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Abstract: Background: Liver Hepatocellular Carcinoma (LIHC) is a prevalent and aggressive liver cancer with limited 
therapeutic options. Identifying key genes involved in LIHC can enhance our understanding of its molecular mecha-
nisms and aid in the development of targeted therapies. This study aims to identify differentially expressed genes 
(DEGs) and key hub genes in LIHC using bioinformatics approaches and experimental validation. Method: We ana-
lyzed two LIHC-related datasets, GSE84598 and GSE19665, from the Gene Expression Omnibus (GEO) database 
to identify DEGs. Differential expression analysis was performed using the limma package in R to identify DEGs 
between cancerous and non-cancerous liver tissues. A Protein-Protein Interaction (PPI) network was constructed 
using STRING to determine key hub genes. Further validation of these hub genes was conducted through UALCAN, 
OncoDB, and the Human Protein Atlas (HPA) databases for mRNA and protein expression levels. Promoter methyla-
tion and mutational analyses were performed using cBioPortal. Kaplan-Meier survival analysis assessed the impact 
of hub gene expression on patient survival. Correlations with immune cell abundance and drug sensitivity were 
explored using GSCA. Finally, AURKA was knocked down in HepG2 cells, and cell proliferation, colony formation, and 
wound healing assays were performed. Results: Analysis identified 180 DEGs, with four key hub genes, including 
AURKA, BUB1B, CCNA2, and PTTG1 showing significant overexpression and hypomethylation in LIHC tissues. AUR-
KA knockdown in HepG2 cells led to decreased cell proliferation, reduced colony formation, and impaired wound 
healing, confirming its role in LIHC progression. These hub genes were also hypomethylated and their elevated 
expression correlated with poor overall survival. Conclusion: AURKA, BUB1B, CCNA2, and PTTG1 are crucial for LIHC 
pathogenesis and may serve as potential biomarkers or therapeutic targets. Our findings provide new insights into 
LIHC mechanisms and suggest promising avenues for future research and therapeutic development.
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Introduction

Liver hepatocellular carcinoma (LIHC) is the 
most prevalent form of primary liver cancer, 
and it remains a major global health challenge 
[1, 2]. As of 2023, LIHC accounts for approxi-
mately 905,000 new cases and 830,000 

deaths annually, making it one of the leading 
causes of cancer-related mortality worldwide 
[3]. The high mortality rate associated with 
LIHC is largely due to the aggressive nature of 
the disease, late-stage diagnosis, and limited 
effective therapeutic options [1, 4]. Under- 
standing the molecular mechanisms underlying 
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LIHC is critical for improving early detection and 
developing more effective treatments. LIHC 
typically develops in the context of chronic liver 
disease, with several key risk factors contribut-
ing to its onset [5, 6]. Chronic hepatitis B virus 
(HBV) and hepatitis C virus (HCV) infections are 
the leading causes of LIHC, accounting for 
approximately 80% of cases worldwide [7, 8]. 
These infections lead to chronic liver inflamma-
tion, fibrosis, and eventually cirrhosis, creating 
a conducive environment for malignant trans-
formation [9]. In addition to viral hepatitis, other 
significant risk factors include excessive alco-
hol consumption, non-alcoholic fatty liver dis-
ease (NAFLD), and exposure to aflatoxins, whi- 
ch are toxic compounds produced by certain 
molds in food [10].

Over the years, extensive research has focused 
on identifying biomarkers that could serve as 
diagnostic, prognostic, or therapeutic targets in 
LIHC. Several biomarkers have been reported, 
including alpha-fetoprotein (AFP), which is com-
monly used for LIHC diagnosis, though its sen-
sitivity and specificity are suboptimal [11, 12]. 
Other biomarkers such as glypican-3 (GPC3), 
osteopontin (OPN), and des-gamma-carboxy 
prothrombin (DCP) have shown promise in im- 
proving diagnostic accuracy [13]. Additionally, 
molecular markers like telomerase reverse 
transcriptase (TERT) mutations, and altera-
tions in tumor suppressor genes such as TP53, 
have been linked to LIHC progression and prog-
nosis [14].

Despite these advances, the heterogeneity of 
LIHC at the molecular level poses challenges in 
identifying universally applicable biomarkers. 
This has led to an increasing interest in utilizing 
gene expression profiling to discover novel bio-
markers and potential therapeutic targets. 
High-throughput datasets, including GSE55092 
[15] and GSE47197 [16] have been pivotal in 
this regard, offering insights into the differen-
tially expressed genes (DEGs) associated with 
LIHC.

In our study, we conducted a thorough analysis 
of the GSE55092 and GSE47197 datasets to 
identify hub genes that play central roles in the 
molecular networks of LIHC. These hub genes, 
due to their critical positions within gene inter-
action networks, are hypothesized to be key 
drivers of LIHC pathogenesis. To validate their 
functional relevance, we performed a series of 

in vitro experiments, aiming to confirm their ro- 
les as potential biomarkers or therapeutic tar-
gets. This integrated approach not only enhanc-
es our understanding of LIHC but also contrib-
utes to the ongoing efforts to identify more 
effective strategies for early detection and 
treatment of this devastating disease.

Methodology

Dataset acquisition, differentially expressed 
genes (DEGs), and hub genes identification

Two datasets related to LIHC, including GSE- 
84598 and GSE19665 were obtained from the 
Gene Expression Omnibus (GEO) database 
[17]. These datasets were selected based on 
their comprehensive expression profiles. The 
raw data from GSE84598 and GSE19665 were 
preprocessed for quality control and normaliza-
tion. The preprocessing steps included the 
removal of low-quality probes and normaliza-
tion using the RMA algorithm, ensuring that the 
data were suitable for downstream differential 
expression analysis. Differential expression an- 
alysis was performed on the processed datas-
ets to identify DEGs between cancerous and 
non-cancerous liver tissues. The analysis was 
conducted using the limma package in R, where 
a p-value < 0.05 and |log2 fold change| > 1 
were set as the criteria for significant differen-
tial expression. The DEGs identified in each 
dataset were then compared to identify com-
mon DEGs across the two datasets using Venn 
analysis [18]. The common DEGs identified 
from GSE84598 and GSE19665 were further 
analyzed to construct a Protein-Protein Inter- 
action (PPI) network using STRING database 
[19]. The interaction data were obtained from 
the STRING database, with a confidence score 
> 0.7 considered for significant interactions. 
The PPI network was visualized using Cytoscape 
software (version 3.10.2). Hub genes within the 
PPI network were identified using the degree 
method [20] using Cytoscape. Top nodes with a 
high degree of connectivity were considered as 
hub genes, indicating their potential central 
role in the network and possible significance in 
LIHC pathology.

Expression analysis of the hub genes in LIHC 
using data from The Cancer Genome Atlas 
(TCGA)

UALCAN, OncoDB, and the Human Protein Atlas 
(HPA) are essential databases for cancer re- 
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search. UALCAN provides a comprehensive re- 
source for analyzing cancer OMICS data, allow-
ing researchers to explore gene expression, 
survival analysis, and promoter methylation in 
various cancers [21]. OncoDB offers a rich 
database for studying oncogenes and tumor 
suppressor genes, facilitating insights into can-
cer biology and potential therapeutic targets 
[22]. The Human Protein Atlas (HPA) focuses on 
protein expression profiles across different tis-
sues, including cancerous and normal samples, 
aiding in the identification of biomarkers and 
understanding protein function in cancer [23]. 
Together, these databases offer powerful tools 
for understanding cancer mechanisms, identi-
fying potential biomarkers, and exploring thera-
peutic targets, making them invaluable resourc-
es in oncology research. In the current work, 
UALCAN and OncoDB databases were used to 
analyze mRNA expression while the HPA data-
base was used to analyze protein expression 
levels of the hub genes in normal and LIHC tis-
sue samples.

Promoter methylation analysis of the hub 
genes in LIHC using data from TCGA

In this study, UALCAN [21] and OncoDB [22] 
databases were utilized for promoter methyla-
tion analysis of the hub genes in LIHC.

Mutational analysis of the hub genes

cBioPortal is a comprehensive, open-access 
database designed for exploring multidimen-
sional cancer genomics data [24]. It provides 
tools for visualizing and analyzing large-scale 
datasets, including mutations, copy number 
alterations, and gene expression. Widely used 
in cancer research, cBioPortal aids in identify-
ing genetic alterations and understanding their 
clinical implications across various cancer 
types. In our work, the cBioPortal database was 
utilized to analyze genetic mutations in hub 
genes across LIHC samples.

Survival analysis of the hub genes

Kaplan Meier (KM) plotter is an online tool 
designed for assessing the prognostic value of 
genes in various cancers using KM survival 
plots [25]. It allows researchers to explore the 
correlation between gene expression and pa- 
tient survival outcomes by analyzing publicly 
available datasets. This tool supports multiple 
cancer types and provides valuable insights 

into potential biomarkers for prognosis and 
treatment strategies. Herein, we used the KM 
plotter to perform the survival analysis of the 
hub genes in LIHC patients.

Correlation analysis of the hub genes with im-
mune cell abundance and drug sensitivity

GSCA (Gene Set Cancer Analysis) is a powerful 
bioinformatics tool used to analyze gene sets in 
the context of cancer [26]. It integrates genom-
ic, transcriptomic, and epigenetic data, enabling 
researchers to explore gene expression pat-
terns, mutations, and pathway activities, aiding 
in the identification of key cancer-related genes 
and therapeutic targets. In this work, the GSCA 
database was utilized to explore the correlation 
of the hub genes with immune cells abundance 
and drug sensitivity in LIHC.

Gene enrichment analysis

DAVID (Database for Annotation, Visualization, 
and Integrated Discovery) is a bioinformatics 
tool designed to analyze large gene or protein 
lists [27]. It helps researchers interpret the bio-
logical meaning behind extensive datasets by 
providing functional annotations, gene ontolo-
gy classifications, and pathway analysis. Her- 
ein, DAVID was utilized to perform gene enrich-
ment analysis of the hub genes.

Cell culture

In our work, we purchased the following 9 LIHC 
cell lines: HepG2, Huh7, SNU-182, SNU-387, 
SNU-449, SNU-475, PLC/PRF/5, Hep3B, and 
MHCC97H, along with 5 normal liver cell lines: 
THLE-2, THLE-3, MIHA, PH5CH, and L02 from 
the American Type Culture Collection (ATCC), 
USA. The cell lines were cultured under stan-
dard conditions at 37°C in a humidified atmo-
sphere with 5% CO2. We used Dulbecco’s Mo- 
dified Eagle Medium (DMEM) supplemented 
with 10% fetal bovine serum (FBS) and 1% pen-
icillin-streptomycin. The medium was changed 
every 2-3 days to maintain optimal growth con- 
ditions.

RNA extraction and real-time quantitative re-
verse transcription polymerase chain reaction 
(RT-qPCR)

After culturing cell lines, we extracted total RNA 
using the Thermo Fisher PureLink RNA Mini Kit 
(Cat. No. 12183018A), following the manufac-
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turer’s protocol. The RNA concentration and 
purity were measured using a Nanodrop spec-
trophotometer, ensuring that the A260/A280 
ratio was between 1.8 and 2.0 for high-quality 
RNA. For cDNA synthesis, we used the Thermo 
Fisher High-Capacity cDNA Reverse Transcri- 
ption Kit (Cat. No. 4368814). We utilized 1 µg 
of RNA as input in a 20 µL reaction, which 
included random primers and reverse tran-
scriptase. The reaction was performed in a 
thermal cycler with the following conditions: 
25°C for 10 minutes, 37°C for 120 minutes, 
and 85°C for 5 minutes. The synthesized cDNA 
was then diluted 1:10 for subsequent RT-qPCR 
analysis. RT-qPCR was performed using the 
Thermo Fisher PowerUp SYBR Green Master 
Mix (Cat. No. A25742) on an Applied Biosystems 
QuantStudio 3 Real-Time PCR System. Each 20 
µL reaction contained 2 µL of diluted cDNA, 10 
µL of PowerUp SYBR Green Master Mix, 1 µL of 
forward and reverse primers (0.5 µM each), and 
7 µL of nuclease-free water. Melting curve anal-
ysis was performed at the end of the PCR run  
to confirm the specificity of the amplified pro- 
ducts. We analyzed the expression levels of 
AURKA, BUB1B, CCNA2, and PTTG1, with GA- 
PDH serving as the housekeeping gene. Each 
sample was run in triplicate, and relative gene 
expression was calculated using the 2^-ΔΔCt 
method, normalizing the target gene expres-
sion to GAPDH and comparing it to the control 
group (normal liver cell lines). The primer 
sequences for the amplified genes were listed 
in Table 1.

AURKA knockdown in HepG2 cells

AURKA was knocked down in the HepG2 cell 
line using Thermo Fisher Silencer Select siRNA 
targeting AURKA (Cat. No. 4392420) for this 
purpose. HepG2 cells were seeded in 6-well 
plates at a density of 2 × 105 cells per well  
and allowed to reach 60-70% confluency. 
Transfection was performed using Lipofecta- 

Lipofectamine complex was then added to the 
cells, and the medium was changed after 6 
hours. The cells were incubated for 48 hours 
before proceeding with further analyses. 

RT-qPCR analysis post-knockdown

RNA was extracted from the siRNA-treated 
HepG2 cells using the Thermo Fisher Pure- 
Link RNA Mini Kit (Cat. No. 12183018A). The 
cDNA synthesis and RT-qPCR were carried out 
as described previously using the Thermo 
Fisher High-Capacity cDNA Reverse Transcri- 
ption Kit (Cat. No. 4368814) and PowerUp 
SYBR Green Master Mix (Cat. No. A25742).

Cell proliferation assay

Cell proliferation was assessed using the Ther- 
mo Fisher AlamarBlue Cell Viability Reagent 
(Cat. No. DAL1025). HepG2 cells transfected 
with AURKA siRNA were seeded in 96-well 
plates at a density of 5 × 103 cells per well. At 
24, 48, and 72 hours post-transfection, 10 µL 
of AlamarBlue reagent was added to each well 
and incubated for 4 hours at 37°C. 

Colony formation assay

Colony formation ability was evaluated by seed-
ing 500 transfected HepG2 cells in 6-well 
plates. The cells were cultured for 10-14 days 
in a humidified atmosphere at 37°C with 5% 
CO2, allowing for colony growth. The colonies 
were then fixed with 4% paraformaldehyde and 
stained with 0.5% crystal violet. The number of 
colonies containing more than 50 cells was 
counted under a microscope, and the results 
were compared between the AURKA knock-
down and control groups.

Wound healing assay

The wound healing assay was performed to 
assess cell migration. HepG2 cells were seed-

Table 1. Primer sequences for AURKA, BUB1B, CCNA2, PTTG1, 
and GAPDH
Gene Forward primer Reverse primer
AURKA TCCATCTTCCAGGAGGACCA TCCAAGGCTCCAGAGATCCA
BUB1B GTGGAAGAGACTGCACAACAGC TCAGACGCTTGCTGATGGCTCT
CCNA2 AAGACGAGACGGGTTGCAC CATGAATGGTGAACGCAGGC
PTTG1 GGGGTCTGGACCTTCAATCA TTGTTTGAGGGGTCCCTTGG
GAPDH GTCTTCCTGGGCAAGCAGTA CTGGACAGAAACCCCACTTC

mine RNAiMAX Transfection 
Reagent (Cat. No. 13778150), 
following the manufacturer’s 
protocol. Briefly, 10 nM of 
siRNA was mixed with Lipo- 
fectamine RNAiMAX in Opti-
MEM Reduced Serum Medium 
(Cat. No. 31985062) and 
incubated for 15 minutes at 
room temperature. The siRNA-
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ed in 6-well plates and grown to 90% confluen-
cy. A straight scratch was made across the cell 
monolayer using a sterile 200 µL pipette tip. 
The cells were then washed with PBS to remove 
debris and incubated in serum-free medium. 
Images of the wound were captured at 0 and 
24 hours post-scratch using a microscope. The 
wound area was measured using ImageJ soft-
ware, and the percentage of wound closure 
was calculated to compare the migratory ca- 
pacity between AURKA knockdown and control 
cells.

Statistics

All statistical analyses were performed using 
GraphPad Prism (version 10.3.1). For compari-
sons between the two groups, an unpaired two-
tailed Student’s t-test was used. For compari-
sons involving more than two groups, one-way 
ANOVA followed by Tukey’s post-hoc test was 
applied to assess significant differences. Re- 
ceiver operating characteristics (ROC) curve 
analysis was used to assess the diagnostic 

abilities. The threshold for statistical signifi-
cance was set at p-value < 0.05 or p-value.

Results

Identification of DEGs and hub genes in LIHC

Two gene expression profiles (GSE84598 and 
GSE19665) were analyzed using the limma 
package in R, yielding the top 1000 DEGs from 
each dataset. Subsequently, Venn diagram 
analysis identified 180 common DEGs across 
the two datasets (Figure 1A). A PPI network for 
these overlapping DEGs was constructed with 
STRING (Figure 1B). Node degree calculations 
were performed to assess the significance of 
DEGs within the PPI network, highlighting 
AURKA, BUB1B, CCNA2, and PTTG1 as key hub 
genes (Figure 1C, 1D).

Expression analysis of the hub genes across 
LIHC and normal control samples

Figure 2 illustrates the expression levels and 
staining intensities of four hub genes (AURKA, 

Figure 1. Identification of hub genes in liver hepatocellular carcinoma (LIHC) using differential expression analy-
sis and network analysis. A. Venn diagram showing the overlap of differentially expressed genes (DEGs) between 
the GSE19665 and GSE55092 datasets. B. Protein-protein interaction (PPI) network of DEGs derived from the 
GSE19665 and GSE55092 datasets. C. PPI network of DEGs and hub genes derived from the GSE19665 and 
GSE55092 datasets. D. Network of the four most significant hub genes identified from both datasets.
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BUB1B, CCNA2, and PTTG1) in LIHC tissue 
samples based on data from TCGA. In Figure 
2A, the box plots display the transcript per mil-
lion (TPM) values for these genes in normal tis-
sues compared to LIHC tissues via the UALCAN 
database. The expression levels of all four hub 
genes (AURKA, BUB1B, CCNA2, and PTTG1) are 
significantly (p-value < 0.05) higher in LIHC 
compared to normal tissues. Figure 2B further 
quantifies these differences using the OncoDB 
database, which confirms significant (p-value < 
0.05) overexpression of AURKA, BUB1B, CC- 
NA2, and PTTG1 in LIHC tissues. Figure 2C 
presents immunohistochemical staining imag-
es for these four genes from the HPA database, 
showing high staining intensity in LIHC tissues. 
This suggests that the proteins encoded by 
these genes are overexpressed in LIHC cells, 
consistent with the high transcript levels ob- 
served in the TCGA data. Furthermore, Figure 
3A displays violin plots from the GEPIA2 data-
base that illustrate the expression levels of hub 
genes across different cancer stages (I to IV). 
For AURKA, BUB1B, and CCNA2, the expression 
generally increases with advancing stages, indi-
cating a potential correlation between higher 
expression levels and disease progression. 
PTTG1 shows a similar pattern, though with 
more variation in Stage III. 

Promoter methylation analysis of the hub 
genes across LIHC and normal control sam-
ples

Promoter methylation analysis of the hub genes 
was conducted in regard to LIHC based on the 
data from TCGA using UALCAN and the OncoDB 
database. Figure 3B focuses on the promoter 
methylation levels of these genes in normal 
versus LIHC samples. The box plots indicate 
that promoter methylation levels are signifi-
cantly (p-value < 0.05) reduced in LIHC tissues 
compared to normal tissues for AURKA, BUB1B, 
CCNA2, and PTTG1. Figure 3C presents more 
detailed methylation data, showing beta values 
across various positions within the promoter 
and gene body regions for AURKA, BUB1B, 

CCNA2, and PTTG1. In each case, the promoter 
regions exhibit significantly (p-value < 0.05) 
lower methylation levels in tumor tissues (red 
line) compared to normal tissues (blue line). 
The decrease in methylation within the promot-
er regions of these genes in LIHC tissues sup-
ports the observation that hypomethylation is 
associated with their increased expression.

Mutational and survival analysis of the hub 
genes in LIHC

Mutational analysis of the hub genes in LIHC 
was conducted using the cBioPortal database. 
Figure 4A provides an overview of the mutation 
frequency of hub genes across 364 LIHC sam-
ples. AURKA is altered in 1% of the samples, 
specifically through missense mutations, whe- 
reas BUB1B and CCNA2 showed missense 
mutations in less than 1% of the samples and 
PTTG1 showed no detectable mutations in the 
cohort analyzed (Figure 4A). Figure 4B delves 
into the classification and types of variants 
found in AURKA, BUB1B, and CCNA2. All ob- 
served variants are classified as missense mu- 
tations and are single nucleotide polymor-
phisms (SNPs) (Figure 4B). The SNV (single 
nucleotide variant) class breakdown indicates 
that the most common base change is C>T, 
accounting for three instances, followed by 
other transitions and transversions (T>G, T>A, 
T>C) (Figure 4B). Furthermore, Figure 4C pres-
ents KM survival curves from KM plotter com-
paring overall survival in LIHC patients with 
high versus low expression levels of AURKA, 
BUB1B, CCNA2, and PTTG1. For all four genes, 
high expression correlates with significantly 
worse overall survival, as indicated by the haz-
ard ratios (HR) and log-rank p-values: AURKA: 
HR = 1.77 (1.25-2.5), P = 0.0011, BUB1B: HR = 
2.01 (1.42-2.86), P = 6.6e-05, CCNA2: HR = 
1.92 (1.36-2.72), P = 0.00018, and PTTG1: HR 
= 2.14 (1.51-3.02), P = 1.1e-05. These data 
collectively suggest that genetic mutations in 
hub genes are relatively rare in LIHC, and their 
elevated expression levels are strongly associ-
ated with poor prognosis in LIHC.

Figure 2. Analysis of hub gene mRNA and protein expression in liver hepatocellular carcinoma (LIHC). A. Box plots 
sourced from UALCAN displaying the transcript per million (TPM) levels of AURKA, BUB1B, CCNA2, and PTTG1 in 
LIHC primary tumors (n = 371) and normal tissues (n = 50). B. Box plots sourced from OncoDB showing the expres-
sion levels of AURKA, BUB1B, CCNA2, and PTTG1 in LIHC (n = 371) and normal tissues (n = 50). C. Immunohisto-
chemistry images sourced from the Human Protein Atlas (HPA) showing high protein staining for AURKA, BUB1B, 
CCNA2, and PTTG1 in LIHC tissues. P-value < 0.05.
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Figure 3. Analysis of stage-specific expression and promoter methylation of hub genes in liver hepatocellular carcinoma (LIHC). A. Violin plots sourced from GEPIA2 
showing the stage-specific expression levels of AURKA, BUB1B, CCNA2, and PTTG1 in LIHC patients across different stages (I-IV). B. Box plots sourced from UALCAN 
displaying the promoter methylation levels of AURKA, BUB1B, CCNA2, and PTTG1 in LIHC primary tumors (n = 377) compared to normal tissues (n = 50). C. Line 
graphs sourced from OncoDB showing the beta values of DNA methylation sites in the promoter and gene body regions of AURKA, BUB1B, CCNA2, and PTTG1 in 
LIHC (n = 371) compared to normal tissues (n = 41). P-value < 0.05.
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Correlation analysis of the hub genes with 
immune cell abundance and drug sensitivity 
in LIHC

Correlations of the hub genes with immune cell 
abundance were explored using the GSCA data-
base. Figure 5A shows the correlation between 
the expression of PTTG1, CCNA2, AURKA, and 

BUB1B with immune cell abundance in LIHC. 
Notably, all four genes (PTTG1, CCNA2, AURKA, 
and BUB1B) show strong positive correlations 
with the infiltration of macrophages and neutro-
phils (Figure 5A). These genes also appear to 
correlate negatively with other immune cells, 
such as B cells and T cells, though these cor-
relations are less significant (Figure 5B). Fur- 

Figure 4. Mutation landscape and prognostic impact of hub genes in liver hepatocellular carcinoma (LIHC). A. The 
oncoprint shows the mutation frequency in AURKA, BUB1B, CCNA2, and PPTG1 across 364 LIHC samples using 
cBioPortal. B. Detailed breakdown of the mutation types and classifications in the same cohort. C. Kaplan-Meier 
survival plots were generated using the KM Plotter tool, illustrating the prognostic significance of high vs. low expres-
sion of AURKA, BUB1B, CCNA2, and PPTG1 in cancer patients. P-value < 0.05.
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thermore, Figure 5B illustrates the correlation 
between hub genes and drug sensitivity in LIHC 
using the GSCA database (Figure 5B). AURKA 
and PTTG1 show positive correlations with a 
range of drugs, suggesting that higher expres-
sion of these genes might be associated with 
increased drug resistance. In contrast, CCNA2 
and BUB1B exhibit strong negative correlations 
with many drugs, indicating that their higher 
expression could be associated with drug sen-
sitivity in LIHC (Figure 5B).

Gene enrichment analysis of the hub genes

Gene enrichment analysis of the hub genes 
was conducted using the DAVID tool. Figure 6A 

tion” and “Negative regulation of sister chroma-
tid segregation”, indicating a strong focus on 
processes that ensure proper chromosome 
segregation and stability during cell division. 
Other significantly enriched processes include 
“Meiotic nuclear division” and “Mitotic cell 
cycle”, further underscoring the central role of 
these processes in cell proliferation and divi-
sion. Figure 6D highlights the enriched path-
ways associated with hub genes. The most 
enriched pathway is the “Cell cycle”, followed by 
“Progesterone-mediated oocyte maturation” 
and “Oocyte meiosis”. These pathways are cru-
cial for the regulation of cell division and repro-
ductive processes. Interestingly, pathways re- 

Figure 5. Correlation between hub gene expression and immune infiltra-
tion & drug sensitivity in liver hepatocellular carcinoma (LIHC). A. Correla-
tion analysis between the expression of hub genes (PTTG1, CCNA2, AURKA, 
BUB1B) and immune cell infiltration in LIHC via the GSCA database. B. Cor-
relation analysis between mRNA expression of the hub genes and drug sen-
sitivity via the GSCA database. P-value < 0.05.

illustrates the enrichment of 
various cellular components. 
The “Germinal vesicle” and 
“Mitotic checkpoint complex” 
show the highest fold enrich-
ment, suggesting that these 
components are particularly 
significant in the context of 
hub genes. Other highly en- 
riched components include 
the “Cyclin A2-CDK2 complex” 
and “Chromosome passenger 
complex”, all of which play cru-
cial roles in cell division and 
mitosis. Figure 6B focuses on 
the molecular functions en- 
riched in hub genes. The mo- 
st significantly enriched func- 
tion is “Histone serine kinase 
activity”, followed by “Histone 
kin-ase activity” and “Cyclin-
dependent protein serine/thr- 
eonine kinase regulator activi-
ty”. These functions are invo- 
lved in cell cycle regulation 
and chromatin modification, 
which are critical for maintain-
ing genomic stability during 
cell division. The presence of 
“Protein kinase activity” and 
“Kinase binding” further em- 
phasizes the importance of 
phosphorylation events in the 
regulation of these biological 
processes. Figure 6C show-
cases the enrichment of vari-
ous biological processes. The 
most significant processes 
include “Histone phosphoryla-
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lated to cancers, such as “Acute myeloid leuke-
mia” and “Human T-cell leukemia virus 1 infec-
tion”, are also significantly enriched, suggesting 
a potential link between these genes and onco-
genic processes. Additionally, viral infection-
related pathways like “Epstein-Barr virus infec-
tion” and “Hepatitis B” are also enriched, in- 
dicating a potential interaction between these 
genes and viral mechanisms.

Validation of the hub gene expression across 
LIHC cell lines

The expression of hub genes across 9 LIHC and 
5 normal control cell lines was validated using 
RT-qPCR. As depicted in Figure 7A. The box 
plots revealed that AURKA, BUB1B, CCNA2, 
and PTTG1 genes exhibit a marked (p-value < 
0.001) upregulation in the LIHC cell lines group 
as compared to the normal cell lines group. 
Furthermore, Figure 7B presents ROC curves 
for these genes, with each curve showing an 
Area Under the Curve (AUC) of 1.00. This indi-
cates that AURKA, BUB1B, CCNA2, and PTTG1 

have perfect discrimination between LIHC and 
normal individuals, highlighting their potential 
as highly effective biomarkers of LIHC. 

AURKA gene knockdown and functional assays

Finally, the AURKA gene was knocked down in 
HepG2 cells to analyze its effects on cell prolif-
eration, colony formation, and wound healing 
abilities. Figure 8A confirms that the knock-
down of AURKA was successful, as indicated by 
the significant (p-value < 0.01) reduction in 
AURKA expression in the si-AURKA-HepG2 cells 
compared to the control (Ctrl-HepG2) cells via 
RT-qPCR. Cell proliferation assay revealed that 
the reduction in AURKA expression leads to a 
noticeable (p-value < 0.01) decrease in cell 
proliferation, as shown in Figure 8B. Fur-
thermore, the colony formation assay demon-
strates that the si-AURKA-HepG2 cells formed 
significantly (p-value < 0.01) fewer colonies 
than the control cells (Figure 8C, 8D). In- 
terestingly, the data from the wound healing 
assay (Figure 8E-G) revealed a contrasting 

Figure 6. Gene ontology and pathway enrichment analysis of hub genes. A. Cellular component (CC) enrichment 
analysis. B. Molecular function (MF) enrichment analysis. C. Biological process (BP) enrichment analysis. D. Path-
way enrichment analysis. P-value < 0.05.
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Figure 7. Differential expression and diagnostic accuracy of hub genes in liver hepatocellular carcinoma (LIHC) and normal control cell lines. A. Box plots showing the 
expression levels of AURKA, BUB1B, CCNA2, and PTTG1 in LIHC cell lines compared to normal control cell lines. B. Receiver Operating Characteristic (ROC) curves 
demonstrating the diagnostic accuracy of AURKA, BUB1B, CCNA2, and PTTG1 in distinguishing LIHC from normal individuals. P-value < 0.05.
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effect of AURKA knockdown on cell migration. 
While AURKA knockdown inhibits cell prolifera-
tion, it significantly (p-value < 0.01) enhances 
the migratory ability of HepG2 cells (Figure 
8E-G). 

Discussion

Liver Hepatocellular Carcinoma (LIHC) is a sig-
nificant and aggressive form of liver cancer, 
known for its high mortality rates due to late 

Figure 8. Effects of SURKS knockdown on HepG2 cell proliferation, colony formation, and wound healing. A. Rela-
tive expression of AURKA in si-AURKA-transfected HepG2 cells (si-AURKA-HepG2) compared to control HepG2 cells 
(Ctrl-HepG2). B. Proliferation of si-AURKA-HepG2 cells compared to Ctrl-HepG2 cells. C. Count of colonies formed by 
si-AURKA-transfected HepG2 cells (si-AURKA-HepG2) compared to control HepG2 cells (Ctrl-HepG2). D. Representa-
tive images of colony formation assays in Ctrl-HepG2 and si-AURKA-HepG2 cells. E. Quantification of wound healing 
closure abilities of Ctrl-HepG2 and si-AURKA-HepG2 cells. F. Representative images of wound healing assays at 
0 hour and 24 hours for Ctrl-HepG2 and si-AURKA-HepG2 cells. The wound closure is significantly impaired in si-
AURKA-HepG2 cells. G. Quantitative analysis of wound closure over time. **P-value < 0.01.
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diagnosis and limited treatment options [28, 
29]. This study aimed to elucidate the roles of 
key hub genes in LIHC and assess their poten-
tial as biomarkers and therapeutic targets. We 
analyzed gene expression profiles from datas-
ets GSE84598 and GSE19665 to identify DEGs 
associated with LIHC. From this analysis, 180 
common DEGs were identified and used to con-
struct a PP network. Based on the degree  
of connectivity, up-regulated AURKA, BUB1B, 
CCNA2, and PTTG1 emerged as key hub genes 
within this network. 

The upregulation of AURKA, BUB1B, CCNA2, 
and PTTG1 can drive cancer progression th- 
rough several mechanistic pathways. AURKA is 
crucial for centrosome maturation and spindle 
assembly during mitosis; its overexpression 
can lead to chromosomal instability and aneu-
ploidy, which are hallmarks of cancer [30-32]. 
BUB1B is involved in the spindle assembly 
checkpoint, ensuring accurate chromosome 
segregation; its dysregulation can result in mi- 
totic errors and tumorigenesis [33, 34]. CCNA2 
regulates the cell cycle transition from G1 to S 
phase and its overexpression can promote 
uncontrolled cell proliferation and resistance to 
apoptosis [35, 36]. PTTG1 is associated with 
chromosomal segregation and tumor progres-
sion, and its upregulation can contribute to the 
development of aggressive cancer phenotypes 
by enhancing cell proliferation and inhibiting 
cell death [37, 38]. Together, the overexpres-
sion of these genes disrupts normal cell cycle 
regulation and mitotic processes, leading to 
genomic instability and malignant transforma-
tion. Our finding supports previous research 
that has highlighted these genes as critical in 
various cancers, including breast, lung, and 
colorectal cancers [39-42].

Promoter methylation analysis provided further 
insights into gene regulation. We observed re- 
duced promoter methylation in LIHC tissues 
compared to normal tissues, suggesting that 
hypomethylation contributes to the upregula-
tion of these genes. This finding is consistent 
with previous research showing that hypometh-
ylation of oncogenes often leads to their over-
expression and is a common feature in various 
cancers [43-45]. 

Mutational analysis showed that alterations in 
AURKA, BUB1B, and CCNA2 are present in a 
small fraction of LIHC samples, primarily as 

missense mutations. Although these genetic 
alterations are relatively rare, their impact on 
protein function and cancer progression is sig-
nificant. Survival analysis using Kaplan-Meier 
plots indicated that high expression levels of 
these hub genes correlate with poor overall sur-
vival in LIHC patients, reinforcing their role as 
prognostic markers in cancer.

Correlation analysis revealed that the expres-
sion of hub genes is positively correlated with 
the abundance of macrophages and neutro-
phils, and negatively correlated with other im- 
mune cell types in LIHC. Our observation that 
these genes are positively correlated with mac-
rophage and neutrophil abundance adds new 
insights into their impact on the immune micro-
environment of LIHC. Additionally, AURKA and 
PTTG1 showed positive correlations with drug 
resistance, whereas CCNA2 and BUB1B were 
associated with drug sensitivity. Our observa-
tion that AURKA and PTTG1 are associated with 
drug resistance is consistent with reports sug-
gesting that these genes can mediate cellular 
responses to chemotherapy, thus influencing 
treatment outcomes [46, 47].

Functional assays showing that AURKA knock-
down reduces proliferation and colony forma-
tion while enhancing migration, which are con-
sistent with earlier research. Studies have 
previously shown that AURKA’s role in cell divi-
sion and migration is critical for cancer progres-
sion [48]. The reduction in cell proliferation and 
colony formation due to AURKA knockdown 
echoes findings that AURKA promotes onco-
genic cell growth [48]. The enhancement of 
migratory abilities observed in our study sup-
ports reports that AURKA can also influence 
cancer cell motility, contributing to metastasis.

This study provides valuable insights into the 
roles of AURKA, BUB1B, CCNA2, and PTTG1 in 
LIHC, revealing their potential as biomarkers 
and therapeutic targets. The merit of the study 
lies in its comprehensive approach, utilizing 
multiple datasets and functional assays to vali-
date gene expression and elucidate the mecha-
nistic pathways by which these hub genes con-
tribute to cancer progression. The correlation 
of hub genes with immune cell abundance and 
drug sensitivity adds depth to the understand-
ing of their role in the tumor microenvironment 
and treatment response. However, the study’s 
limitations include the reliance on Bioinfor- 
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matics analyses and cell line models, which 
may not fully replicate the complexity of in vivo 
tumor biology. Additionally, the focus on a lim-
ited set of genes may overlook other potentially 
significant factors in LIHC progression. Future 
research could address these limitations by 
incorporating more diverse models and explor-
ing additional molecular targets.

Conclusion

In conclusion, our study provides a comprehen-
sive analysis of AURKA, BUB1B, CCNA2, and 
PTTG1 in LIHC, integrating gene expression, 
methylation, mutation, and functional data. 
These findings emphasize the importance of 
these hub genes in cancer progression and 
their potential as biomarkers and therapeutic 
targets, offering new insights into the molecu-
lar mechanisms underlying LIHC and paving the 
way for future research and clinical applica- 
tions.

Acknowledgements

The authors extend their appreciation to Taif 
University, Saudi Arabia, for supporting this 
work through project number (TU-DSPP-2024- 
15). This research was funded by Taif University, 
Saudi Arabia, Project No. (TU-DSPP-2024-15).

Disclosure of conflict of interest

None.

Address correspondence to: Xueming Ying, De- 
partment of Oncology, Jingdezhen First People’s 
Hospital, Jindezhen 333000, Jiangxi, China. E-mail: 
15607082800@163.com; Salman Khan, DHQ 
Teaching Hospital, GMC, Dikah, Pakistan. E-mail: 
salmankhn663@gmail.com

References

[1] Huang PS, Wang LY, Wang YW, Tsai MM, Lin TK, 
Liao CJ, Yeh CT and Lin KH. Evaluation and ap-
plication of drug resistance by biomarkers in 
the clinical treatment of liver cancer. Cells 
2023; 12: 869.

[2] Rukmangad A, Deshpande A, Jamthikar A, 
Gupta D, Bhurane A and Meshram NB. Classi-
fication of H&E stained liver histopathology im-
ages using ensemble learning techniques for 
detection of the level of malignancy of hepato-
cellular carcinoma (HCC). Advances in Artificial 
Intelligence-Empowered Decision Support Sys-

tems: Papers in Honour of Professor John Psar-
ras. Springer; 2024. pp. 89-108.

[3] Li S, Xue P, Diao X, Fan QY, Ye K, Tang XM, Liu 
J, Huang ZY, Tang QH, Jia CY, Xin R, Lv ZW, Liu 
JB, Ma YS and Fu D. Identification and valida-
tion of functional roles for three MYC-associat-
ed genes in hepatocellular carcinoma. J Adv 
Res 2023; 54: 133-146.

[4] Tang J, Peng X, Xiao D, Liu S, Tao Y and Shu L. 
Disulfidptosis-related signature predicts prog-
nosis and characterizes the immune microen-
vironment in hepatocellular carcinoma. Can-
cer Cell Int 2024; 24: 19.

[5] Yan C, Niu Y, Ma L, Tian L and Ma J. System 
analysis based on the cuproptosis-related 
genes identifies LIPT1 as a novel therapy tar-
get for liver hepatocellular carcinoma. J Transl 
Med 2022; 20: 452.

[6] Gao J, Han S, Gu J, Wu C and Mu X. The prog-
nostic and therapeutic role of histone acetyla-
tion modification in LIHC development and pro-
gression. Medicina (Kaunas) 2023; 59: 1682.

[7] Sarfaraz N, Somarowthu S and Bouchard MJ. 
The interplay of long noncoding RNAs and hep-
atitis B virus. J Med Virol 2023; 95: e28058.

[8] Wu Z, Dong Z, Luo J, Hu W, Tong Y, Gao X, Yao 
W, Tian H and Wang X. A comprehensive com-
parison of molecular and phenotypic profiles 
between hepatitis B virus (HBV)-infected and 
non-HBV-infected hepatocellular carcinoma by 
multi-omics analysis. Genomics 2024; 116: 
110831.

[9] Liu C, Dai Q, Ding Q, Wei M and Kong X. Identi-
fication of key genes in hepatitis B associated 
hepatocellular carcinoma based on WGCNA. 
Infect Agent Cancer 2021; 16: 18. 

[10] Mekuria AN, Routledge MN, Gong YY and Sisay 
M. Aflatoxins as a risk factor for liver cirrhosis: 
a systematic review and meta-analysis. BMC 
Pharmacol Toxicol 2020; 21: 39.

[11] Zenlander R. Biomarkers in hepatocellular car-
cinoma. Inst för medicin, Huddinge/Dept of 
Medicine, Huddinge; 2024.

[12] Ye J, Ying J, Chen H, Wu Z, Huang C, Zhang C, 
Chen Z and Chen H. PPIH acts as a potential 
predictive biomarker for patients with common 
solid tumors. BMC Cancer 2024; 24: 681.

[13] Yu J, Park R and Kim R. Promising novel bio-
markers for hepatocellular carcinoma: diag-
nostic and prognostic insights. J Hepatocell 
Carcinoma 2023; 10: 1105-1127.

[14] Wang J, Dai M, Xing X, Wang X, Qin X, Huang T, 
Fang Z, Fan Y and Xu D. Genomic, epigenomic, 
and transcriptomic signatures for telomerase 
complex components: a pan-cancer analysis. 
Mol Oncol 2023; 17: 150-172.

[15] Melis M, Diaz G, Kleiner DE, Zamboni F, Kabat 
J, Lai J, Mogavero G, Tice A, Engle RE, Becker 
S, Brown CR, Hanson JC, Rodriguez-Canales J, 



Hub gene identification in LIHC

7301 Am J Transl Res 2024;16(12):7286-7302

Emmert-Buck M, Govindarajan S, Kew M and 
Farci P. Viral expression and molecular profil-
ing in liver tissue versus microdissected hepa-
tocytes in hepatitis B virus-associated hepato-
cellular carcinoma. J Transl Med 2014; 12: 
230.

[16] Ji Y, Yin Y and Zhang W. Integrated bioinformat-
ic analysis identifies networks and promising 
biomarkers for hepatitis B virus-related hepa-
tocellular carcinoma. Int J Genomics 2020; 
2020: 2061024.

[17] Clough E and Barrett T. The gene expression 
omnibus database. Methods Mol Biol 2016; 
1418: 93-110.

[18] Jia A, Xu L and Wang Y. Venn diagrams in bioin-
formatics. Brief Bioinform 2021; 22: bbab108.

[19] Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder 
S, Huerta-Cepas J, Simonovic M, Doncheva NT, 
Morris JH, Bork P, Jensen LJ and Mering CV. 
STRING v11: protein-protein association net-
works with increased coverage, supporting 
functional discovery in genome-wide experi-
mental datasets. Nucleic Acids Res 2019; 47: 
D607-D613.

[20] Li T, Gao X, Han L, Yu J and Li H. Identification 
of hub genes with prognostic values in gastric 
cancer by bioinformatics analysis. World J Surg 
Oncol 2018; 16: 114. 

[21] Chandrashekar DS, Bashel B, Balasubraman-
ya SAH, Creighton CJ, Ponce-Rodriguez I, 
Chakravarthi BVSK and Varambally S. UALCAN: 
a portal for facilitating tumor subgroup gene 
expression and survival analyses. Neoplasia 
2017; 19: 649-658.

[22] Tang G, Cho M and Wang X. OncoDB: an inter-
active online database for analysis of gene ex-
pression and viral infection in cancer. Nucleic 
Acids Res 2022; 50: D1334-D1339.

[23] Thul PJ and Lindskog C. The Human Protein At-
las: a spatial map of the human proteome. Pro-
tein Sci 2018; 27: 233-244.

[24] Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer 
SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, 
Larsson E, Antipin Y, Reva B, Goldberg AP, 
Sander C and Schultz N. The cBio cancer ge-
nomics portal: an open platform for exploring 
multidimensional cancer genomics data. Can-
cer Discov 2012; 2: 401-404.

[25] Lánczky A and Győrffy B. Web-based survival 
analysis tool tailored for medical research 
(KMplot): development and implementation. J 
Med Internet Res 2021; 23: 27633.

[26] Liu CJ, Hu FF, Xie GY, Miao YR, Li XW, Zeng Y 
and Guo AY. GSCA: an integrated platform for 
gene set cancer analysis at genomic, pharma-
cogenomic, and immunogenomic levels. Brief 
Bioinform 2023; 24: bbac558.

[27] Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, 
Lane HC, Imamichi T and Chang W. DAVID: a 

web server for functional enrichment analysis 
and functional annotation of gene lists (2021 
update). Nucleic Acids Res 2022; 50: W216-
W221.

[28] Sales CBS, Dias RB, de Faro Valverde L, Bom-
fim LM, Silva LA, de Carvalho NC, Bastos JLA, 
Tilli TM, Rocha GV, Soares MBP, de Freitas LAR, 
Gurgel Rocha CA and Bezerra DP. Hedgehog 
components are overexpressed in a series of 
liver cancer cases. Sci Rep 2024; 14: 19507.

[29] Natu A, Singh A and Gupta S. Hepatocellular 
carcinoma: understanding molecular mecha-
nisms for defining potential clinical modalities. 
World J Hepatol 2021; 13: 1568-1583.

[30] Athwal H, Kochiyanil A, Bhat V, Allan AL and 
Parsyan A. Centrosomes and associated pro-
teins in pathogenesis and treatment of breast 
cancer. Front Oncol 2024; 14: 1370565.

[31] Sarı S and Özsoy ER. Aurora Kinases: their role 
in cancer and cellular processes. Türk Doğa ve 
Fen Dergisi 2024; 13: 128-139.

[32] Hameed Y and Ejaz S. TP53 lacks tetrameriza-
tion and N-terminal domains due to novel inac-
tivating mutations detected in leukemia pa-
tients. J Cancer Res Ther 2021; 17: 931-937.

[33] Cicirò Y, Ragusa D and Sala A. Expression of 
the checkpoint kinase BUB1 is a predictor of 
response to cancer therapies. Sci Rep 2024; 
14: 4461.

[34] Dong Y, Wu X, Xu C, Hameed Y, Abdel-Maksoud 
MA, Almanaa TN, Kotob MH, Al-Qahtani WH, 
Mahmoud AM, Cho WC and Li C. Prognostic 
model development and molecular subtypes 
identification in bladder urothelial cancer by 
oxidative stress signatures. Aging (Albany NY) 
2024; 16: 2591-2616.

[35] Zhang J, Di Y, Zhang B, Li T, Li D and Zhang H. 
CDK1 and CCNA2 play important roles in oral 
squamous cell carcinoma. Medicine (Balti-
more) 2024; 103: e37831.

[36] Usman M, Hameed Y and Ahmad M. Does hu-
man papillomavirus cause human colorectal 
cancer? Applying Bradford Hill criteria postu-
lates. Ecancermedicalscience 2020; 14: 1107.

[37] Lu Y, Wang D, Chen G, Shan Z and Li D. Explor-
ing the molecular landscape of osteosarcoma 
through PTTG family genes using a detailed 
multi-level methodology. Front Genet 2024; 
15: 1431668.

[38] Wang L and Liu X. Multi-omics analysis of the 
oncogenic value of pituitary tumor-transform-
ing gene 1 (PTTG1) in human cancers. Front 
Biosci (Landmark Ed) 2024; 29: 87.

[39] Toolabi N, Daliri FS, Mokhlesi A and Talkhabi 
M. Identification of key regulators associated 
with colon cancer prognosis and pathogene-
sis. J Cell Commun Signal 2022; 16: 115-127.

[40] Su Q, Li W, Zhang X, Wu R, Zheng K, Zhou T, 
Dong Y, He Y, Wang D and Ran J. Integrated 



Hub gene identification in LIHC

7302 Am J Transl Res 2024;16(12):7286-7302

bioinformatics analysis for the screening of 
hub genes and therapeutic drugs in hepatocel-
lular carcinoma. Curr Pharm Biotechnol 2023; 
24: 1035-1058.

[41] Yang WX, Pan YY and You CG. CDK1, CCNB1, 
CDC20, BUB1, MAD2L1, MCM3, BUB1B, MC- 
M2, and RFC4 may be potential therapeutic 
targets for hepatocellular carcinoma using in-
tegrated bioinformatic analysis. Biomed Res 
Int 2019; 2019: 1245072.

[42] Hu H, Umair M, Khan SA, Sani AI, Iqbal S, Kha-
lid F, Sultan R, Abdel-Maksoud MA, Mubarak A, 
Dawoud TM, Malik A, Saleh IA, Al Amri AA, Al-
garzae NK, Kodous AS and Hameed Y. CDCA8, 
a mitosis-related gene, as a prospective pan-
cancer biomarker: implications for survival 
prognosis and oncogenic immunology. Am J 
Transl Res 2024; 16: 432-445.

[43] Höbaus J, Hummel DM, Thiem U, Fetahu IS, Ag-
garwal A, Müllauer L, Heller G, Egger G, Mes-
teri I, Baumgartner-Parzer S and Kallay E. In-
creased copy-number and not DNA hypometh- 
ylation causes overexpression of the candi-
date proto-oncogene CYP24A1 in colorectal 
cancer. Int J Cancer 2013; 133: 1380-1388.

[44] Van Tongelen A, Loriot A and De Smet C. Onco-
genic roles of DNA hypomethylation through 
the activation of cancer-germline genes. Can-
cer Lett 2017; 396: 130-137.

[45] Hameed Y. Decoding the significant diagnostic 
and prognostic importance of maternal embry-
onic leucine zipper kinase in human cancers 
through deep integrative analyses. J Cancer 
Res Ther 2023; 19: 1852-1864.

[46] Caporali S, Alvino E, Levati L, Esposito AI, Cio-
mei M, Brasca MG, Del Bufalo D, Desideri M, 
Bonmassar E, Pfeffer U and D’Atri S. Down-
regulation of the PTTG1 proto-oncogene con-
tributes to the melanoma suppressive effects 
of the cyclin-dependent kinase inhibitor PHA-
848125. Biochem Pharmacol 2012; 84: 598-
611.

[47] Gao M, Kong W, Huang Z and Xie Z. Identifica-
tion of key genes related to lung squamous cell 
carcinoma using bioinformatics analysis. Int J 
Mol Sci 2020; 21: 2994.

[48] Wu J, Yang L, Shan Y, Cai C, Wang S and Zhang 
H. AURKA promotes cell migration and inva-
sion of head and neck squamous cell carcino-
ma through regulation of the AURKA/Akt/FAK 
signaling pathway. Oncol Lett 2016; 11: 1889-
1894.


