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Abstract: Background: Osteoporosis (OP) stands as a prevalent bone ailment affecting the elderly, globally. The iden-
tification of reliable diagnostic markers crucially aids OP clinical management. Methods: Utilizing the GEO database 
(GSE35959), we acquired expression profiles for OP and normal samples. Differential expression genes (DEGs) and 
hub genes were pinpointed through STRING, GEO2R, and Cytoscape. The competing endogenous RNA (ceRNA) net-
work was constructed using miRTarBase, miRDB, and MiRcode databases. Gene Ontology (GO) and KEGG pathway 
enrichment analyses were performed via DAVID. Validation involved clinical OP samples from the Pakistani popula-
tion, with Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) assessing hub gene expression. Results: A 
total of 2124 differentially expressed genes (DEGs) were identified between OP and normal samples in GSE35959. 
The selected hub genes among these DEGs were Splicing Factor 3a Subunit 1 (SF3A1), Ataxin 2 Like (ATXN2L), Heat 
Shock Protein 90 Beta Family Member 1 (HSP90B1), Cluster of Differentiation 74 (CD74), DExH-Box Helicase 29 
(DHX29), ALG5 Dolichyl-Phosphate Beta-Glucosyltransferase (ALG5), NudC Domain Containing 2 (NUDCD2), and 
Ras-related protein Rab-2A (RAB2A). Expression validation of these genes on the Pakistani OP patients revealed 
significant up-regulation of SF3A1, ATXN2L, and CD74 and significant (P < 0.05) down-regulation of HSP90B1, 
DHX29, ALG5, NUDCD2, and RAB2A in OP patients. Receiver operating characteristic (ROC) analysis demonstrated 
that these hub genes displayed considerable diagnostic accuracy for detecting OP. The ceRNA network analysis of 
the hub genes revealed some important hub genes’ regulatory miRNAs and lncRNAs. Via KEGG analysis, hub genes 
were found to be enriched in N-Glycan biosynthesis, Thyroid hormone synthesis, IL-17 signaling pathway, Prostate 
cancer, AMPK signaling pathway, Spliceosome, Estrogen signaling pathway, and Fluid shear stress and atheroscle-
rosis, etc., pathways. Conclusion: The identified eight hub genes in the present study could reliably distinguish OP 
patients from normal individuals, which may provide novel insight into the diagnostic research of OP.
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Introduction

Osteoporosis (OP), which is mainly character-
ized by impaired bone microarchitecture and 
the loss of bone mass and strength, has 
emerged as a significant clinical issue in aging 
populations [1, 2]. The most commonly frac-
tured site for OP is the spine, while other less 
common sites include the hip, forearm, and 
proximal humerus [3]. 

According to medical literature, there are a  
variety of contributing factors for the develop-
ment and progression of this disease, includ- 
ing genetic abnormalities, gender, age, steroid 
production, lifestyle, and other environmental 
factors [4-6]. In addition to these factors,  
less intake of calcium, cigarette smoking, and 
excessive alcohol drinking are the secondary 
contributing factors to OP [7, 8]. In general,  
this disease is known as a “silent disease” due 
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to its asymptomatic nature until a fracture 
happens. 

Currently, OP treatment methods include the 
use of medicines, but this treatment method is 
not satisfactory because of its time-consuming 
nature and high cost, as well as due to the 
adverse side effects of the medicine. So far,  
different researchers around the world have 
tried to explore the underlying mechanisms of 
OP. For example, one study reported that the 
members of the Wnt signaling pathway, includ-
ing Wnt3a, secreted frizzled-related protein 1, 
sclerostin, and low-density lipoprotein receptor-
related protein 5, are related to the changes in 
bone mineral density (BMD) inside the bones 
[9]. Measurement of BMD (with heritability esti-
mates of 0.5 to 0.9) is an important parameter 
to clinically define the occurrence of OP [10]. 
Therefore, BMD measurement is a vital clinical 
biomarker of OP. However, the underpinning 
pathways of osteoporosis have not been fully 
explored yet. Therefore, the screening of OP- 
associated hub genes as novel therapeutic tar-
gets is required.

It is important to note that microarray data 
analysis can be used to pinpoint crucial genes 
and gene regulatory networks associated with 
a disease [11-13]. In this manuscript, we down-
loaded the OP microarray dataset from the 
Gene Expression Omnibus (GEO) database  
and processed it to screen for differentially 
expressed genes (DEGs) and hub genes across 
the blood samples of OP patients and normal 
individuals. Later on, Expression validation on 
clinical OP samples from the Pakistani popula-
tion, Gene Ontology (GO) [14], Kyoto Ency- 
clopedia of Genes and Genomes (KEGG) [15] 
enrichment analyses, and ceRNA network anal-
ysis of hub genes were also done in this study. 
In a nutshell, this study aimed to figure out a 
few key genes involved in the development and 
progression of OP, which may be used as poten-
tial biomarkers and therapeutic targets for OP 
patients.

Methods

Sample collection for molecular analyses

The present study included a total of 15 OP 
subjects (Table S1) who visited the DHQ, 
Teaching Hospital, Dera Ismail Khan, KPK, 
Pakistan and voluntarily participated. During 
the recruitment process, comprehensive infor-
mation was collected, including details on nutri-

tion, overall health, complete medical history, 
fracture history, and associated risk factors. To 
conduct the study, a 5 cc blood sample was 
obtained from each patient. Additionally, as a 
control group, 5 cc blood samples were collect-
ed from 15 normal individuals. The serum was 
separated and discarded, and the blood cells 
were stored at -80 degrees Celsius for further 
analyses. The study received ethical approval 
in accordance with the Helsinki Declaration 
and informed written consent was obtained 
from all participants.

Data resources 

To conduct bioinformatics analysis, we em- 
ployed an in silico methodology previously 
described by Wu et al. [16], which involved the 
following steps: Initially, to identify DEGs and 
hub genes, the GSE35959 was acquired from 
the Gene Expression Omnibus (GEO) data- 
base (http://www.ncbi.nlm.nih.gov/geo/) [17-
19]. This dataset contained the expression  
profiles of 14 normal individuals and 5 OP 
patients. Next, two more datasets (GSE56815 
and GSE56814) were also retrieved from the 
GEO database to validate the expression  
levels of the identified hub genes. Together, 
these two datasets contained the expression 
profiles of 64 normal individuals and 67 OP 
patients. GSE35959, GSE56815, and GSE56- 
814 datasets were based on the GPL20115 
platform.

Screening of DEGs

For this purpose, probes in GSE35959, 
GSE56815, and GSE56814 data files were 
annotated. Those probes which were not 
matched with any gene symbol were removed. 
Moreover, wherever more than one probe was 
matched to a single gene, the average value  
of these probes was taken as the final expres-
sion value. The FPKM expression values were 
obtained from GSE35959, GSE56815, and 
GSE56814 and subjected to differential ex- 
pression analysis using the limma package in  
R [20]. For DEGs selection, |log2FC| > 1 and 
p-value < 0.05 were selected as the cutoff 
criteria. 

Protein-protein interaction (PPI) network and 
hub genes recognition

For PPI network construction, the Search Tool 
for the Retrieval of Interacting Genes (STRING, 
https://string-db.org/) [21-23] was conducted 
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in this study with a minimum score of 0. For hub 
gene recognition, a Cytohubba plug-in applica-
tion of the Cytoscape tool [24] was utilized. In 
this application, the degree method was used 
to recognize the top eight DEGs as hub genes.

lncRNA-miRNA-mRNA regulatory network

To expand the potential lncRNA-miRNA-mRNA 
regulatory network associated with the hub 
genes, we utilized several online databases. 
Firstly, miRTarBase (http://mirtarbase.mbc.
nctu.edu.tw/) [25, 26] and miRDB (http://www.
mirdb.org) [27, 28] were employed for miRNA 
prediction. Next, we used the MiRcode reposi-
tory (http://www.mircode.org/) [29] to predict 
lncRNAs targeting miRNAs. Ultimately, we inte-
grated the lncRNA-miRNA-mRNA regulatory 
network using Cytoscape.

Functional enrichment

Functional enrichment profiling of the hub 
genes was carried out using the DAVID tool 
[30]. Functional enrichment includes Gene 
ontology (GO) and KEGG pathway enrichment. 
GO is further divided into biological processes 
(BP), cellular components (CC), and molecular 
functions (MF) analyses [31]. A P < 0.05 was 
used as the cutoff criterion for the functional 
enrichment analysis.

Drug prediction analysis

DrugBank (http://www.drugbank.ca) database 
[32], which contains around seven thousand 
drug entries and four thousand protein data 
points was used in this study to evaluate hub 
genes-associated potential targeted drugs.

Genomic RNA isolation

Total cell RNA from blood cells was extracted 
using the Trizol method [33]. We employed the 
NanoDrop 2000 Spectrophotometer (Thermo 
Fisher Scientific, Waltham, MA, USA) to assess 
the concentration and purity of the extracted 
RNA, ensuring that the A260/A280 ratio fell 
within the range of 1.8 to 2.0.

RT-qPCR validation analysis of hub genes

The specific protocols are as follows: First, the 
PrimeScript™ RT reagent kit (Takara, Japan) 
was used for reverse transcription of the 
extracted RNA from OP patients and control 

samples into complementary DNA. Then, the 
RT-qPCR was carried out on an ABI ViiA 7 Real 
Time PCR System (Thermo Fisher, USA) with a 
SuperReal SYBR Green Premix Plus (Tiangen 
Biotech, China) as a fluorescent dye. The GAP- 
DH gene was chosen as the internal reference 
in the present study. All the experiments were 
in triplicate independently. The 2-ΔΔCt method 
was employed to evaluate the relative expres-
sion of each hub gene [34]. Student t-test [35] 
was used to evaluate differences in the expres-
sion levels between OP and the normal control 
group. Primers of each hub gene and control 
gene (GAPDH), highlighted in Table 1, were syn-
thesized from the ORIGENE Company, USA. 

ROC curve generation

Based on the RT-qPCR expression data, ROC 
curves of identified hub gene expression we- 
re generated using the SRPLOT web source 
(https://bioinformatics.com.cn/srplot).

Results

DEGs identification in GSE35959 dataset

In the current study, via GEO2R analysis of the 
GSE35959 dataset, we identified a total of 
2124 DEGs (Figure 1) with altered expression 
levels and 52551 non-DEGs with no alterations 
in expression levels across 5 blood samples of 
OP patients relative to 14 normal controls 
(Figure 1). Out of the 2124 DEGs (Figure 1), the 
top 20 significant (P < 0.05) DEGs including ten 
overexpressed and ten down-regulated genes 
were considered for further analysis (Table 2).

PPI network construction and hub gene 
screening

To gain a deeper knowledge about a few key 
genes, which are mainly associated with OP, 
the predefined top 20 DEGs were subjected to 
STRING analysis. The criterion which was used 
for STRING analysis includes an interaction 
score of less than 0.4. A total of 15 DEGs were 
included in the constructed PPI network, which 
were linked with one another via 16 edges 
(Figure 2). In this PPI network, the top eight 
DEGs were declared as hub genes based on 
the degree and MCC methods using the Cyto- 
Hubba plugin application of the Cytoscape soft-
ware (Figure 2). The selected eight hub genes 
were Splicing Factor 3a Subunit 1 (SF3A1), 
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Ataxin 2 Like (ATXN2L), Heat Shock Protein 90 
Beta Family Member 1 (HSP90B1), Cluster of 
Differentiation 74 (CD74), DExH-Box Helicase 
29 (DHX29), ALG5 Dolichyl-Phosphate Beta-
Glucosyltransferase (ALG5), NudC Domain Con- 
taining 2 (NUDCD2), and Ras-related protein 
Rab-2A (RAB2A) (Figure 2).

Confirmation of the hub gene expression on 
additional Gene Expression Omnibus datasets

To confirm the reliability of expression varia-
tions among hub genes, we took FPKM values 
of the hub genes from GSE68815 and GSE- 
68814 datasets to draw the expression box 
plots of each gene between OP and normal 
samples (Figure 3). After applying the student 
t-test on the FPKM values, we revealed that 
SF3A1, ATXN2L, and CD74 were significantly  
(P < 0.05) down-regulated, while HSP90B1, 
DHX29, ALG5, NUDCD2, and RAB2A were sig-
nificantly (P < 0.05) up-regulated in OP samples 
relative to the control samples (Figure 3).

lncRNA-miRNA-mRNA regulatory network con-
struction of hub genes

Upon analyzing data from various online data-
bases, we observed that a total of 96 mi- 
RNAs were found to target all eight hub genes 
(SF3A1, ATXN2L, HSP90B1, CD74, DHX29, 

ALG5, NUDCD2, and RAB2A) (Figure 4A). By 
considering the degree of centrality and mak-
ing intersections, we identified eight potential 
miRNAs (has-mir-24-3p, has-let-7f-5p, has-mir-
155-5p, has-mir-100-5p, has-let-7a-5p, has-
mir-1-3p, has-mir-16-5p, and has-let-7b-5p) 
that collectively target all the hub genes (Figure 
4B). Further analysis revealed that these 8 miR-
NAs were targeted by 142 lncRNAs (Figure 4C), 
out of which six lncRNAs (KCNQ1OT1, TMEM-
AS, HELLPAR, XIST, NEAT1, and HCG18) were 
targeting all 6 miRNAs (has-mir-24-3p, has-let-
7f-5p, has-mir-16-5p, has-let-7a-5p, has-let-7b-
5p, and has-mir-155-5p) (Figure 4D). 

Gene ontology analysis of hub genes

In this study, we performed a comprehensive 
GO analysis, which involved using the DAVID 
tool to predict the BP, CC, and MF associated 
with the hub genes. Figure 5A illustrates the 
specific biological processes related to hub 
genes in both OP patients and normal individu-
als. Furthermore, Figure 5B and 5C highlight 
the cellular components and molecular func-
tion terms associated with the hub genes in the 
same groups, respectively.

Hub genes exhibited a substantial enrichment 
in “Sarcoplasmic reticulum lumen, Reg. of 
mature B cell apoptotic proc, Macrophage 

Table 1. Detail of the primers used for the amplification of hub and control genes
Sr. No Gene Gene ID Primer ID Product size (bp)
1 GAPDH 2597 GAPDH-F 5’-ACCCACTCCTCCACCTTTGAC-3’ 132

GAPDH-R 5’-CTGTTGCTGTAGCCAAATTCG-3’
2 SF3A1 10291 SF3A1-F 5’-CCAGACCAAGTCATTGTGCGGA-3’ 145

SF3A1-R 5’-TTGCTGGCAGGAATCTTCTCCC-3’
3 ATXN2L 11273 ATXN2L-F 5’-CGCAGCAACACCAGGAGA-3’ 137

ATXN2L-R 5’-GCAGCATTCTGGAATTGTTGTA-3’
4 HSP90B1 7184 HSP90B1-F 5’-GTTTCCCGTGAGACTCTTCAGC-3’ 141

HSP90B1-R 5’-ATTCGTGCCGAACTCCTTCCAG-3’
5 CD74 972 CD74-F 5’-AAGCCTGTGAGCAAGATGCGCA-3’ 154

CD74-R 5’-AGCAGGTGCATCACATGGTCCT-3’
6 DHX29 54505 DHX29-F 5’-CCCTCCAGGAGTCAGGAAGA-3’ 134

DHX29-R 5’-ACTGACAAACGTCTCCACCAA-3’
7 ALG5 29880 ALG5-F 5’-GAGAAGCAGCTTCACGGACGTT-3’ 140

ALG5-R 5’-GTCCAGTTGACAGCAATTTCTGC-3’
8 NUDCD2 134492 NUDCD2-F 5’-GAGCCGTGTGCCTGCGTG-3’ 135

NUDCD2-R 5’-CAGTCATCCCTCTGACACCGTG-3’
9 RAB2A 5862 RAB2A-F 5’-AGTTCGGTGCTCGAATGATAAC-3’ 128

RAB2A-R 5’-AATACGACCTTGTGATGGAACG-3’
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Figure 1. Analyzing gene expression patterns, sample clustering, quantifying differentially expressed genes (DEGs) and non-DEGs, and creating a volcano plot spe-
cifically for DEGs within the GSE35959 dataset. (A) Expression-wise comparison of samples in the GSE35959 dataset, (B) Expression-based clustering of samples 
in the GSE35959 dataset, (C) A total count of DEGs and non DEGs in GSE35959 dataset, and (D) A volcano graph of DEGs in the GSE35959.
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Table 2. Top 20 DEGs among OP samples relative to control group in GSE35959
Sr. No Gene symbol Expression Status Log FC Adjust P
1 CKM Up-regulation 4.31E-09 4.31E-09
2 DHX29 Up-regulation 2.411926198 8.06E-09
3 HSP90B1 Up-regulation 3.609774064 1.98E-08
4 NUDCD2 Up-regulation 1.975149543 1.10E-07
5 NNMT Up-regulation 2.939904325 2.62E-07
6 METTL9 Up-regulation 2.799329575 3.78E-07
7 RAB2A Up-regulation 2.161049449 5.73E-07
8 UBE4B Up-regulation 2.349702084 8.39E-07
9 WFDC21P Up-regulation 3.670100767 1.07E-06
10 ALG5 Up-regulation 3.655075383 1.11E-06
11 PPDPF Down-regulation 2.153952004 1.01E-07
12 CD74 Down-regulation 2.505277038 2.11E-07
13 ADAMTS2 Down-regulation 1.820451671 2.92E-07
14 ATXN2L Down-regulation 2.087129790 6.22E-07
15 KCTD13 Down-regulation 1.583973054 7.68E-07
16 ZDHHC8 Down-regulation 2.052905155 8.31E-07
17 CBX4 Down-regulation 2.54363072 1.05E-06
18 SF3A1 Down-regulation 1.53564268 1.30E-06
19 UAP1L1 Down-regulation 1.490852211 1.33E-06
20 PLBD2 Down-regulation 1.312445058 1.65E-06

Figure 2. A PPI network of the top 20 DEGs (10 up-regulated and 10 down-regulated) and the selected hub genes. 
(A) A PPI network of top 20 DEGs, (B) A PPI network of top 20 DEGs highlighting selected hub genes, and (C) A PPI 
network of the hub genes.
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Figure 3. Validation results for the mRNA expression levels of 8 selected hub genes. To validate these genes, we used the GSE56815 and GSE56814 datasets. Each 
of the selected genes (A) SF3A1, (B) ATXN2L, (C) HNSP90B1, (D) CD74, (E) DHX29, (F) ALG5, (G) NUDCD2, and (H) RAB2A underwent validation. * = P-value < 0.05.
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Figure 5. Gene ontology (GO) enrichment analysis of hub genes utilizing the DAVID tool. (A) Biological Process (BP) Terms: This section focuses on the enrichment 
analysis results related to biological processes associated with the hub genes, (B) Cellular Component (CC) Terms: This section elaborates on the enrichment analy-
sis results concerning the cellular components linked to the hub genes, and (C) Molecular Function (MF) Terms: Here, the legend provides insights into the enrich-
ment analysis findings related to the molecular functions of the hub genes. A P < 0.05 was regarded as the selection criteria.

Figure 4. Networks highlighting associations between miRNAs, lncRNAs, and hub genes. (A) A network of overall predicted miRNAs targeting hub genes, (B) A net-
work between meaningful miRNAs and hub genes, (C) A network of six miRNAs and overall lncRNAs targeting miRNAs, and (D) A network of miRNAs and meaningful 
lncRNAs. The green nodes are the miRNAs, red nodes are hub genes, while purple nodes are lncRNAs.
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migration inhibitory factor signaling pathway, 
U2-type prespliceosome assembly, and MRNA 
3-splice site recognition, etc.”, BP terms  
(Figure 5A). Regarding CC, the identified hub 
genes displayed prominent enrichment in the 
“Sarcoplasmic reticulum lumen, Endoplasmic 
reticulum chaperone complex, U2-type prespli-
ceosome, Prespliceosome, Eukarytic 43S pre-
intiation complex, Translation preintiation com-
plex, and U2 snRNP, etc.”, CC terms (Figure 5B). 
Concerning MF, the identified hub genes pri-
marily participated in “Oligosaccharyl transfer-
ase activity, MHC class II protein binding, CD4 
receptor binding, UDP, glucosyltransferase 
activity, Nitric oxide synthase binding, Ribo- 
somal small subunit binding, Glucosyltrans 
ferase activity, and Translation activator activi-
ty, etc.”, MF terms (Figure 5C). 

Kyoto encyclopedia of genes and genomes 
analysis of hub genes

In order to gain a deeper insight into the se- 
lected hub genes (SF3A1, ATXN2L, HSP90B1, 
CD74, DHX29, ALG5, NUDCD2, and RAB2A), we 
also conducted KEGG pathway analysis using 
the DAVID tool. Hub genes were predominantly 
concentrated in “N-Glycan biosynthesis, Thy- 
roid hormone synthesis, IL-17 signaling path-
way, Prostate cancer, AMPK signaling pathway, 
Spliceosome, Estrogen signaling pathway, and 
Fluid shear stress and atherosclerosis, etc.”, 
KEGG terms (Figure 6).

Drug prediction analysis of hub genes

For patients afflicted with OP, medical treat-
ment stands as the primary option to address 

the disease. Hence, it becomes imperative to 
identify appropriate candidate drugs that hold 
potential for treatment. In this study, we utiliz- 
ed the DrugBank database to explore suitable 
therapeutic drugs associated with the identi-
fied hub genes, aimed at addressing osteopo-
rosis effectively. For example, Acetaminophen 
and Cyclosporine drugs were identified as  
the positive expression regulators of SF3A1 
mRNA expression (Table 3) while Dronabinol 
was identified as the negative expression regu-
lator of RAB2A mRNA expression (Table 3).

Validation of SF3A1, ATXN2L, HSP90B1, CD74, 
DHX29, ALG5, NUDCD2, and RAB2A gene 
expression in clinical OP samples via RT-qPCR

To validate the results obtained from the GEO 
expression dataset, cDNA from both OP and 
control blood samples was utilized for RT-qPCR 
analysis of SF3A1, ATXN2L, HSP90B1, CD74, 
DHX29, ALG5, NUDCD2, and RAB2A. The re- 
sults, as depicted in Figure 7A, demonstrated 
that SF3A1, ATXN2L, and CD74 were signifi-
cantly (P < 0.05) down-regulated, while HSP- 
90B1, DHX29, ALG5, NUDCD2, and RAB2A 
were significantly up-regulated in the OP sam-
ple group (n = 15) compared to the control 
group (n = 15). Additionally, the ROC curves for 
SF3A1 (AUC: 1.0, p-value < 0.05), ATXN2L (AUC: 
1.0, p-value < 0.05), HSP90B1 (AUC: 1.0, p-val-
ue < 0.05), CD74 (AUC: 1.0, p-value < 0.05), 
DHX29 (AUC: 1.0, p-value < 0.05), ALG5 (AUC: 
1.0, p-value < 0.05), NUDCD2 (AUC: 1.0, p-val-
ue < 0.05), and RAB2A (AUC: 1.0, p-value < 
0.05) exhibited significant diagnostic potential, 
sensitivity, and specificity (Figure 7B). Notably, 
the SLC4A4 gene demonstrated the ability to 

Figure 6. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis of hub genes conducted with the 
DAVID tool. (A) KEGG Terms: This section presents the results of the KEGG enrichment analysis, highlighting the 
specific KEGG pathways associated with the hub genes, and (B) KEGG Terms Phylogram: Here, the legend describes 
the representation of the KEGG terms in a phylogenetic tree-like structure. A P < 0.01 was regarded as the selection 
criteria.
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distinguish patient tissues from healthy tis-
sues, with a cutoff point ranging from 0.671 to 
1.9 (Figure 7B).

Discussion

Annually, millions of people around the globe 
continue to be affected by OP [36]. OP is mainly 
characterized by impaired bone microarchitec-
ture and the loss of bone mass and strength, 
especially in elderly individuals. Osteoporotic 
fractures may be avoided with prompt OP treat-
ment. However, the existing method of treating 
OP is the least effective because of its time-
consuming nature, expensive cost, and other 
adverse side effects of medicine [37]. There- 
fore, additional studies exploring bone biology, 
underpinning molecular pathways, and signal-
ing networks involved in OP will help to under-
stand the nature of this disease which may lead 
to the discovery of new treatment methods. 
Moreover, as OP is clinically a silent disease 
until the fracture occurs, timely diagnosis of 
this disease is very critical for treating OP and 
reliving the patient’s pain [38]. The current 
manuscript is based on a variety of Bioinfor- 
matics experiments, involving differential ex- 
pression analysis, PPI network construction, 
hub genes identification, expression validation, 
ceRNA network analysis, GO, KEGG, and drug 
prediction analysis of OP and normal samples 
across GEO database.

OP patients and normal individual groups in the 
GSE35959 GEO dataset were subjected to 
expression analysis to identify DEGs and hub 
genes between these two groups in the present 
study. After expression analysis, we identified a 

total of 2124 DEGs between OP and normal 
groups with altered expression levels. Out of 
the 2124 DEGs, the top 20 significant (P < 
0.05) DEGs including ten overexpressed and 
ten down-regulated genes, shown in Table 2. 
Moreover, based on expression analysis using 
the GEO expression dataset and clinical OP 
samples from the Pakistani population, the 
eight selected hub genes include significantly 
(P < 0.05) down-regulated SF3A1, ATXN2L, and 
CD74, while significantly (P < 0.05) up-regulat-
ed HSP90B1, DHX29, ALG5, NUDCD2, and 
RAB2A in OP samples relative to the controls.

SF3A1 encodes for a subunit of the splicing fac-
tor 3a protein complex, which plays a critical 
role in the assembly of the spliceosome and 
mRNA splicing event [39]. According to earlier 
studies, the down-regulation of the SF3A1 gene 
is associated with Paget’s disease of bone 
(PDB) [40]. The protein encoded by the ATXN2L 
gene belongs to the spinocerebellar ataxia 
(SCAs) family, which is mainly associated with 
neurodegenerative disorders [41, 42]. To the 
best of our knowledge, the role of this gene has 
not been explored in OP so far, we are the first 
to report the down-regulation of this gene in OP 
patients. The CD74 coding protein serves as a 
receptor for the cytokine macrophage migra-
tion inhibitory factor [43]. Mice deficient in the 
CD74 protein exhibited increased osteoclasto-
genesis and bone mass loss [44]. The HSP90B1 
coding protein plays an important role in pro-
tein folding during the secretory pathway [45, 
46]. The abnormal expression of HSP90B1 was 
also found to be associated with PDB disease 
[47]. The protein produced by DHX29 is a key 
player in the innate immune response among 

Table 3. Drug Bank-based hub genes-associated drugs
Sr. No Hub gene Drug name Effect Reference Group
1 SF3A1 Acetaminophen Increase expression of SF3A1 mRNA A20418 Approved

Cyclosporine A21868
2 ATXN2L Cyclosporine Increase expression of ATXN2L mRNA A21868 Approved

Silicon dioxide A20414
3 HNSP90B1 Isotretinoin Increase expression of HNSP90B1 mRNA A24023 Approved
4 CD74 Quercetin Decrease expression of CD74 mRNA A23761 Approved

Cyclosporine A21868
5 DHX29 Quercetin Decrease expression of DHX29 mRNA A23761 Approved
6 ALG5 Cyclosporine Decrease expression of ALG5 mRNA A23761 Approved
7 NUDCD2 Cyclosporine Decrease expression of NUDCD2 mRNA A23761 Approved

Quercetin A23761
8 RAB2A Dronabinol Decrease expression of RAB2A mRNA A22519 Approved
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Figure 7. Relative expression and ROC curve analysis of the hub genes in Pakistani OP patients and normal controls. (A) Relative expression analysis of the hub 
genes in Pakistani OP patients and control samples via RT-qPCR, and (B) RT-qPCR expression-based ROC curves of the identified hub genes. * = P-value < 0.05.
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humans [48]. The overexpression of DHX29 is 
associated with the bone metastasis of a vari-
ety of cancers including lung cancer [49, 50]. 
The ALG5 coding protein is an important 
enzyme required for the addition of glucose 
molecules to N-glycan precursors [51]. The dys-
regulation of ALG5 is associated with bone dis-
ease [52]. The protein encoded by NUDCD2 
plays an important role in cell cycle progression 
and cell migration [53]. To the best of our 
knowledge, the role of this gene has not been 
explored in OP so far, we are the first to report 
its down-regulation in OP patients. The RAB2A 
coding protein is responsible for intracellular 
membrane trafficking of the proteins [54]. The 
up-regulation of RAB2A is associated with the 
development of OP [55, 56].

Currently, various studies have shown that 
lncRNAs, circRNAs, and miRNAs are the impor-
tant causative factors of many diseases such 
as neurodegenerative diseases by interacting 
with disease-causing mRNAs [57]. For exam-
ple, Dandan et al. revealed that circRNA-vgll3 
leads to enhanced osteogenic differentiation of 
adipose-derived mesenchymal stem cells in OP 
patients [58]. Similarly, Xiqiang et al. highlight-
ed that circRNA-0011269 can cause osteopo-
rosis development and progression by dysre- 
gulating the RUNX2 gene in combination with 
miR-1229. The proper relationship between 
lncRNAs, miRNAs, and mRNAs in OP is still dim. 
Therefore, in this study, we constructed the 
lncRNA-miRNA-mRNA regulatory network of the 
hub genes (Figure 5), which will help to gain 
new insight into the disease physiology of OP 
[59].

In the present study, we have also identified 
hub genes which are associated with important 
molecular pathways including N-Glycan biosyn-
thesis [60], Thyroid hormone synthesis [61], 
IL-17 signaling pathway [62], Prostate cancer 
[63], AMPK signaling pathway [64], Spliceo- 
some [65], Estrogen signaling pathway [66], 
and Fluid shear stress and atherosclerosis 
[67]. The roles of these pathways are already 
established in the development of OP. Lastly, a 
few hub gene expression regulatory drugs were 
also predicted in this study, which is already in 
clinical use, suggesting that the identified hub 
genes are closely associated with the develop-
ment of OP. The current study has a few im- 
portant limitations that should be considered. 
Firstly, this study is purely based on the bioin-

formatics analysis and expression datasets, as 
well as the expression of predicted miRNAs, 
and lncRNAs remain unchecked, which is a 
common situation in predicting ceRNA net-
works. Secondly, the underlying mechanisms  
of the ceRNA network have not been validat- 
ed through molecular experiments; therefore, 
additional research work based on molecular 
experiments is needed to be done for the vali-
dation of our conclusion.

Conclusion

Through the integration of a comprehensive 
bioinformatics analysis and molecular experi-
mental approach, we have successfully identi-
fied and validated a set of crucial hub genes 
(SF3A1, ATXN2L, HSP90B1, CD74, DHX29, 
ALG5, NUDCD2, and RAB2A) in patients with 
OP. These hub genes hold significant potential 
as critical regulators and biomarkers for OP, 
playing a vital role in the pathogenesis and pro-
gression of the disease.
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Table S1. Clinical characteristics of the OP patients
Sr. No Gender Age (Years) Case BMI
1 Female 47 Advance 24.2
2 Female 55 Advance 23.5
3 Female 51 Advance 23.6
4 Female 45 Advance 22.5
5 Female 53 Advance 24.5
6 Female 52 Advance 24.2
7 Female 62 Advance 29.1
8 Female 54 Advance 19.9
9 Female 49 Advance 21.2
10 Female 56 Advance 22.1
11 Female 61 Advance 22.2
12 Female 45 Advance 26.2
13 Female 55 Advance 23.5
14 Female 56 Advance 22.9
15 Female 46 Advance 20.5
BMI = Body Mass Index.


