lysophospholipids and tryptophan are all 
related products of intestinal flora metabolism, 
and these substances play a key role in the 
development of ovarian cancer [107, 108].  
LPS can stimulate Toll-like receptor 2 (TLR2), 
TLR4 and TLR5, activate phosphatidylinositol 
3-kinase (PI3K) signaling, matrix metallopro-
teinases (MMP)-related family expression and 
tumor-associated macrophages and induce 
epithelial-mesenchymal transition (EMT) [109]. 
Lysophosphatidylserine and lysophosphatidyl-
serine have been shown to induce protein 
kinase B (Akt), mitogen-activated protein 
kinase (MAPK) and Ca2+ signaling [110] which 
can upregulate the expression of angiogenes- 
is and induce the proliferation, migration and 
invasion of ovarian cancer cells. Tryptophan as 
an energy source can support the growth of 
Lactobacillus, inhibit the expansion of patho-
genic bacteria, regulate mucosal immunity by 
activating aryl hydrocarbon receptor (AHR) and 
pregnane X receptor (PXR) [111].

A study found that after using antibiotics to 
deplete the intestinal flora of human ovarian 
adenocarcinoma cell SKOV-3 cells in nude mice 
[112], the growth rate of ovarian cancer tumors 
was significantly accelerated which confirmed 
that dysbiosis of the intestinal microbiota pro-
motes the progression of ovarian cancer. In 
addition, a study conducted high-throughput 
sequencing of 16S ribosomal ribonucleic acid 
(16SrRNA) on the peritoneal fluid of 10 pa- 
tients with ovarian cancer and 20 patients with 
benign ovarian tumors and found that the peri-
toneal fluid of ovarian cancer patients was rich 
in gram-negative bacteria derived from the 
intestinal tract, and 18 microorganisms were 
identified as new markers for ovarian cancer 
[113].

Intestinal flora treats ovarian function-related 
diseases

Probiotics are active microorganisms that pro-
vide health benefits to the host, primarily 

including beneficial bacteria such as Lactobacilli 
and Bifidobacteria [114]. They are involved in 
various physiological processes in the human 
body, including maintaining intestinal flora bal-
ance, regulating the immune system, prevent-
ing and treating antibiotic-induced dysbiosis, 
exhibiting anti-inflammatory effects, and con-
tributing to energy metabolism and weight ma- 
nagement [115, 116]. Probiotics have been 
extensively studied and are widely used to treat 
a range of health conditions, particularly those 
related to intestinal health, immune system 
regulation, diarrhea, digestive issues, allergic 
diseases, metabolic disorders, and psychiatric 
conditions [114, 117]. The intestinal flora is 
known to be associated with several ovarian 
function-related diseases, such as polycystic 
ovary syndrome (PCOS), premature ovarian 
insufficiency (POI), and endometriosis (EMS), 
playing a significant role in the onset and pro-
gression of these conditions.

Ovarian function-related diseases are often dif-
ficult to diagnose in their early stages [118]. 
Most of these diseases are chronic diseases 
with long treatment and follow-up management 
cycles, making them difficult to treat with con-
ventional treatments [119]. A study on the 
effects of probiotics in patients with PCOS 
found that after 12 weeks of supplementation, 
there was a significant decrease in both body 
weight and body mass index, along with nota-
ble reductions in blood sugar and lipid levels 
[120]. Probiotics can influence the host’s ener-
gy balance and metabolism by modulating the 
composition and quantity of the intestinal flora 
that can reduce body weight and BMI [121]. 
Given that PCOS patients are prone to insulin 
resistance and metabolic dysfunction, some 
research suggests that probiotic supplementa-
tion may also reduce insulin resistance in indi-
viduals with type II diabetes [122]. Studies 
using mouse models have found that probiotic 
supplementation can improve intestinal perme-
ability, reduce plasma endotoxin levels, allevi-
ate inflammation and decrease insulin resis-
tance [122, 123]. The imbalance of intestinal 
flora in POI patients is one of the main charac-
teristics. In a study of guinea pigs, pretreating 
them with probiotics restored beneficial bacte-
rial species, butyric acid production, and defe-
cation [124]. The combination of gut microbiota 
and probiotics can influence glucose metabo-
lism through immune system modulation and 
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treat related diseases [125], through reduction 
of lipopolysaccharides and inflammation-caus-
ing bacterial endotoxins.

From 0% to 80% of patients with advanced 
ovarian cancer relapse within 2 years and 
develop chemotherapy resistance. Some stud-
ies have found that gut microbiota has a two-
way effect in tumor chemotherapy and target- 
ed therapy [126]. Microorganisms can mediate 
chemotherapy resistance and enhance anti-
tumor activity. Studies have found that multi-
drug resistance proteins involved in paclitaxel 
resistance are downregulated upon TLR4 inac-
tivation, further supporting the potential impact 
of the microbiota on chemotherapy resistance 
in ovarian cancer [127]. The microbiota affects 
the efficacy of commonly used drugs for ovari-
an cancer and has great potential to enhance 
immunotherapy responses.

Currently, fecal transplantation and probiotic 
supplementation are commonly used in the 
treatment of non-malignant diseases [128]. 
Research has found that changing the micro- 
biota structure is expected to alleviate the 
adverse reactions of chemotherapy for ovarian 
cancer and provide new opportunities for its 
treatment [129]. In the treatment of platinum 
and anti-PD-1 monoclonal antibodies, combin-
ing probiotics can significantly improve the effi-
cacy of ovarian cancer therapy [130]. Moreover, 
supplementation with Ackermannia or implan-
tation of donor fecal bacteria with good drug 
response can reverse resistance to PD-1 thera-
py [131]. Antibiotics may have potential in treat-
ing ovarian cancer, but studies have been 
inconsistent in their conclusions. Chloram- 
phenicol, salinomycin, and cisplatin were used 
in combination to inhibit tumor growth [132]. 
While combined treatment with ampicillin, van-
comycin, neomycin and metronidazole promot-
ed the growth and invasion of transplanted 
tumors in nude mice [133].

Conclusion

The ovaries are vital organs in the female repro-
ductive system which can play a crucial role in 
maintaining overall health. This study focuses 
on the relationship between ovarian function-
related diseases and intestinal flora in women 
with PCOS, POI and EMS. The findings sug- 
gest that an imbalance in intestinal flora can 
increase intestinal permeability, contributing to 

low-grade chronic inflammation, IR and HA. 
Imbalance of intestinal flora can affect the lev-
els of estrogen and androgen that can promote 
the occurrence and development of PCOS, POI 
and EMS diseases. In ovarian cancer, the mi- 
crobiota can also impact disease onset, pro-
gression and treatment response. While some 
studies have demonstrated that probiotics can 
be beneficial in treating ovarian function-relat-
ed diseases, further research is needed to elu-
cidate the specific mechanisms by which probi-
otics act in different conditions and to identify 
the most effective strains and treatment regi-
mens. This study delves into the molecular 
mechanisms linking intestinal flora to ovarian 
function, highlighting that gut imbalance could 
be a contributing factor in these diseases. 
Additionally, the potential benefits of probiotics 
in treating ovarian function-related conditions 
and cancer offer a promising direction for future 
clinical applications.
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