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Abstract: Objectives: Breast cancer is the most common cancer and the leading cause of cancer-related death 
among women. An Estrogen Receptor (ER) antagonist called tamoxifen is used as an adjuvant therapy for ER-posi-
tive breast cancers. Approximately 40% of patients develop tamoxifen resistance (TAMR) while receiving treatment. 
Cancer cells can rewire their metabolism to develop resistant phenotypes, and their metabolic state determines how 
receptive they are to chemotherapy. Methods: Metabolite extraction from human MCF-7 and MCF-7/TAMR cells was 
done using the methanol-methanol-water extraction method. After treating the dried samples with methoxamine hy-
drochloride in pyridine, the samples were derivatized with 2,2,2-Trifluoro-N-methyl-N-(trimethylsilyl)-acetamide, and 
Chlorotrimethylsilane (MSTFA + 1% TMCS). The Gas chromatography/mass spectrometry (GC-MS) raw data were 
processed using MSdial and Metaboanalyst for analysis. Results: Univariate analysis revealed that 35 metabolites 
were elevated in TAMR cells whereas 25 metabolites were downregulated. N-acetyl-D-glucosamine, lysine, uracil, 
tyrosine, alanine, and o-phosphoserine were upregulated in TAMR cells, while hydroxyproline, glutamine, N-acetyl-
L-aspartic acid, threonic acid, pyroglutamic acid, glutamine, o-phosphoethanolamine, oxoglutaric acid, and myo-
inositol were found to be downregulated. Multivariate analysis revealed a distinct separation between the two cell 
lines, as evidenced by their metabolite levels. The enriched pathways of deregulated metabolites included valine, 
leucine, and isoleucine degradation, Citric Acid Cycle, Warburg effect, Malate-Aspartate shuttle, glucose-alanine 
cycle, propanoate metabolism, and Phospholipid biosynthesis. Conclusion: This study revealed dysregulation of vari-
ous metabolic processes in TAMR cells, which may be crucial in elucidating the molecular basis of the mechanisms 
underlying acquired tamoxifen resistance.
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Introduction

Breast cancer is one of the most prevalent can-
cers across the globe. In 2020, breast cancer 
affected 2.3 million women, resulting in a total 
of 685,00 deaths worldwide [1]. The develop-
ment of accurate biomarkers for early detec-
tion, routine screening, and breast cancer pre-
vention has helped to increase the survival rate 
of breast cancer patients. Moreover, the sur-
vival rate of patients also increased due to  
the introduction of novel chemotherapeutic 
approaches such as anti-HER2 therapy, anti- 

ER therapy, anti-PI3K, anti-mTOR therapy, and 
anti-PD1 immunotherapy [2]. Approximately 
70-75% of invasive breast carcinomas have 
high estrogen receptor (ER) expression [3]. 
Tamoxifen (TAM), a nonsteroidal anti-estrogen 
drug, is most widely used to treat estrogen 
receptor-positive breast cancer. Dr. Arthur L. 
Walpole, during his tenure being in-charge of 
the ICI Pharmaceuticals Division’s fertility con-
trol program, made the discovery of TAM [4]. 
Tamoxifen increases the overall survival when 
used as adjuvant therapy for early breast can-
cer, and is believed that its widespread usage 
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has significantly contributed to the drop in 
breast cancer mortality [5].

Despite the clear advantages of tamoxifen in 
these therapeutic contexts, nearly all patients 
with metastatic disease and up to 40% of those 
taking adjuvant tamoxifen eventually experi-
ence relapse and succumb due to the acquired 
resistance to tamoxifen [6]. Loss of ER ex- 
pression could result in resistance to therapy 
because tamoxifen’s effects are predominantly 
mediated through the ER, and the level of ER 
expression is a good predictor of responses to 
tamoxifen. Although the majority of ER/PR- 
negative cancers do not respond to anti-estro-
gens, loss of ER expression is in fact the pri-
mary mechanism of de novo resistance to 
tamoxifen. Aromatase inhibitors or the ER- 
down-regulator fulvestrant can help up to 20% 
of patients who are not responding to tamoxi-
fen. This shows that ER still controls growth in 
many of these TAMR cancers [7].

Several mechanisms have already been estab-
lished for tamoxifen resistance, including the 
downregulation of the estrogen receptor alpha 
(ER), protective autophagy of drug-resistant 
cells, deregulation of cell cycle regulators, and 
the downregulation of transcription factors  
and enzymes that regulate estrogen receptor 
expression [8, 9]. Metabolic reprogramming is 
one of the hallmarks of cancer cells. Dere- 
gulated metabolism in cancer cells produces a 
significant quantity of metabolites, which are 
necessary for the production of macromole-
cules and may promote cancer growth, metas-
tasis, and treatment resistance [10, 11].

Cancer cells can rewire their metabolism to 
develop resistant phenotypes, and their meta-
bolic state determines how responsive they are 
to chemotherapy [12]. Cellular metabolomics is 
an important part of systems biology because 
it uses high-throughput detection technology  
to analyze intra- and extracellular small mole-
cules (metabolites) qualitatively and quantita-
tively, which can be considered the best func-
tional signature of phenotype, and to obser- 
ve changes in metabolite concentration [13]. 
Mass spectrometry plays a significant role as  
a key analytical tool in the field of metabolo-
mics. Mass spectrometry in combination with 
gas and liquid chromatography are the two 

most important analytical techniques for the 
study of metabolites in complex biological mix-
tures. Due to its much higher sensitivity and 
fast data acquisition, MS plays an increasingly 
important role in the field of metabolomics  
[14].

The effect of TAM and/or Paclitaxel treatment 
on the metabolomics of breast cancer cells 
MCF-7 and MDA-MB-31 was studied by utilizing 
GC-MS to identify key metabolites that are  
differentially abundant in TAM-treated cells, as 
well as pathways associated with these metab-
olites [15, 16]. A different study used another 
metabolomics approach based on proton nu- 
clear magnetic resonance spectroscopy (1H-
NMR) to study TAM resistance by comparing 
metabolites from MCF-7, MCF-7/TAMR, and 
choline kinase-α (CK-α) knockdown MCF-7/
TAMR cells [17]. To date, no study has reported 
a GC-MS-based analysis of TAM resistant 
breast cancer cells. Human adenocarcinoma 
MCF-7 cells are estrogen and progesterone-
receptor positive and represent the luminal A 
subtype [18]. The aim of this study was to com-
pare the metabolic profiles of MCF-7 cells and 
MCF-7/TAMR cells using GC-MS-based metab-
olomics to unearth the differential metabolite 
levels and altered metabolic pathways that 
could pave the way for therapeutic targeting of 
drug-resistant breast cancer cells.

Materials and methods

Reagents

All reagents and chemicals used in this study 
were HPLC-grade. Water and methanol were 
purchased from Merck. 4-Hydroxytamoxifen 
was purchased from Sigma Aldrich (USA). 
Alkane standard mixture C10-C40 (all even) was 
procured from Supelco. Ribitol (adonitol) and 
methoxyamine hydrochloride were purchased 
from Thermo Fisher (USA), pyridine from 
Thermo Fisher (USA), and N-Methyl-N-(trime- 
thylsilyl) trifluoroacetamide with 1% trimethyl-
chlorosilane (MSTFA + 1% TMCS) from SRL 
(Mumbai, India). 

To establish MCF-7 and MCF-7/TAMR breast 
cancer cell culture

The MCF-7 human breast cancer cell line was 
procured from the National Repository for Cell 
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Lines, National Centre of Cell Sciences (Pune, 
India), and MCF-7/TAMR cells were purchased 
from American Type Culture Collection (ATCC). 
These cell lines were cultured in Dulbecco’s 
Minimum Essential Medium (DMEM) contain-
ing 10% heat-inactivated Fetal Bovine Serum 
(FBS), 10 μg/mL insulin, 100 U/mL penicillin, 
and 100 μg/mL streptomycin at 37°C in a 95% 
humid atmosphere with 5% CO2. MCF-7/TAMR 
cells were cultured in DMEM containing 1 µM 
4-hydroxytamoxifen. Cells in a tissue culture 
flask (25 cm2) were rinsed for maintenance with 
Ca++ and Mg++-free PBS, pH 7.2, and the media 
was replaced every two days. Cells were divid-
ed using a trypsin solution when confluence 
reached 80-90%. In order to do this, the medi-
um was aspirated, and cells were then rinsed 
with PBS for 1-2 minutes and then incubated 
for 1-2 minutes with 2 mL of a 0.5% trypsin 
solution containing EDTA-4 Na. After removing 
the trypsin solution, the flask was turned verti-
cally for three to five minutes to cause cell sep-
aration. This was followed by the addition of 
fresh culture media, aspiration, and dispensing 
into brand-new culture flasks at a split ratio of 
1:3-1:6.

Metabolite extraction

The samples were processed in triplicate. Two 
million cells were taken for metabolite extrac-
tion. The metabolites were extracted in three 
sequential steps. Initially, the cell pellets were 
resuspended in 500 μL cold MeOH (-20°C)  
and, 30 µl of ribitol solution (0.2 mg/ml in 
water) as an internal standard was added to 
each sample. After being vortexed for 30 sec-
onds, the samples were quickly frozen in liquid 
nitrogen. The samples were centrifuged at 800 
g for 1 minute at 4°C after being thawed at 
37°C, and the supernatant was then trans-
ferred to a new centrifuge tube placed on dry 
ice. Once more, the freeze-thaw procedure was 
carried out with 500 μL of a cold MeOH solvent. 
Finally, 250 μL of ice-cold water was used for 
freeze-thaw extraction process, and the sam-
ple was centrifuged at 15,000 g for 1 min. The 
supernatant obtained from each extraction 
step (Methanol-Methanol-Water) was pooled 
together, and vacuum centrifugal evaporation 
was used to dry the samples, which were then 
kept at -80°C until analysis [19, 20]. Sub- 
sequently, the dried samples were mixed with 

20 µL of MOX reagent, which contains 20 mg/
mL of methoxyamine-hydrochloride in dry pyri-
dine. A 90-minute incubation period in a digi-
tally heated, shaking dry bath (Thermomixer, 
Eppendorf) at 30°C and 1100 rpm followed. 
The samples were derivatized by adding 80  
µL of N-Methyl-N-(trimethylsilyl) trifluoroacet-
amide with 1% trimethylchlorosilane (MSTFA + 
1% TMCS), followed by a 30-minute incubation 
in Thermomixer at 60°C.

GC-MS analysis 

Chromatographic separation of derivatized 
samples was achieved by using a GC-MS outfit-
ted with a Triplus 100 autosampler, a Trace 
1300 gas chromatograph, and a TSQ 8000 
(Thermo Fisher Scientific) Triple Quadrupole 
Mass Spectrometer. The Trace GOLD TG-5MS 
(Thermo Scientific) column, which has a diam-
eter of 0.25 mm, a thickness of 0.25 mm, and 
a length of 30 m, was used for the analyte  
separation. The oven’s temperature was raised 
from 50°C for one minute to 100°C at a rate of 
6°C per minute, 200°C at a ramp rate of 4°C 
per minute, and then 280°C at a rate of 20°C 
and held for three minutes. The temperatures 
of the injection port, ion source, and transfer 
line were 250°C, 250°C, and 200°C, respec-
tively. Helium was used as a carrier and argon 
as a collision gas. The metabolites were frag-
mented using electron ionization (EI) with an 
energy of 70 electron volts (eV). The analysis 
was conducted using the full scan mode, cover-
ing a mass range of 50 to 650 Daltons with a 
solvent delay of 4 minutes [21].

Data analysis

Preprocessing of GC-MS data: GC-MS generate 
raw data in ‘.raw’ format. The raw data were 
converted to an abf file format and processed 
using MS-DIAL (mass spectrometry-data inde-
pendent analysis) [22]. Further analysis was 
performed by selecting hard ionization (GC- 
MS) as the ionization type and data-dependent 
mode in MS-DIAL. Using default MS-DIAL set-
tings, processed mass spectra were created, 
consisting of peak masses and their area inten-
sities. The minimum peak width and height 
were 5 and 1000, the MS1 was centroid, the 
ion mode was positive, the mass range was 
50-650 Dalton, the retention time range was 
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0-40.5 min, the mass tolerance was 0.25 m/z, 
the retention time tolerance was 5 s. The EI 
spectra cutoff was set to 10 amplitude, and  
the sigma window value was set to 0.5 for the 
MS1 deconvolution. Annotation was performed 
using the “All records with Kovats RI (9062 
unique compounds)” EI-MS library available on 
the MSdial website, which contain data from 
Fiehn DB, RIKEN DB, Kazusa DB, and MoNA 
volatile, by comparing the processed mass 
spectra data against the libraries with an 80% 
identification score cut off [23]. Annotated 
metabolites were confirmed by using the Na- 
tional Institute of Standards and Technology 
(NIST) mass spectral library available in GC-MS 
system.

Metabolomics statistical analysis: Pre-proce- 
ssed metabolite data with related peak area 
was statistically analyzed using the web-based 
tool ‘MetaboAnalyst 5.0’ https://www.metabo-
analyst.ca/ (retrieved on February 10, 2022) 
[24]. Interquartile range (IQR) statistical filter 
was selected while performing data filtering. To 
reduce systematic biases within the sample of 
the experiment, total area normalization was 
used [25]. To remove offsets and equalize the 
importance of high- and low-abundance me- 
tabolites, the data were log-transformed and 
Pareto scaled for multivariate analysis. PCA dis-
played the original data distribution. To achieve 
a high level of group separation and to identify 
the variables responsible for classification, 
supervised Orthogonal Partial Least Squares 
Discriminant Analysis (OPLS-DA) was used. 
Sevenfold cross-validation was used to validate 
the OPLSDA model. The model’s quality was 
evaluated using R2 and Q2 scores, and the per-
mutation test was used to validate it. To identi-
fy significantly differentially abundant metabo-
lites between control and TAMR, the OPLS-DA 
model was used with the first principal compo-
nent of Variable Importance in Projection (VIP) 
values and the Student’s t-test. To correct for 
multiple comparisons, the q values (adjusted P 
values), which were raw P values from the t-test 
adjusted using the Benjamini and Hochberg 
procedure (BH method), were used. By compar-
ing the mean values of the peak areas obtained 
from the control and TAMR, the fold change in 
metabolite abundance was calculated. Box and 
whisker plots were generated for downregulat-
ed and upregulated metabolites. The enrich-
ment analysis was performed by using the 

metabolite concentration table in .csv format. It 
uses a generalized linear model to estimate a 
Q-statistic for each set of metabolites. This 
model shows how compound concentration 
profiles are related [26]. 

Results

Metabolite identification

The aim of this study was to use GC-MS to 
explore the metabolism of MCF-7 and MCF-7/
TAMR cells in order to identify altered metabol-
ic pathways during tamoxifen resistance in 
breast cancer. The full-scan GC-MS chromato-
grams of MCF-7 and MCF-7/TAMR cells are rep-
resented in Figure 1. Two experimental repeats 
were performed in order to observe patterns 
and trends in the results and ensure the integ-
rity of the data. Pooled QC mixtures were ana-
lyzed to check system stability. The PCA plot 
(Supplementary Figure 1) effectively demon-
strates the clustering patterns seen among 
quality control (QC) samples, which indicates 
the stability of the GC-MS platform was satis-
factory throughout the experiment. A total da- 
taset of 2025 features was generated. To fa- 
cilitate the calculation of Kovats retention indi-
ces, an alkane standard mixture C10-C40 (all 
even carbon) was analyzed using the same 
instrument parameters. Metabolite identifica-
tion was performed based on MS spectra and 
retention indices (RI). The set of compounds 
that met the criteria and showed MS with RI 
was then annotated using the spectral library. A 
total of 114 compounds were selected for fur-
ther statistical analysis.

Identification of deregulated metabolites in 
TAMR cells

To investigate the impact of TAM resistance on 
metabolite levels and to identify significant dif-
ferences in metabolites between control MCF-7 
and MCF-7/TAMR cells, we used a Student 
t-test and fold change analysis. There were a 
total of 60 significant metabolites discovered 
out of a total of 114 identified metabolites. The 
criteria for significance were a fold change (FC) 
threshold of 2 and a p-value ≤ 0.05. Out of a 
total of 60 metabolites, 35 were found to be 
upregulated in TAMR cells and 25 were found  
to be downregulated (Table 1). Figure 2A re- 
presents significant upregulated and downreg-
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Figure 1. The overlay total ion chromatograms (TIC) by gas chromatography-mass spectrometry. The TIC from Control MCF-7 cells and MCF-7/TAMR cells are repre-
sented by the colors red and blue, respectively.
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Table 1. Significant metabolite features obtained from volcano plot (fold change threshold of 2 and 
p-value ≤ 0.05)
Retention Time Metabolites Quant Mass Fold Change log2(FC) raw.pval
19.62 N-Acetyl glucosamine 72.98 31.22 4.964 1.16E-10
20.73 Ribulose 5-phosphate 357.06 28.17 4.816 0.00013
16.25 L-Lysine 174.05 24.60 4.620 1.43E-5
11.86 Xylitol 217.06 17.29 4.111 4.32E-11
4.96 Uracil 241.05 11.00 3.459 2.08E-7
15.30 Pyridoxal 309.09 9.79 3.292 3.12E-11
14.12 Glycylglycine 174.06 9.11 3.188 7.55E-10
12.46 D-Arabitol 217.05 7.85 2.974 6.59E-9
14.36 Citrulline 157.07 7.77 2.958 0.00056
30.82 2-monostearin 129.02 7.30 2.869 7.13E-7
8.11 L-Methionine 176.04 6.56 2.715 1.93E-8
4.93 Glyceric acid 189.06 6.48 2.697 4.63E-5
16.51 Tyrosine 218.03 6.37 2.672 0.00122
11.86 D-Ribulose 205.07 5.73 2.520 8.96E-10
28.76 Docosahexaenoic acid 79.018 5.13 2.359 2.11E-5
21.81 Oleic acid 116.99 4.95 2.309 2.26E-5
21.80 Elaidic acid 117.00 4.92 2.299 2.29E-5
33.92 Galactinol 204.07 4.67 2.225 0.00190
15.43 Hydroxyphenyllactic acid 179.03 4.17 2.062 0.00231
13.841 Phosphoserine 299.099 4.09 2.030 2.2058E-4
16.05 Glucose 205.07 3.99 1.999 1.13E-8
6.55 L-Aspartic acid 160.05 3.92 1.972 1.36E-6
4.06 L-Isoleucine 158.09 3.78 1.918 8.80E-7
17.65 Pantothenate 291.07 3.74 1.906 1.23E-14
10.23 Phenylalanine 218.05 3.66 1.875 2.29E-6
17.01 Galactitol 217.05 3.32 1.733 2.52E-10
6.42 beta-Alanine 248.10 3.25 1.704 2.42E-6
5.39 L-Serine 204.07 3.05 1.613 4.67E-8
17.71 Trans-Hexa-dec-2-enoic acid 117.00 2.89 1.535 0.00019
25.63 Arachidonic acid 79.02 2.76 1.468 0.00463
5.51 beta-Cyano-L-Alanine 141.04 2.36 1.244 0.01385
31.32 Monooleoylglycerol 397.26 2.33 1.226 0.02405
4.38 L-Proline 142.04 2.22 1.156 3.88E-9
17.81 Palmitoleic acid 116.99 2.03 1.024 0.04308
5.85 DL-Allothreonine 218.08 2.02 1.015 2.70E-7
16.27 Galactose 319.09 0.45 -1.147 8.86E-11
8.18 DL-Pyroglutamic acid 156.02 0.44 -1.172 5.52E-09
10.27 L-Glutamic acid 246.07 0.44 -1.179 4.50E-11
11.54 L-Arabinose 217.06 0.43 -1.212 1.38E-05
4.53 Glycine 174.05 0.42 -1.218 0.002706
21.49 Linoleic acid 221.05 0.37 -1.423 2.85E-05
8.17 Gamma-aminobutyric acid 72.97 0.35 -1.504 2.05E-07
31.26 Lactitol 204.05 0.29 -1.756 0.00029
18.68 Inositol 217.05 0.28 -1.836 3.41E-11
14.50 Citric acid 273.03 0.25 -1.947 9.15E-05
7.44 DL-Malic acid 147.00 0.25 -1.949 8.86E-08
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31.25 Lactose 204.03 0.25 -1.983 2.12E-07
8.98 Threonic acid 292.09 0.24 -2.053 8.90E-08
13.46 Glycerol 3-phosphoate 299.03 0.21 -2.199 4.74E-08
7.307 Aminomalonate 218.05 0.21 -2.212 1.51E-06
11.31 L-Asparagine 231.09 0.19 -2.368 1.82E-08
5.04 3-Aminopropionitrile 245.03 0.16 -2.570 1.42E-07
13.63 O-Phosphoethanolamine 299.01 0.09 -3.374 5.52E-05
13.51 Glycerol 1-phosphate 217.03 0.08 -3.577 1.57E-12
26.02 Glucose 6-phosphate 299.01 0.07 -3.783 2.17E-05
8.40 Hydroxyproline 230.08 0.06 -3.986 3.60E-05
9.39 a-Ketoglutaric acid 198.01 0.04 -4.332 2.19E-09
13.33 D-Glutamine 156.05 0.03 -4.762 0.00166
10.99 N-Acetyl aspartic acid 158.05 0.03 -5.042 0.00029
21.99 L-Tryptophan 202.05 0.003 -8.049 5.40E-06

ulated metabolites obtained by the volcano 
plot. In addition, heat map analysis was used  
to look at the metabolites in the MCF-7 and 
MCF-7/TAMR samples. In this analysis, the 
sample information is represented on the hori-
zontal axis, while the variable information is  
on the vertical axis. The red color signifies an 
increase, while the green color signifies a 
decrease in the concentration of metabolites 
(Figure 3).

Box and whisker plots of some important de- 
regulated metabolites are shown in Figure 4. 
Among the significantly altered metabolites, 
N-Acetyl-D-glucosamine (fold change = 40, P < 
0.001) was found to be the most upregulated 
metabolite, while tryptophan (fold change = 
0.003, P < 0.001) was found to be the most 
downregulated metabolite in TAMR cells. 

Identification of major discriminatory metabo-
lites

For multivariate statistical analysis, unsuper-
vised principal component analysis (PCA) and 
supervised Orthogonal Partial Least Squares 
Discriminant Analysis (OPLSDA) were perform- 
ed to evaluate the separation between MCF-7 
cells and MCF-7/TAMR cells. Figure 2B shows a 
PCA plot that clearly separates the two groups, 
indicating a substantial difference between the 
control and TAMR cell lines in terms of metabo-
lite levels. The supervised Orthogonal Partial 
Least Squares Discriminant Analysis (OPLS-DA) 
model was developed to identify the relation-
ship between metabolite expression level and 

both groups represented in Figure 5A. The 
OPLSDA model provided significant discrimi- 
nating metabolites between MCF-7 cells and 
MCF-7/TAMR cells. The explained variation (R2) 
and prediction capability (Q2) of a random per-
mutation test (n = 2000) were 0.971 and 0.96, 
respectively. Metabolites having a VIP score 
greater than 1 were considered most relevant 
for discriminating power (Figure 5B). Among  
the most important metabolites found are pyri-
doxal, inositol, galactitol, xylitol, n-acetyl-d-glu-
cosamine, pantothenate, pyroglutamic acid, 
L-glutamic acid, glycyl-glycine, galactose, and 
D-ribulose.

Metabolite set enrichment analysis

Quantitative enrichment analysis (QEA) was 
performed to obtain enriched pathways relat- 
ed to deregulated metabolites. All the annotat-
ed metabolites with their corresponding peak 
areas were analyzed using two reference data-
bases, Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [27] and the small molecule 
pathway database (SMPDB) [28]. Tamoxifen 
resistance had a significant impact on glucose/
energy metabolism, specifically on metabolic 
pathways that differed significantly between 
the two cell lines, such as valine, leucine, and 
isoleucine degradation, citric acid cycle, War- 
burg effect, malate-aspartate shuttle, mito-
chondrial electron transport chain, glucose-
alanine cycle, folate metabolism, propanoate 
metabolism, and phospholipid biosynthesis. 
Deregulated enriched pathways are depicted in 
Figure 6, and Table 2 represents the top 25 
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Figure 2. A. Important features selected 
by volcano plot with fold change thresh-
old (x) 2 and t-tests threshold (y) p-value 
< 0.05. Metabolites that are elevated 
and downregulated in Tamoxifen resis-
tant MCF-7 cells are represented by the 
red and blue dots, respectively. B. Prin-
cipal component analysis (PCA) of me-
tabolite data from control MCF-7 cells 
and MCF-7/TAMR cells, red and green 
dots represent control MCF-7 and MCF-
7/TAMR samples respectively.

enriched pathways along with statistical analy-
sis details.

Discussion

Both transcriptomic and metabolomics provide 
complimentary details regarding genetic modi-

fication, protein synthesis, metabolisms, and 
cellular function by reflecting changes in geno-
type and phenotype, respectively [29, 30]. The 
analysis of the metabolome of cancer cells has 
lately received interest as a diagnostic tool for 
the development and progression of cancer 
[31]. Metabolic reprogramming is thought to be 
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Figure 3. Heat Map. Clustering analysis of differentially expressed metabolites in MCF-7 cells and MCF-7/TAMR cells 
(distance measured using Euclidean, and clustering algorithm using ward D).

one of the characteristics of cancer [32]. In 
addition to influencing tumor development and 
patient survival, metabolic changes may play  
a role in mediating drug resistance [33, 34]. 
Metabolomics of chemo resistant cancer cells 
may reveal possible targets and inspire the cre-
ation of new therapeutic strategies for the 
treatment of the disease. In this study, we per-
formed untargeted metabolomics analysis and 
found various deregulated metabolites in 
MCF-7/TAMR cells compared to parental MCF-7 
cells. N-acetyl-D-glucosamine was the most 
significantly upregulated metabolite (fold chan- 
ge = 30, P < 0.001) in TAMR cells, which is an 

important metabolite of the hexosamine bio-
synthesis pathway (HBP). This suggests that in 
TAMR cells, the HBP pathway is upregulated. 
N-Acetyl-D-glucosamine is used for post-trans-
lational modification of the serine and threo-
nine residues in proteins by the enzyme 
O-linked N-acetylgluocosmaine transferase 
(OGT). As previously reported, treatment-induc-
ing O-GlcNAcylation protects breast cancer 
cells from TAM-induced cell death [35]. TAMR 
cells contain higher levels of pantothenic acid 
(fold change = 3.5, P < 0.001) and beta-alanine 
(fold change = 3.2005, P < 0.001). A study pre-
viously linked these metabolites to the glyco-
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Figure 4. Box and Whisker plot representing significantly deregulated metabolites (P < 0.05) in MCF-7 (red) and 
MCF-7/TAMR (green) cells. The X axes depicts metabolite, while Y axes represents the metabolite’s relative con-
centration. The box plots display interquartile ranges as boxes, with a horizontal line representing the median (50th 
percentile) within the box. The bottom and top of the boxes correspond to the 25th and 75th percentiles, respectively. 
The lower whisker represents the 5th percentile, while the higher whisker represents the 95th percentile. A. Down-
regulated metabolites in Tamoxifen resistant cells. B. Upregulated metabolites in Tamoxifen resistant cells.
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Figure 5. A. Two-dimensional representations of the Orthogonal Partial least square discriminant analysis (OPLS-DA) models to discriminate the Tamoxifen resistant 
(TAMR) cells and Control MCF-7 cells. B. The top 15 metabolites with Variable Importance in Projection score of 1.0 or above are displayed. The right-hand boxes 
show the relative concentration of the respective metabolite in each group being studied.
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Figure 6. Dot Plot representing Quantitative enrichment analysis of deregulated metabolites in TAM resistance 
breast cancer cells by using global test.

lytic activity and tumor aggressiveness in 
breast cancer cells [36].

We identified various lipids that were signifi-
cantly deregulated in TAMR, which include myo-
inositol, docosahexaenoic acid, oleic acid, ara-
chidonic acid, and palmitoleic acid. The TAMR 
cells displayed a notable reduction in myo-ino-
sitol, a part of membrane lipids. Myo-inositol 
has been reported to have many anti-cancer 
effects, including pro-apoptotic and anti-prolif-
erative effects in different cancer types, and 
dysregulation of inositol metabolism has been 
linked to cancer [37]. We have detected an 
upregulation of the arachidonic acid level in 
TAMR cells. It has been shown that arachidonic 
acid can activate PI3K pathways in cancer [38], 
which are also found to be elevated in TMAR 
cells [39, 40]. Additionally, arachidonic acid 
metabolite has also been identified as a poten-
tial therapeutic target in breast cancer aggres-
siveness and metastasis [41]. Docosahexae- 

noic acid was significantly increased (fold 
change = 4.8245, P < 0.001) in the TAMR cell. 
It is one of the fatty acid ligands of free fatty 
acid receptor 4 (FFAR4) and activates extra- 
cellular-signal-regulated kinase (ERK) and AKT 
pathways to produce the TAMR phenotype [42].

Among the deregulated amino acids, trypto-
phan, an essential amino acid, was found to  
be downregulated in MCF-7/TAMR cells. Trypto- 
phan catabolism has been found to be upregu-
lated in breast cancer patients compared to 
healthy individuals [43, 44]. Tryptophan is con-
verted to kynurenine by the enzyme Indolea- 
mine 2,3-dioxygenase (IDO), and increased IDO 
expression is correlated to tumor aggressive-
ness, poor prognosis, and chemoresistance 
against paclitaxel in breast cancer [45]. This 
suggests the role of tryptophan degradation in 
TAMR breast cancer cells.

Serine and phosphoserine are found in higher 
concentrations in TAMR cells. Serine upregula-
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Table 2. Statistical summary of enriched metabolic pathways in Tamoxifen resistant cells obtained by 
quantitative enrichment analysis
Enriched Pathway Total Compound Hits Raw p Holm p
Valine, Leucine and Isoleucine Degradation 60 5 1.69E-13 1.33E-11
Citric Acid Cycle 32 4 2.45E-13 1.91E-11
Warburg Effect 58 8 3.10E-13 2.39E-11
Malate-Aspartate Shuttle 10 4 4.66E-13 3.54E-11
Mitochondrial Electron Transport Chain 19 2 4.76E-13 3.57E-11
Glucose-Alanine Cycle 13 3 5.37E-13 3.97E-11
Folate Metabolism 29 1 1.54E-12 1.12E-10
Propanoate Metabolism 42 3 4.15E-12 2.99E-10
Phospholipid Biosynthesis 29 1 5.18E-12 3.68E-10
Glycerol Phosphate Shuttle 11 1 5.18E-12 3.68E-10
De Novo Triacylglycerol Biosynthesis 9 1 5.18E-12 3.68E-10
Cardiolipin Biosynthesis 11 1 5.18E-12 3.68E-10
Phosphatidylinositol Phosphate Metabolism 17 1 9.07E-12 6.08E-10
Beta-Alanine Metabolism 34 6 9.30E-12 6.14E-10
Vitamin B6 Metabolism 20 1 1.64E-11 1.06E-09
Oxidation of Branched Chain Fatty Acids 26 2 1.68E-11 1.07E-09
Phytanic Acid Peroxisomal Oxidation 26 2 1.68E-11 1.07E-09
Carnitine Synthesis 22 4 2.73E-11 1.69E-09
Tryptophan Metabolism 60 3 3.99E-11 2.44E-09
Cysteine Metabolism 26 3 1.28E-10 7.70E-09
Arginine and Proline Metabolism 53 8 1.75E-10 1.03E-08
Amino Sugar Metabolism 33 4 1.91E-10 1.11E-08
Gluconeogenesis 35 4 3.60E-10 2.05E-08
Methionine Metabolism 43 6 5.95E-10 3.33E-08

tion indicates an increase in the serine biosyn-
thetic pathway, which has been linked to many 
cancers [46, 47]. Phosphoserine is formed in 
the serine biosynthetic pathway by the enzyme 
PSAT1, which converts 3-phospho-hydroxypyru-
vate into phosphoserine. A study reported up- 
regulation of the PSAT1 enzyme in patients 
receiving adjuvant TAM [48]. This suggests a 
critical role of these metabolites in TAMR 
resistance.

In TAMR cells, the amount of pyroglutamic acid 
showed a significant decrease. The reduction 
might reflect a decrease in the amounts of glu-
tamine and/or glutamic acid. This is because 
glutamine and glutamic acid are known to un- 
dergo cyclization to form pyroglutamic acid in 
the ionization source [49]. Consequently, the 
significant decrease in pyroglutamic acid may 
function as a possible biomarker for TAMR.

Sugar alcohols, namely galactitol, arabitol, and 
xylitol were discovered to be the most signifi-

cant (P < 0.05) deregulated metabolites that 
differentiated TAMR cells from control MCF-7 
cells. According to the findings of a study, the 
concentration of sugar alcohol was significantly 
higher in hepatocellular carcinoma than in nor-
mal liver tissue [50]. The concentration of su- 
gar alcohol can differentiate between malig-
nant and nonmalignant cancer.

Among the enriched pathways, TCA cycle was 
found to be decreased in TAMR cells. It has 
been shown that TAMR cells have lower levels 
of citric acid, succinic acid, and oxoglutaric 
acid, which are all byproducts of the TCA cycle. 
This clearly indicates that the TCA cycle is sup-
pressed in TAMR cells. To compensate energy 
required for growing TAMR cells, they activate 
the Warburg effect. 

Furthermore, we have identified an enriched 
pathway, the malate-aspartate shuttle (Borst 
cycle), which is known to support cellular meta-
bolic fitness by producing NADH and assisting 
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cancer cells to withstand drug effects [51]. The 
discriminatory metabolites associated with this 
pathway are Aspartate (fold change = 3.7515, P 
< 0.001), malate (fold change = 0.24738, P < 
0.001), glutamic acid, and oxoglutaric acid. 
Another significantly enriched pathway identi-
fied is propanoate metabolism. The deregulat-
ed metabolites associated with this pathway 
are beta-alanine, L-glutamic acid, and oxoglu-
taric acid. Deregulated propanoate metabolism 
has been linked to breast cancer metastasis 
and aggressiveness [52], indicating its impor-
tance in TAMR breast cancer. 

Conclusion

This study is the first to use GC-MS-based 
metabolomics to demonstrate that TAMR bre- 
ast cancer switches its metabolism to sustain 
its growth and proliferation and develop ac- 
quired resistance. In conclusion, we have iden-
tified metabolites, namely glycerol 1-phos-
phate, pyridoxal, inositol, galactitol, xylitol, 
n-acetyl-d-glucosamine, pantothenate, pyroglu-
tamic acid, L-glutamic acid, glycyl-glycine, ga- 
lactose, and D-ribulose, that significantly differ-
entiate between control MCF-7 and MCF-7/
TAMR cells based on their VIP score. Further- 
more, we discovered top-enriched pathways of 
deregulated metabolites such as valine, leu-
cine, and isoleucine degradation, citric acid 
cycle, Warburg effect, malate-aspartate shut-
tle, mitochondrial electron transport chain, 
glucose-alanine cycle, folate metabolism, and 
propanoate metabolism. Many of these path-
ways have been linked to aggressiveness, 
metastasis, and drug resistance in breast and 
other cancers. Altered metabolite levels and 
metabolic pathways can potentially indicate 
future therapeutic strategies in the acquired 
anti-cancer drug resistance in recalcitrant 
breast cancer.
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Supplementary Figure 1. Principal Component Analysis (PCA) plot demonstrates the clustering patterns seen 
among quality control (QC) samples.


