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Abstract: Pelvic floor ultrasound provides a clear depiction of pelvic floor structures and their spatial anatomical 
relationships, enabling enhanced observation of pelvic organ function and position. The integration of artificial intel-
ligence (AI) into medical imaging has revolutionized the automatic analysis of imaging data, offering efficient and 
accurate preprocessing and analysis. This technological advance addresses challenges associated with traditional 
pelvic floor ultrasound, such as reliance on operator’s experience, time-intensive manual measurements, and sig-
nificant potential for human error. Current AI applications in pelvic floor ultrasound encompass automatic measure-
ment of the angle of progress (AOP), automatic segmentation of the levator hiatus (LH), and automatic identification 
of the levator ani muscle (LAM). AI excels in mimicking human analysis, distilling patterns from reorganized data. 
This paper, grounded in a comprehensive literature review, outlines the principal aspects of pelvic floor ultrasound 
and its augmentation through AI, highlighting the application value and progress of AI in this field.
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Introduction

Pelvic floor ultrasound effectively captures cor-
onal, sagittal, and cross-sectional images of 
target organs, facilitating comparative analysis 
of pelvic organ functions and positions. It plays 
a crucial role in diagnosing and treating female 
pelvic floor dysfunction, predicting prenatal 
and intrapartum delivery methods, and evalu-
ating the labor process. Its advantages include 
the absence of radiation, high resolution, and 
the capability to dynamically capture complete 
pelvic organ ultrasound images, garnering sig-
nificant attention in clinical research [1-3]. 
However, traditional pelvic floor ultrasound and 
intrapartum ultrasound monitorings face chal-
lenges due to time-consuming manual mea-
surements and substantial human error, hin-
dering their broader clinical application [4].

Transperineal pelvic floor ultrasound, the most 
prevalent method, assesses changes in the 

bladder, urethra, and their surrounding support 
structures during rest and maximum Valsalva 
maneuvers using 2D, 3D, and 4D imaging [5-7]. 
This technique involves reconstructing and 
imaging the collected volume data in the coro-
nal, sagittal, and transverse planes. It mea-
sures the displacement of pelvic organs in vari-
ous patient states, evaluates the integrity of the 
levator ani muscle (LAM) and anal sphincter, 
and calculates the levator hiatus (LH) area dur-
ing maximum Valsalva [8-10]. LAM, a key pelvic 
floor muscle component comprising the iliococ-
cygeus and pubococcygeus muscles, is vital for 
pelvic floor tissue support. Abnormal morpho-
logical and functional changes in LAM are often 
the pathological foundation for pelvic floor dys-
function [11]. LAM ultrasound imaging, which 
reconstructs images in contraction and Valsalva 
states, offers dynamic insights into morphology 
changes, thus providing a reliable basis for 
assessing postpartum pelvic floor structure 
and function [12]. The LH area is indicative of 
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pelvic floor muscle elasticity and compliance, 
with volume rendering allowing for clear visual-
ization under maximum Valsalva [13]. Pelvic 
floor ultrasound also enables continuous ob- 
servation of structures such as the reproduc-
tive hiatus, bladder neck, and urethra, over-
coming the limitations of surface anatomy in 
evaluating pelvic floor function [14, 15].

Artificial intelligence (AI) technology has the 
capability to construct deep network models 
for extracting intricate features within images, 
as well as learning feature extraction and auto-
matic image segmentation. This enables end-
to-end training and detection, striking an opti-
mal balance between speed and precision, and 
achieving diagnostic efficiency comparable to 
experienced physicians [16]. Given the complex 
morphological structure of the pelvic floor, AI 
excels in mimicking human analytical process-
es and deducing patterns from restructured 
data. Various deep learning algorithms have 
been developed to automate the recognition of 
pelvic floor ultrasound images, aiding physi-
cians in swiftly assessing the function of pelvic 
floor organs with relatively lower labor costs 
[17-19]. Currently, AI’s application in pelvic floor 
ultrasound encompasses three primary areas: 
automatic measurement of the angle of prog-
ress (AOP), automatic segmentation of the LH, 
and automatic identification of the LAM. An 
illustrative diagram showcasing AI’s capabili-
ties in analyzing AOP, LH, and LAM in ultrasound 
imagery is presented in Figure 1.

As AI increasingly impacts the automatic analy-
sis of medical imaging data, numerous leading 
institutions globally have systematically inte-
grated AI into image recognition. They have 

developed sophisticated algorithms, such as 
convolutional neural networks (CNN) based on 
deep learning, for applications including the  
differentiation of benign and malignant skin 
lesions and the diagnosis and analysis of pelvic 
floor disorders’ biological characteristics [20-
22]. Consequently, intelligent medical image 
interpretation, especially in pelvic floor ultra-
sound, is emerging as a future research focal 
point. Understanding the present application of 
AI in pelvic floor ultrasound aids in accurately 
determining the position of structures within 
the pelvic cavity and automatically identifying 
relevant parameter outcomes. This review fo- 
cuses on assessing the application value and 
progress of AI in pelvic floor ultrasound.

AI’s application in automatic measurement of 
AOP

The propulsion of the fetal head in the birth 
canal, influenced by the spontaneous pushing 
force of pregnant women and uterine con- 
traction, is a critical variable for predicting 
delivery outcomes [23]. The limited accuracy of 
digital examination in determining the fetal 
head’s craniofacial level and descent has led 
the International Society for Obstetric and 
Gynecologic Ultrasound to recommend AOP 
measurement for evaluating the fetal head 
position. Transperineal pelvic floor ultrasound, 
suggested as an auxiliary tool during the sec-
ond trimester, provides more accurate and 
repeatable parameters than traditional palpa-
tion for determining the fetal head position [24, 
25].

Angeli et al. utilized morphological filters and 
pattern recognition to measure AOP changes 

Figure 1. AI’s capabilities in pelvic floor ultrasound analysis. A. Levator ani muscle volume identification diagram, 
showcasing volume measurements; B. Diagram identifying the levator hiatus and its length, with a dotted line mark-
ing the levator ani hiatus perimeter and a solid line indicating the levator ani length; C. Schematic for measuring the 
angle of progression, illustrating the technique for angle calculation.
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during the active second stage of labor, accu-
rately predicting fetal head position and deliv-
ery mode, matching the precision of experi-
enced clinicians [intraclass correlation coeffi-
cient (ICC) =0.99] [26]. Conversano et al. over-
came imaging challenges with the pubic sym-
physis by using its central echo as a reference 
point for AOP measurement, ensuring high reli-
ability and repeatability [27]. Their method 
demonstrated a strong correlation (r=0.99, 
P<0.001) between algorithmically measured 
AOP values and reference standards.

Lu et al. analyzed a dataset of 1964 images, 
calculating AOP from segmented images of the 
fetal head and pubic symphysis, indicating that 
automated AOP measurement is efficient and 
could enhance pelvic floor ultrasound develop-
ment [28]. Bai et al. introduced a framework 
incorporating image segmentation, target fit-
ting, and AOP calculation, achieving high accu-
racy in automatic AOP measurement [29].

Conversely, Youssef et al. reported that in an 
initial evaluation of 156 pregnant women, AI 
accurately identified the pubic symphysis and 
fetal head positions in 85.3% of cases, with 
perfect accuracy upon reevaluation. However, 
they noted that AOP measurements by AI  
were broader than manual assessments, sug-
gesting a need for further accuracy enhance-
ments for clinical application [30]. The AI tech-
nique demonstrates commendable repeata- 
bility, closely aligning with manual measure-
ments (ICC=0.865, 95% CI=0.766-0.923). 
However, AI-derived AOP measurements tend 
to be broader than those obtained manually 
[(119±20)° vs (130±20)°], indicating a need 
for further refinement in AI’s accuracy for clini-
cal integration. AI’s capability to autonomously 
monitor changes in fetal head position and 
dynamically assess the AOP offers crucial 
insights for clinicians managing obstructed or 
prolonged second stages of labor.

Currently, AI models for AOP measurement 
diverge primarily in their approach to identi- 
fying the pubic symphysis’ posterior margin: 
one model identifies the high-echo edge near 
the pubic symphysis’ tail as the posterior mar-
gin, while the other locates the center point of 
the high-echo region without specifying the 
posterior margin. The former model boasts 
superior repeatability but risks overestimating 
AOP in cases of fetal scalp edema by mistaking 
the scalp for the skull. The latter model miti-
gates identification challenges, yet the reli- 
ability of this automated approach demands 
further validation through expansive multi-cen-
ter research, addressing current limitations of 
small sample sizes and narrow training set 
selections.

Table 1 lists significant literature on AI’s appli-
cation in automatic AOP measurement, outlin-
ing its current use and areas requiring enhance-
ment for effective clinical application.

Application of AI in automatic segmentation 
of LH 

The LH, being the largest potential hernia 
entrance in the human body, plays a crucial role 
in physiological functions. Its size and shape 
correlate with the severity of pelvic organ pro-
lapse, levator muscle avulsion, and the risk of 
organ prolapse recurrence post-surgery. Hence, 
precise measurement of the LH area is essen-
tial [31, 32]. Currently, the accurate delineation 
of LH’s complete boundary largely relies on 
experienced clinicians, but AI technology in 
automatic segmentation and pattern recogni-
tion could significantly enhance the acceptabil-
ity and reliability of LH measurements. Sind- 
hwani et al., as early as 2016, introduced a 
semi-automatic model for LH segmentation  
to minimize observer variability and expedite 
image analysis [33]. This model involved test-
ing with 91 representative C-plane images, 

Table 1. Literature pertaining to the application of AI in AOP automatic measurement
Author Year Cases Types of models Indicator outcome
Angeli et al. [26] 2020 27 Fully automatic ICC(AOP)=0.99
Conversano et al. [27] 2017 39 Fully automatic r(AOP)=0.99
Lu et al. [28] 2022 1964 Fully automatic R(AOP)=0.964
Bai et al. [29] 2022 313 Fully automatic ICC(AOP)=0.91
Youssef et al. [30] 2017 156 Fully automatic ICC(AOP)=0.865
Note: AOP: angle of progress; ICC: intraclass correlation coefficient; AI: artificial intelligence.
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manually marking the pubic symphysis and 
LAM, and then integrating these marked imag-
es into a predefined template to generate the 
initial contour for LH’s automatic segmenta-
tion. The results highlighted a substantial re- 
duction in observer variability with the algo-
rithm (ICC=0.93), and its speed (7.07 s) was 
nearly three times faster than manual contour-
ing (21.31 s), achieving LH segmentation with 
just three points. Chen et al. conducted a retro-
spective analysis of LH raw ultrasound image 
data from 100 patients, using transperineal 
pelvic floor ultrasound for quantification. The 
consistency of LH area measurements between 
an automated intelligent pelvic system soft-
ware program and manual measurement was 
assessed [34]. The study found a 94% satisfac-
tion rate for automatic reconstruction, despite 
unsatisfactory results in 6 images due to rectal 
gas. The ICC for the 94 successfully recon-
structed images was 0.987, indicating the au- 
tomated program’s effectiveness in LH recon-
struction, delineation, and measurement dur-
ing maximum Valsalva motion, albeit with occa-
sional misidentification of LH’s posterior bound-
ary due to rectal gas influence. Bonmati et al. 
developed a fully automatic method employing 
a CNN to delineate LH discontinuity in two-
dimensional images derived from 3-D ultra-
sound volumes [35]. The dataset comprised 
images from 91 patients marked during 
Valsalva, contraction, and rest phases for 
cross-validation training and evaluation, pro-
posing a promising approach for automated LH 
segmentation.

The experimental outcomes by Bonmati et al. 
indicated that the fully automatic method 
matches the accuracy of the semi-automatic 
approach by Sindhwani et al. [33, 35] in LH  
segmentation for pelvic floor analysis. Both 
Williams et al. and Sindhwani et al. introduced 
AI-based methods for the automatic measure-
ment of LH area, leveraging AI detection and LH 

contour tracking from representative C-plane 
images [33, 36]. These approaches demon-
strate AI’s capability for accurate, rapid, and 
reliable LH detection, significantly reducing the 
assessment time for pelvic floor diseases.

Li et al., after comparing their study with vari-
ous published segmentation models, affirmed 
that a fully automatic CNN method utilizing 
dense connections yields more precise seg-
mentation outcomes for LH in ultrasound imag-
es [37]. Despite these advancements, current 
LH segmentation models, whether semi-auto-
matic or fully automatic, require operation with-
in a specific MatLab environment, and all 
necessitate manual reconstruction of LH in 
3D/4D volume data by clinicians. This process 
involves manually selecting the volume of inter-
est, typically the maximum contraction volume. 
Moreover, challenges such as gas interference 
and other factors compromising ultrasound 
image quality can adversely affect the effec-
tiveness of LH automatic segmentation.

Future efforts must aim to enhance the auto-
mation methods to mitigate manual interven-
tion and address image quality issues impact-
ing segmentation accuracy. A summary of re- 
search articles on AI’s application to LH auto-
matic segmentation is presented in Table 2, 
highlighting the need for further advancements 
in this area.

Application of AI in LAM automatic recogni-
tion

LAM plays a pivotal role in supporting female 
pelvic organs, with over one fifth of women 
experiencing LAM damage during vaginal deliv-
ery, potentially leading to pelvic organ prolapse 
and urinary incontinence [38]. Identifying LAM 
accurately is thus clinically crucial. Previous 
research developed an active model for the 
automatic segmentation of LAM, using manual 

Table 2. Literature pertaining to the application of AI in LH automatic segmentation
Author Year Cases Types of models Indicator outcome
Sindhwani et al. [33] 2016 91 Semi-automatic ICC(LH)=0.93
Chen et al. [34] 2023 100 Fully automatic ICC(LH)=0.987
Bonmati et al. [35] 2018 91 Fully automatic DSC(LH)=0.90
Li et al. [36] 2019 130 Fully automatic DSC(LH)=0.96
Williams et al. [37] 2021 73 Fully automatic DSC(LH)=0.911
Note: LH: levator hiatus; ICC: intraclass correlation coefficient; DSC: Deiss similarity coefficient; AI: artificial intelligence.
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segmentation data from 50 women for training 
[39]. The findings highlighted that the ICC  
for average echo and volume between manual 
and automatic segmentation were excellent 
and good, respectively (ICC=0.968 and 0.626), 
demonstrating the reliability of automatic seg-
mentation in measuring potential clinical pa- 
rameters, notably average echo.

In a 2019 study, van den Noort et al. utilized  
a CNN to automatically segment the plane of 
the smallest hiatus size, further applying this 
segmentation to measure LAM length and 
assess its reliability [40]. The largest discrep-
ancies between automatic and manual mea-
surements were observed at the pubic symphy-
sis junction, which is the most challenging  
segment of LAM. Nonetheless, both methods 
showed good consistency in LAM length mea-
surements (ICC=0.87 and 0.73). Of the 14 
images that CNN failed to identify clearly, most 
were automatically excluded by the system due 
to poor image contrast or low LAM length.

Comparative analysis of different LAM auto-
matic recognition models revealed a research 
gap: images of patients with LAM injury were 
not included, limiting the ability to compare 
model segmentation effectiveness for such 
cases. This gap underscores a limitation in  
AI’s application to LAM automatic identifica-
tion, necessitating further research to enhance 
repeatability, stability, and broader application 
in scientific research and clinical practice.

In conclusion, the integration of AI in medical 
imaging, particularly in pelvic floor ultrasound 
image recognition, offers solutions to challeng-
es related to operator experience dependency, 
potentially revolutionizing the ultrasound diag-
nostic labor division and enhancing work effi-
ciency. However, current research is predomi-
nantly focused on LH and LAM automatic seg-
mentation. Challenges remain in measuring 
and positioning pelvic organ activity under vary-
ing conditions due to significant fluctuations, 
posing a significant challenge for developing 
more sophisticated AI algorithms. With ongoing 
AI advancements and the advent of the big 
data era, genuine AI automation in medical 
imaging is a promising near-future prospect.
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