
Am J Transl Res 2024;16(12):7262-7277
www.ajtr.org /ISSN:1943-8141/AJTR0159445

https://doi.org/10.62347/NJMJ7853

Review Article
The therapeutic potential of  
Honeysuckle in cardiovascular disease:  
an anti-inflammatory intervention strategy

Yue Zhao1*, Jiale Zhang2,4*, Fei Lu3, Weiming Xu2,4, Qingxiao Ma5, Jingqing Hu1,2,6

1Changchun University of Chinese Medicine, Changchun, Jilin, China; 2Institute of Basic Theory for Chinese 
Medicine, China Academy of Chinese Medical Sciences, Beijing, China; 3The Second Affiliated Hospital of Liaoning 
University of Traditional Chinese Medicine, Shenyang, Liaoning, China; 4China Science and Technology Develop-
ment Center of Chinese Medicine, Beijing, China; 5China National Health Development Research Center, Beijing, 
China; 6Tianjin University of Traditional Chinese Medicine, Tianjin, China. *Equal contributors.

Received July 25, 2024; Accepted November 21, 2024; Epub December 15, 2024; Published December 30, 2024

Abstract: Honeysuckle is a conventional Chinese medicine with several therapeutic applications. With the advance-
ment of modern scientific technologies, Honeysuckle’s pharmacological effects and medicinal properties have been 
investigated more thoroughly. Studies demonstrate that the bioactive compounds in Honeysuckle possess anti-
inflammatory effects via several mechanisms, protecting the cardiovascular system. This article provides a refer-
ence for the clinical use of Honeysuckle by reviewing research on the therapeutic impact of Honeysuckle and its 
active constituents on cardiovascular diseases, such as coronary atherosclerotic heart disease (CHD), myocardial 
ischemia-reperfusion (MI/R), acute myocardial infarction (AMI), hypertension, arrhythmia, and heart failure, through 
the inhibition of inflammatory responses.
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Introduction

Cardiovascular disease (CVD) is a prevalent 
chronic disease. In recent years, the preva-
lence of CVD has been rising each year. The 
World Health Organization (WHO) research indi-
cates that CVD remains a primary cause of 
worldwide mortality, accounting for around 
17.9 million deaths per year [1]. The inflamma-
tory response is crucial in developing CVD, as 
an excessive inflammatory reaction will lead to 
dysfunction of vascular endothelial cells, ath-
erosclerotic plaque, thrombosis, and other 
complications. Inflammatory biomarkers can 
predict CVD as an independent risk factor [2, 
3]. However, there are disadvantages in tradi-
tional treatments, including low compliance 
and pharmaceutical side effects. Because of 
their ability to reduce inflammation, natural 
products have made strides in treating CVD. 
Therefore, one of the current research priorities 
is to find an herbal remedy that has anti-inflam-
matory properties that inhibit the progression 
of CVD. Si-Miao-Yong-An decoction, a tradition-

al Chinese herbal formulation, has been em- 
ployed to address cardiovascular issues due to 
its anti-inflammatory properties. Honeysuckle 
is the main component significantly contribut-
ing to these effects. Natural herbs, such as 
Honeysuckle, have demonstrated beneficial 
effects on the inflammatory response. The 
active compounds in Honeysuckle, including fla-
vonoids, have shown anti-inflammatory and car-
dioprotective properties. This study compiled 
existing information regarding the role of 
Honeysuckle and its active components in CVD 
through anti-inflammatory mechanisms. It 
assessed their function as a benchmark for 
prospective clinical applications.

Inflammation and CVD

Recent data has demonstrated a robust asso-
ciation between inflammation and CVD, estab-
lishing inflammation as a critical focus in res- 
earch on cardiovascular comorbidities [4]. Ath- 
erosclerotic CVD is one of the important causes 
of morbidity and death worldwide [5]. The in- 
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flammatory response mechanism of athero-
sclerosis (AS) was initially discovered in the 
1980s. In the late 1990s, Ross formally articu-
lated it based on injury response theory. Nu- 
merous clinical and experimental studies have 
subsequently enhanced the inflammatory theo-
ry of AS, indicating that AS is characterized by 
low-grade inflammation [6, 7]. The CANTOS [8] 
and COLCOT [9] clinical trials have verified the 
inflammatory theory of AS and have identified 
the inhibition of the NOD-like receptor family 
pyrin domain-containing 3 (NLRP3) inflamma-
some pathway as one of the anti-inflammatory 
therapeutic pathways for AS. Monocytes attra- 
cted to the injury site may evolve into pro-
inflammatory macrophages, which can lead  
to CVD. At the molecular level, overactive 
inflammasomes play a vital role in the develop-
ment and progress of some cardiovascular 
diseases.

Furthermore, because of the deposition of lipo-
proteins in the artery wall, inflammation is 
thought to substantially impact the onset and 
development of AS [10]. AS caused by an 
inflammatory state is also one of the risk fac-
tors for arrhythmia development [11]. Inflam- 
mation may accompany the formation and pro-
gression of plaques. Localized or systemic in- 
flammation and recurrent infections may ele-
vate the probability of plaque rupture before 
thrombosis. Macrophages and smooth muscle 
cells can secret inflammatory cytokines, includ-
ing interleukin-6 (IL-6) and interleukin-1β (IL-1β) 
[12-14]. C-reactive protein (CRP) is a non-spe-
cific marker of inflammation, and its elevated 
levels are closely related to an increased risk of 
CVD. CRP is a downstream product of interleu-
kin-1 (IL-1), linked to various inflammatory dis-
eases and AS. Inflammatory CVD develops due 
to IL-1’s stimulation of adhesion molecules and 
induction of monocyte chemoattractant pro-
tein-1 (MCP-1). By eliminating atherosclerotic 
plaques, MCP-1-recruited phagocytes can re- 
sult in AMI. IL-1 also promotes the growth of 
vascular smooth muscle cells and the expres-
sion of IL-6 [15]. Therefore, inflammation and 
CVD are intimately associated.

Inflammation-associated mechanisms in CHD

CHD is associated with a complex inflammatory 
process influenced by multiple factors. CHD is 
strongly linked to AS, involving various inflam-
matory mediators such as CRP, IL-6, IL-1β, IL- 
1, interferon-γ (IFN-γ), P-selectin, and E-selec- 

tin, as well as numerous cell types, including  
macrophages, monocytes, vascular endothelial 
cells, vascular smooth muscle cells, and T- 
lymphoid cells [16]. The formation of NLRP3 
inflammasomes in macrophages contributes 
significantly to AS pathogenesis. The classic 
inflammatory pathways of NLRP3/IL-1β/IL-6/
hypersensitive C-reactive protein (hs-CRP) are 
widely recognized as contributors to increased 
risk of vascular AS [17]. Toll-like receptors 
(TLRs) signaling promotes inflammatory factor 
production through immune activation, and 
plays an important role in the onset and pro-
gression of CHD. Inhibition of TLRs can reduce 
the development of vascular inflammation and 
AS to a certain extent [18]. Toll-like receptor 4 
(TLR4) binds to endogenous ligands during 
arterial injury, leading to activation of nuclear 
factor kappa-B (NF-κB) and its translocation to 
the nucleus to promote the transcription of 
inflammatory factors, which regulate macro-
phage polarization resulting in endothelial lipid 
deposition and induction of the inflammatory 
response in AS [19]. The c-Jun N-terminal kin- 
ase (JNK)/nuclear transcription factor activat-
ing protein-1 (AP1) signaling is associated with 
the occurrence and progression of AS. JNK can 
induce the expression of inflammatory factors 
downstream of c-JNK, resulting in an inflamma-
tory reaction. The transcription factor AP1 can 
also promote the expression of inflammatory 
factors in AS lesions [20-22].

Inflammation-associated mechanisms in MI/R

MI/R induces an acute inflammatory response 
in which MI/R injury is associated with inflam-
masome activation, and NLRP3 is the initial 
receptor [23]. Reactive oxygen species (ROS) 
and pro-apoptotic signaling pathways also play 
a central role in the inflammatory phase, and 
white blood cells and mitochondria are also 
major participants in MI/R-associated inflam-
mation [24]. TLR4 has been shown to activate 
the NLRP3 inflammasome through the NF-κB 
pathway [25], and the TLR4/NLRP3 axis is 
closely associated with both inflammation and 
programmed cell death in cardiomyocytes [26]. 
The inflammatory response in MI/R injury is 
mediated by the TLR4/MyD88/NF-κB pathway 
and the NLRP3 inflammasome, which leads to 
myocardial injury [27, 28].

Inflammation-associated mechanisms in AMI

AMI is associated with various inflammatory 
markers and cytokines, such as IL-1, IL-6, tumor 
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necrosis factor-α (TNF-α), CRP, increased 
serum levels of galectin-3 (Gal-3), and myelo-
peroxidase (MPO) [29, 30]. Genetic or pharma-
cological inhibition of the NLRP3 inflamma-
some and toll-like receptor 2 (TLR2) or TLR4 
has been shown to reduce the infarct size in 
myocardial infarction (MI) [31, 32]. TLR2 and 
TLR4 can bind to MyD88, activate intracellular 
transduction pathways, promote the expres-
sion of pathways such as NF-κB and JNK, and 
participate in physiological processes such as 
apoptosis and the inflammatory response [33, 
34]. Following AMI, cells within various myocar-
dial components sustain damage or perish, ini-
tiating an acute pro-inflammatory response 
that releases numerous pro-inflammatory 
mediators, resulting in the recruitment of 
inflammatory cells to the infarcted region and 
intensifying the inflammatory response [35].

Inflammation-associated mechanisms in 
hypertension

The development of hypertension is associated 
with inflammation and the immune system. The 
triggering of an inflammatory response by the 
immune system can lead to an increase in 
blood pressure. Cells of the innate immune sys-
tem can produce ROS, with long-term inflam-
mation increasing the generation of ROS, 
affecting the endothelial regulation of vascular 
tension and structure. The persistence of in- 
flammation reduces the bioavailability of nitric 
oxide (NO), affecting vascular dilation [36]. T 
cell effectors of the adaptive immune system 
play an important role in the vasoconstriction 
associated with hypertension, leading to ele-
vated blood pressure and subsequent damage 
to target organs [37]. The PI3K/AKT signaling 
pathway can promote the contractions of vas-
cular smooth muscle, increase vascular ten-
sion, and induce macrophage polarization, aff- 
ecting the expression of pro-inflammatory fac-
tors [38]. The JAK/STAT pathway is involved in 
immune regulation and can modulate the ex- 
pression of the pro-inflammatory factors IL- 
1β, IL-6, and TNF-α, thus stimulating the inflam-
matory process, and is closely associated with 
the development of hypertension [39, 40].

Inflammation-associated mechanisms in ar-
rhythmia

Both atrial and ventricular arrhythmias are 
associated with inflammation [41]. The inflam-

matory response can promote electrical remod-
eling as well as remodeling of the atrial struc-
ture and changes in the conduction pathways 
within the atrium [42]. Arrhythmia is associated 
with multiple inflammatory biomarkers, includ-
ing CRP, hs-CRP, TNF-α, and IL-6 [43]. Higher 
levels of CRP have been shown to be linked 
with reduced success in cardioversion and 
maintenance of the sinus rhythm and may 
increase the risk of atrial fibrillation recurrence 
after cardioversion [44]. TLR4/NF-κB can medi-
ate the inflammatory response and influence 
the onset of atrial fibrillation by inhibiting the 
transcription of genes encoding Na+ channels 
[45]. The activation of NLRP3 inflammasomes, 
downstream of TLR4/NF-κB, induces the upreg-
ulation of ultrarapid delayed rectifier K+ chan-
nels, decreasing the myocardial static potential 
and shortening the duration of the action 
potential, resulting in cardiac electrical remod-
eling and arrhythmia [46].

Inflammation-associated mechanisms in heart 
failure

Inflammation is recognized as a major contribu-
tor to heart failure [47]. The levels of pro-inflam-
matory cytokines, such as TNF-α, IL-1, and IL-6, 
as well as those of CRP, are upregulated in 
heart failure and correlated with the severity of 
heart failure [48]. Among them, TNF-α is a typi-
cal pro-inflammatory cytokine that plays a key 
role in the pathological process of heart failure. 
It can induce myocardial cell hypertrophy, acti-
vate metalloproteinases (MMPs), and lead to 
myocardial fibrosis. Its level in the circulation is 
closely related to the degree of heart failure 
and is an independent predictor of mortality in 
patients with heart failure [49, 50]. The NLRP3 
inflammasome can promote the progression of 
fibrosis by stimulating the production of IL-1β 
and interleukin-18 (IL-18) [51, 52]. The activa-
tion of TLR4/NF-κB signaling also induces the 
expression of pro-inflammatory cytokines and 
triggers immune cell infiltration and cardiac 
dysfunction after myocardial ischemia, thus 
exacerbating the development of heart failure 
[53]. The PI3K/AKT pathway can regulate myo-
cardial cell apoptosis and promote macrophage 
polarization, thereby stimulating or inhibiting 
inflammatory responses, making it an impor-
tant target for the treatment of heart failure 
[54].
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Anti-inflammatory effects of active substances 
from Honeysuckle on CVD

Honeysuckle is a plant from the Lonicera fami-
ly, primarily found in Asia, Europe, and North 
America. It possesses the properties of heat 
clearance, detoxification, and the dispersion of 
wind and heat. Honeysuckle is a plant used in 
both medicinal and culinary applications. It is 
frequently used in traditional Chinese medi-
cine. It was initially described in Ge Hong’s 
Handbook of Prescriptions for Emergencies 
during the Eastern Jin Dynasty and has been 
used clinically for over a thousand years. Ho- 
neysuckle was included in the Chinese Phar- 
macopoeia in 1995, and over 500 medicines 
containing Honeysuckle components are now 
used to treat various diseases. At first, Honey- 
suckle stems and leaves were used as medici-
nal components. All parts of Honeysuckle, es- 
pecially the flower buds, were used in therapeu-
tic therapy after the Ming Dynasty.

Honeysuckle is used in a wide range of medici-
nal formulations. Honeysuckle is used to pre-
pare tea, beverages, wine, and various food 
products, which may possess preventive or 
therapeutic properties against diseases [55]. 
Throughout the COVID-19 pandemic, Honey- 
suckle was extensively utilized as a heat-clear-
ing and detoxifying remedy in epidemic preven-
tion and treatment, closely associated with its 
constituents and properties. Honeysuckle com-
prises several phytochemical constituents, pri-
marily phenolic acids, volatile oils, saponins, 
and flavonoids. Honeysuckle, a traditional Chi- 
nese herbal remedy showing anti-inflammatory 
properties, contains active compounds that 
inhibit the release of inflammatory mediators, 
including CRP, INF-γ, IL-1β, IL-6, and TNF-α, thus 
reducing the initiation of inflammatory respons-
es. It can inhibit the inflammatory response in- 
duced by oxidative stress, exert immunosup-
pressive effects through inhibiting pro-inflam-
matory cytokines, and demonstrate anti-inflam-
matory effects by blocking signaling pathways 
such as NF-κB, JNK, mitogen-activated protein 
kinase (MAPK), and TLR4. Inflammation and 
immunity are closely related at the organiza-
tional, cellular, and molecular levels. The exclu-
sive use of anti-inflammatory, immunosuppres-
sive, or immunomodulatory medications for 
disease treatment is inadequate. The active 
compounds in Honeysuckle demonstrate anti-
inflammatory and immune-regulating proper-

ties, indicating substantial potential for applica-
tion [56] (Table 1).

Chlorogenic acid (CGA)

CGA is the primary phenolic acid in Honeysuckle, 
classified in the extensive phenolic acid family, 
with the IUPAC designation 3-o-caffeoylquinic 
acid, as shown in Figure 1A. CGA protects vas-
cular endothelial cells, thereby protecting car-
diac cells from TNF-α caused injury by obstruct-
ing the NF-κB and JNK signaling pathways, it 
can also impede the inflammatory response 
induced by lipopolysaccharide (LPS) by attenu-
ating the activation of the JNK/AP-1 and NF-κB 
signaling pathways [57]. Administering CGA in a 
rat model subjected to a high-fat diet can dimin-
ish left ventricular inflammatory cell infiltration 
and visceral fat [58]. In addition, CGA can also 
improve endothelial function through anti-
inflammatory effects, and it can reduce TNF-α-
induced protein expression of MCP-1, vascular 
cell adhesion molecule-1 (VCAM-1) and inter-
cellular adhesion molecule-1 (ICAM-1) [59].

Research has shown that the levels of IL-6, IL-1, 
and TNF-α in hypertensive patients are higher 
than those in normotensive individuals [36]. 
CGA can enhance vascular endothelial function 
by exerting antihypertensive effects through its 
anti-inflammatory properties [60]. Taking CGA 
in hypertensive patients can considerably re- 
duce blood pressure and improve vascular in- 
flammatory response, and there are no adverse 
responses [61]. Through the regulation of rein-
angiotensin-aldosterone-system (RAAS), CGA 
can lower levels of TNF-α, IL-1β, and other in- 
flammation-related indicators, improve vascu-
lar endothelial function and NO bioavailability, 
regulate the PI3K/AKT pathway, and thus exert 
antihypertensive effect [62-64]. CGA can sig-
nificantly reduce the atherosclerotic lesion area 
in the aortic root of ApoE-/- mice, reducing 
inflammatory markers and thus playing the role 
of anti-atherosclerosis [65]. The anti-AS mech-
anism of CGA pertains to its suppression of 
inflammatory responses and lipid accumula-
tion. CGA can significantly diminish the concen-
trations of IL-6, interleukin-8 (IL-8), TNF-α, MCP-
1, and IFN-γ associated with the onset and 
progression of AS in the serum of ApoE-/- mice, 
elevate the levels of anti-inflammatory cyto-
kines interleukin-4 (IL-4) and interleukin-10 (IL-
10), enhance the expression of MAPK, inhibit 
the downstream activation of JNK, and lower 
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Table 1. Detailed information on bioactive ingredients targeting anti-inflammatory effects in Honeysuckle

No. Active ingredients Mechanism of action Signaling pathways Treatment  
disease References

1 Chlorogenic acid (1) Suppress inflammatory responses and lipid accumulation
(2) Reduce IL-6, IL-8, TNF-α, MCP-1 and IFN-γ
(3) Enhance the expression of MAPK

Inhibit the downstream activation of JNK AS [65, 66]

2 Chlorogenic acid (1) Regulate RAAS
(2) Increase NO bioavailability
(3) Improve vascular endothelial function
(4) Reduce IL-1β, TNF-α, etc.

Regulate PI3K/AKT signaling pathway Hypertensive [62-64]

3 Chlorogenic acid (1) Reduce IL-1β, IL-6, TNF-α, and INF-γ
(2) Increase IL-4 and IL-10
(3) Enhance antioxidant enzyme activity

Inhibit NF-κB and JNK signaling pathways AMI [57]

4 Chlorogenic acid (1) Reduce the levels of inflammatory factors 
(2) Inhibit ROS production
(3) Reduce ANP, BNP and β-MHC

Inhibit NF-κB and JNK signaling pathways Heart failure [68, 69]

5 Caffeic acid (1) Inhibit the inflammatory response
(2) Decrease TNF-α and IL-6, etc.

Inhibit NF-κB signaling pathway AS [82, 83]

6 Caffeic acid (1) Increase NO release and the bioavailability of NO
(2) Promote the generation and proliferation of endothelial cells
(3) Inhibit leukocyte adhesion and endothelial cell apoptosis
(4) Inhibit ROS production

Inhibit JAK/STAT and ERK1/2 signaling pathways Hypertensive [64, 72, 73]

7 Luteolin (1) Reduce macrophage infiltration
(2) Inhibit the expression of ICAM-1, VCAM-1, TNF-α and IL-6

Inhibit NF-κB, AKT signaling pathways AS [81]

8 Luteolin (1) Reduce IL-1β, IL-18, and TNF-α
(2) Downregulate the expression of TLR4, MyD88 and NF-κB

Regulate TLR4/NF-κB/NLRP3 and Sirt1/NLRP3/NF-κB signaling pathways MI/R [82-84]

9 Luteolin (1) Inhibit ROS production
(2) Suppress the activate antioxidant enzymes
(3) Obstruct leukotriene production and release

Inhibit NF-κB, AKT and MAPK signaling pathways Heart failure [76, 77]

10 Quercetin (1) Inhibit expression of ICAM-1 and VCAM-1 
(2) Reduce IL-1 β and TNF-α
(3) Inhibit the expression of TLRs
(4) Inhibit endothelial leukocyte adhesion

Inhibit TLR/NF-κB signaling pathway AS [92, 93]

11 Quercetin (1) Reduce IL-1β and TNF-α
(2) Reduce the transcriptional activity of NF-κB

Inhibit NF-κB and AP-1 signaling pathways CHD [94-96]

12 Quercetin (1) Inhibit ROS production
(2) Reduce TNF-α, IL-6 and IL-1β
(3) Increase IL-10
(4) Reduce CK and LDH

Inhibit TLR4/NLRP3 signaling pathway MI/R [99-101]

13 Quercetin (1) Weaken the activation of NLRP3 inflammasomes
(2) Inhibit the inward flow of Ca2+ and Na+ and the outward flow of K+

(3) Reduce IL-1β, IL-18, TNF-α, and IL-6
(4) Inhibit ROS production

Inhibit NF-κB signaling pathway Arrhythmia [99, 102]
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the levels of IL-6, IL-1β, and TNF-α in LPS-
induced RAW264.7 cells [65, 66]. CGA can sig-
nificantly reduce the levels of IL-1β, IL-6, TNF-α, 
and INF-γ, increase the levels of IL-4 and IL-10, 
and enhance antioxidant enzyme activity in AMI 
model rats, thereby inhibiting cardiac dysfunc-
tion caused by an inflammatory response, 
reducing MI area, reducing myocardial injury 
and fibrosis degree, and improving survival rate 
after MI [67].

Studies indicate that in a mouse model of heart 
failure generated by transverse aortic constric-
tion, CGA exhibits cardioprotective properties 
by reducing the levels of inflammatory factors 
and suppressing the activation of NF-κB and 
JNK signaling pathways, safeguarding myocar-
dial cells from TNF-α-induced injury, and de- 
monstrating anti-apoptotic activities. Further- 
more, it suppresses isoproterenol-induced my- 
ocardial hypertrophy by obstructing the ROS 
and NF-κB pathway, resulting in reduced levels 
of hypertrophic markers atrial natriuretic pep-
tide (ANP), brain natriuretic peptide (BNP), and 
beta-myosin heavy chain (β-MHC), thus pre-
venting and reversing myocardial hypertrophy, 
which is crucial for heart failure treatment [68, 
69].

Caffeic acid (CA)

CA is one of the active components in Honey- 
suckle, with a structure as shown in Figure 1B. 
Moreover, widely found in numerous plants, it 
can protect the cardiovascular system through 
various mechanisms, including its anti-inflam-
matory and antioxidant capabilities. One of  
the primary mechanisms CA exerts therapeutic 

rats. CA can increase NO release, promote the 
generation and proliferation of endothelial 
cells, and inhibit leukocyte adhesion and endo-
thelial cell apoptosis. Agunloye et al. [64] found 
that CA can actively regulate blood pressure in 
cyclosporin-induced hypertensive rats by in- 
creasing the bioavailability of NO. CA can have 
therapeutic effects on spontaneously hyper-
tensive rats by suppressing the proliferation of 
smooth muscle cells, blocking the JAK/STAT 
and ERK1/2 signaling pathways, and inhibiting 
ROS production [73]. In vitro studies in human 
umbilical vein endothelial cells (HUVECs) have 
shown that CA (5-25 μM) significantly reduces 
TNF-α induced monocyte adhesion to HUVECs, 
as well as the expression of adhesion factors 
such as VCAM-1 and ICAM-1. CA can also 
directly inhibit NF-κB DNA binding activity in 
TNF-α induced HUVECs [74]. Sun et al. [75] 
showed that CA can reduce the area of athero-
sclerotic lesions in the whole aorta and aortic 
sinus of ApoE-/- mice by 50% compared with 
the normal saline control group. It is suggested 
that CA can serve as a preventive and thera-
peutic agent in AS by inhibiting the inflamma-
tory response, as evidenced by its ability to 
reduce local inflammation and decrease TNF-α 
and IL-6.

Luteolin

Luteolin is a low-toxicity natural flavonoid com-
pound, as shown in Figure 1C, which has been 
demonstrated to have protective effects again- 
st various cardiovascular diseases. Luteolin pri-
marily exerts anti-inflammatory effects by inhib-
iting the expression of NO and inducible nitric 
oxide synthase (iNOS), eliminating ROS, sup-

Figure 1. Chlorogenic acid (A), Caffeic acid (B), Luteolin (C), Quercetin (D).

effects on CVD is its anti-
inflammatory action. By dimin-
ishing leukocyte intrusion and 
suppressing the expression of 
inflammatory cytokines includ-
ing serum IL-6, IL-8, and TNF-
α, CA can have anti-inflamma-
tory actions, thereby treating 
CVD [70].

CA has an antihypertensive 
solid effect and has been 
proven to have non-toxic side 
effects [71]. Fukuda et al. [72] 
reported that CA has a vasodi-
latory impact on aging and 
spontaneously hypertensive 
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pressing ROS production and the activation of 
antioxidant enzymes, obstructing leukotriene 
production and release, and diminishing the 
expression of pro-inflammatory cytokines thr- 
ough the inhibition of pathways such as NF-κB, 
AKT, and MAPK, ultimately reducing myocardial 
cell apoptosis and enhancing myocardial cell 
function [76, 77]. Luteolin demonstrates anti-
inflammatory properties in in vivo and in vitro 
studies, mitigating inflammation induced by 
pro-inflammatory agents. Luteolin can diminish 
LPS-induced AKT phosphorylation, activate 
antioxidant enzymes, and inhibit the NF-κB 
pathway and the synthesis of pro-inflammatory 
mediators. Luteolin can also inhibit pro-inflam-
matory cytokines, such as IL-2, IL-6, IL-8, IL-1β, 
IFN-β, and TNF-α, and increase the anti-inflam-
matory factor IL-10 [78]. It was initially discov-
ered by Wu et al. that luteolin dose-dependent-
ly suppresses the production of TNF-α and IL-6 
in macrophages [79]. In SD rat bone marrow-
derived macrophages, luteolin can limit the 
release of TNF-α, IL-8, IL-6, and granulocyte-
macrophage colony-stimulating factor (GM- 
CSF) in addition to inhibiting the activation 
pathways of NF-κB, ERK1/2, and JNK1/2 [80].

Inflammatory responses are thought to signifi-
cantly influence the formation and progression 
of AS, in addition to the accumulation of lipo-
proteins in the artery wall [10]. In ApoE-/- mice, 
luteolin may significantly reduce AS caused by 
a high-fat diet by lowering macrophage infiltra-
tion and mRNA expression of TNF-α, IL-6, ICAM-
1, and VCAM-1 [81]. The pathways and complex 
interactions of inflammation play a crucial role 
in the process of MI/R injury. Luteolin can pro-
tect against MI/R injury via the TLR4/NF-κB/
NLRP3 inflammasome pathway. Moreover, lute-
olin can significantly downregulate the expres-
sion of MyD88, NF-κB, and TLR4 while decreas-
ing the serum levels of IL-1β, IL-18, and TNF-α in 
MI/R model rats and the supernatant of H9c2 
cells [82, 83]. This might be connected to the 
potent cardioprotective effect of luteolin on 
MI/R damage. By controlling the Siti1/NLRP3/
NF-κB inflammasome pathway, significantly 
reducing leukocyte infiltration, and upregulat-
ing the expression of several upstream binding 
factors, luteolin can also reduce inflammatory 
damage in rats following MI/R [84]. The above 
research indicates that luteolin can strengthen 
the contraction of myocardial cells, improve 
cardiac function, and reduce the infarct size.

The restricted oral bioavailability of flavonoids 
is typically attributed to first-pass metabolism 
in the liver and intestines. The limited thera-
peutic application of luteolin is due to its low 
bioavailability and inadequate water solubility. 
The use of preparation technologies, including 
particulate drug delivery systems, solid disper-
sions, inclusion complexes, phospholipid com-
plexes, and hydrogels, can enhance the bio-
availability of luteolin. The bioavailability of 
luteolin can be up to ten times higher than that 
of the original drugs, which offers essential 
support for further studies [85].

Quercetin

Quercetin is a flavonoid compound and one of 
the active ingredients in Honeysuckle, as 
shown in Figure 1D. Quercetin has anti-inflam-
matory, anti-atherosclerotic, and anti-prolifera-
tive effects [86, 87]. Quercetin has good phar-
macokinetic characteristics. According to a 
network pharmacology study, quercetin inter-
acts with 12 Kyoto Encyclopedia of Genes and 
Genomes (KEGG) signaling pathways and 47 
targets associated with CVD, which may result 
in synergistic therapeutic effects. Quercetin 
prevents and treats CVD by systematically and 
thoroughly regulating numerous signaling path-
ways, including TNF-α, MAPK, IL-17, and PI3K/
AKT pathways associated with inflammation 
[88]. Quercetin reduces inflammatory reac-
tions, cellular apoptosis, and ROS production 
brought on by LPS. This has been associated 
with the activation of caspase-3 and NF-κB, 
which PI3K/AKT controls. ROS and TLRs can 
activate the PI3K/AKT signaling pathway [89, 
90]. Quercetin can also weaken the activation 
of NLRP3 inflammasomes, thereby playing a 
protective role in the cardiovascular system 
[91]. Quercetin can inhibit the occurrence and 
development of AS by reducing inflammatory 
reactions [92, 93]. Quercetin can inhibit the 
TLR/NF-κB signaling pathway in endothelial 
cells, thereby inhibiting endothelial leukocyte 
adhesion induced by oxidized low-density lipo-
protein (ox-LDL) and alleviating inflammation of 
AS [93]. Quercetin can inhibit the expression of 
TLRs and the levels of TNF-α and IL-1β in rats 
with AS, and can inhibit the formation of athero-
sclerotic plaques and significantly lower serum 
levels of IL-1β and TNF-α by reducing the tran-
scriptional activity of NF-κB in individuals with 
CHD, thereby safeguarding cardiovascular 
health [94-96].
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Inflammation is intricately linked to myocardial 
infarction/reperfusion damage. While inflam-
mation is initiated during myocardial ischemia, 
restoring oxygen supply and blood flow enhanc-
es inflammatory signaling pathways [97, 98]. An 
essential component of the MI/R inflammatory 
phase is ROS and pro-apoptotic signaling path-
ways [24]. Quercetin can reduce ROS produc-
tion, alleviate MI/R injury, decrease MI area, 
and improve cardiac function in MI/R mice [99]. 
Quercetin can reduce myocardial injury mark-
ers such as creatine kinase (CK) and lactate 
dehydrogenase (LDH), raise IL-10, and sup-
press TNF-α, IL-6, and IL-1β production to less-
en MI/R injury [100, 101]. Quercetin can exert 
anti arrhythmic effects by inhibiting the inward 
flow of Ca2+ and Na+, inhibiting the outward flow 
of K+, suppressing ROS generation, weakening 
the activation of NLRP3 inflammasome, inhibit-
ing the NF-κB pathway and inflammatory cyto-
kines such as IL-1β, IL-18, TNF-α, and IL-6 [99, 
102].

Quercetin is absorbed throughout the intes-
tines of rats [103], and the total oral bioavail-
ability of quercetin in ileostomy patients is 24% 
[104]. The oral bioavailability of total quercetin 
was 59.1% after oral administration of querce-
tin in rats [105]. The T1/2 of total quercetin in 
the human body is highly protracted, with a dis-
tribution T1/2 of 3.8 hours and an elimination 
T1/2 of 16.8 hours [106]. Current studies dem-
onstrate that quercetin nanoparticle formula-
tions and oligoglycoside derivatives significant-
ly improve the bioavailability of quercetin, in- 
dicating substantial application potential [107, 
108].

Clinical trial study on Honeysuckle-related 
Chinese medicine prescription

Traditional Chinese medicine is usually used in 
clinical practice in the form of prescriptions to 
play a better role. Many traditional Chinese 
medicine prescriptions containing Honeysuckle 
have significant therapeutic effects on CVD, 
such as Si-Miao-Yong-An decoction, convention- 
al Chinese patent medicines such as Qidong- 
yixin oral liquid, Mailuoning, Tongsaimai Tablet, 
and other antipyretic toxic Chinese medicine 
prescriptions often reduce the incidence of 
angina pectoris and adverse cardiovascular 
events by inhibiting inflammatory reaction, anti-
AS, and stabilizing plaque.

Si-Miao-Yong-An decoction often plays a role in 
treating CVD by reducing inflammation. Clinical 
studies have shown that Si-Miao-Yong-An de- 
coction can significantly reduce the level of 
serum hs-CRP in acute coronary syndrome 
(ACS) patients and improve the onset of angina 
pectoris in ACS patients [109]. Si-Miao-Yong-An 
acts more effectively than atorvastatin calcium 
tablets alone, a decoction mixed with atorvas-
tatin calcium tablets in the treatment of AS and 
can help to transition unstable plaque to stable 
plaque, lower the level of hs-CRP and ease 
inflammation [110]. Qidongyixin oral liquid can 
significantly reduce the levels of inflammatory 
indicators hs-CRP, IL-6, and TNF-α in patients 
with acute MI, improve the cardiac function of 
patients, and reduce the incidence of adverse 
cardiovascular events [111]. Following four 
weeks of treatment with Tongsaimai tablets in 
patients with CHD, levels of CRP and endothe-
lin (ET) diminished, and dyslipidemia improved, 
demonstrating substantial changes relative to 
the control group [112]. Mailuoning helps to 
reduce inflammation and stabilize plaque. Mail- 
uoning and Lipitor used together significantly 
lower the serum hs-CRP level in ACS patients, 
and the results are better than those from 
Lipitor alone [113].

Discussion

Studies have shown that Honeysuckle alcohol 
extract can reduce the release of inflammatory 
mediators and cytokines such as IL-1, IL-6, and 
TNF-α [114]. The aqueous Honeysuckle extract 
can downregulate the mRNA and protein ex- 
pression levels of inflammatory cells through 
the TLR4/NF-κB signaling pathway [115]. The 
decoction of Honeysuckle improves the activity 
of superoxide dismutase (SOD) in myocardial 
tissue, lowers levels of malondialdehyde (MDA), 
mitigates oxidative damage, decreases inflam-
matory factors like IL-6 and TNF-α in myocardial 
cells, and lowers levels of myocardial enzymes 
like LDH, CK, and serum CK-MB, all of which 
protect the heart. The particular mechanism 
might entail the suppression of NF-κB and cas-
pase-3 expression [116]. Prior clinical studies 
have demonstrated that following two months 
of quercetin administration, patients showed 
enhancements in left ventricular systolic per-
formance and left ventricular ejection fraction 
(EF). Chekalina et al. performed clinical re- 
search with 85 patients suffering from CHD, 
demonstrating that quercetin can influence 
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central hemodynamic parameters in stable 
CHD patients and improve myocardial isch-
emia. This indicates that quercetin possesses 
a cardioprotective effect in individuals with 
CHD [117].

Currently, in addition to the four active sub-
stances of Honeysuckle, namely CGA, CA, lute-
olin, and quercetin, which have been widely 
reported, organic acids such as ferulic acid, fla-
vonoids such as kaempferol and cynaroside 
have been shown to have anti-inflammatory 
effects. Ferulic acid inhibits cyclooxygenase-2 
(COX-2), prostaglandin E2 (PGE2), and TNF-α, 
improving endothelial function in vivo and in 
vitro [118, 119]. Clinical studies have also 
shown that ferulic acid can effectively alleviate 
angina attacks in patients with CHD angina 
pectoris [120]. Ferulic acid can significantly 
reduce the inflammatory markers hs-CRP and 
TNF-α in subjects, and supplementing with 
ferulic acid can improve patients’ blood lipid 
status and inflammation [121].

In cells untreated and treated with kaempferol, 
pathway analysis of differentially expressed 
genes (DEG) indicates that kaempferol exhibits 
anti-inflammatory and anti-atherosclerotic pro- 
perties in atherosclerotic cell models. In cells 
treated with kaempferol, the expression of 
MCP-1 diminished by 73.7-fold, while the ex- 
pression of ICAM-1 decreased by 2.5-fold 
[122]. Moreover, research has shown that ka- 
empferol can inhibit the activation of AKT and 
NF-κB in LPS and adenosine triphosphate 
(ATP)-induced cardiac fibroblasts and signifi-
cantly inhibit the release of IL-6, IL-18, IL-1β, 
and TNF-α, thereby alleviating the inflammatory 
response of cardiac fibroblasts [123]. Cynaro- 
side is a flavonoid found in Honeysuckle, and it 
has been demonstrated to possess potential 
biological effects in modulating inflammation 
and inhibiting azithromycin-induced cardiomyo-
cyte pyroptosis [124].

The present study demonstrates that Honey- 
suckle and its active constituents can reduce 
the concentrations of inflammatory factors IL- 
1β, IL-6, IL-8, IL-18, TNF-α, MCP-1, and IFN-γ, 
while increasing the levels of anti-inflammatory 
factors IL-10 and IL-4, etc. They downregulate 
the mRNA and protein expression levels of in- 
flammatory cells, reduce macrophage infiltra-
tion, inhibit leukocyte adhesion, regulate RAAS, 
increase NO levels and NO bioavailability, inhib-

it ROS production, inhibit ICAM-1 and VCAM-1 
expression, improve vascular endothelial func-
tion, and exert therapeutic effects on CVD by 
regulating inflammatory signaling pathways 
such as TLR/NF-κB, NLRP3/NF-κB, TLR4/
MyD88/NF-κB, PI3K/AKT, TLR4/NLRP3, JNK, 
etc.

The onset and progression of CVD are tightly 
linked to the inflammatory response. As a 
strong anti-inflammatory agent, Honeysuckle is 
a traditional Chinese medicine that may be 
used to both prevent and treat CVD. Although 
Honeysuckle’s anti-inflammatory properties are 
beneficial in treating CVD, numerous challeng-
es must be addressed. First, current research 
focuses on a few components, such as flavo-
noids, and ignores other potential bioactive 
components, which may limit the disclosure of 
the full pharmacological effects of Honeysuck- 
le. Second, the oral bioavailability of Honey- 
suckle is a crucial issue. As a traditional Chi- 
nese medicine, Honeysuckle is mainly adminis-
tered orally; however, the low oral bioavailability 
of its flavonoids and organic acids restricts its 
therapeutic effects. Furthermore, current re- 
search into the anti-inflammatory properties of 
Honeysuckle concerning CVD predominantly 
emphasizes animal model studies and in vitro 
cellular tests, with a notable deficiency of ade-
quate clinical trials to substantiate its thera-
peutic efficacy in people through inhibiting the 
inflammatory response. Therefore, this review 
mainly provides evidence for the anti-inflamma-
tory treatment of CVD with Honeysuckle through 
animal studies and cellular tests, lacking clini-
cal research evidence. Moreover, there are 
many active ingredients in Honeysuckle. This 
review only summarizes some common active 
ingredients that exert therapeutic effects on 
CVD through anti-inflammatory mechanisms, 
and the mechanism of action of Honeysuckle is 
not fully revealed.

Comprehensive studies on the active ingredi-
ents of Honeysuckle are necessary to clarify its 
pharmacological effects, evaluate its interac-
tions with microorganisms in clinical trials, and 
determine its metabolic benefits. Meanwhile, 
developing innovative dosage forms or delivery 
mechanisms to improve bioavailability can help 
establish favorable conditions for employing 
Honeysuckle as a natural medicinal agent or 
functional food to prevent CVD. Improving bio-
availability is a key link to promoting the trans-
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formation of Honeysuckle into modern drugs 
and realizing its anti-inflammatory therapeutic 
potential for CVD. The active compound in 
Honeysuckle has been extensively validated in 
fundamental research for its anti-inflammatory 
properties for CVD and has demonstrated con-
siderable therapeutic potential. As a result, 
additional high-quality clinical trials should be 
undertaken, and long-term follow-up assess-
ments should be implemented to furnish robust 
evidence supporting the widespread clinical 
application of Honeysuckle in the anti-inflam-
matory treatment of CVD.
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