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Abstract: Programmed cell death (PCD) plays a pivotal role in tumor initiation and progression. However, the prog-
nostic value and clinical characteristics of PCD-related genes (PRGs) remain unclear. We collected and analyzed 
genes associated with twelve PCD patterns, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, 
entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, 
alkaliptosis, and oxeiptosis to construct a gene signature. Our analysis identified 215 differentially expressed PRGs 
out of 1254 in lung adenocarcinoma (LUAD) and normal lung tissues. Subsequently, we performed univariate Cox 
regression analysis and identified 58 prognostic PRGs. Based on LASSO Cox regression analysis, we constructed 
a risk score using the expression levels of seven genes: DAPK2, DDIT4, E2F2, GAPDH, MET, PIM2, and FOXF1. 
Patients with lower risk scores showed earlier stages of cancer, longer survival times, and better immune infiltra-
tions and functions. Notably, we found that knockdown of DDIT4 significantly increased apoptosis and impaired the 
proliferation of human LUAD cell lines. Our study proposes a PRG-based prognostic signature that sheds light on 
the potential role of PCD-related genes in LUAD and provides valuable insights into future therapeutic strategies.
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Introduction

Lung cancer is a major public health concern 
with a staggering number of new cases and 
deaths worldwide [1]. Non-small cell lung can-
cer (NSCLC) represents approximately 85% of 
diagnosed lung cancers and lung adenocarci-
noma (LUAD) is the most common subtype of 
NSCLC [2]. Despite the recent advances in 
treatments, LUAD remains a significant threat 
to human health, and there is an urgent need 
for reliable prognostic signatures and novel 
therapeutic targets.

Programmed cell death (PCD) pathways play a 
critical role in maintaining physiological homeo-
stasis and responding to cellular stresses [3]. 
PCD can be classified into twelve distinct pat-
terns, namely apoptosis, pyroptosis, ferropto-
sis, autophagy-dependent cell death, necrop- 
tosis, cuproptosis, parthanatos, entotic cell 

death, netotic cell death, lysosome-dependent 
cell death, alkaliptosis, and oxeiptosis. Each 
pattern exhibits unique morphological and 
immunological outcomes [4]. Apoptosis is 
orchestrated by the caspase family of cysteine 
proteases which regulate proteolysis in a con-
trolled manner to minimize damage to neigh-
boring cells [5]. Clinical trials have demonstrat-
ed the potential survival benefit of combin- 
ing chemotherapy with apoptosis activator in 
NSCLC patients [6, 7]. Pyroptosis is an inflam-
matory type of PCD characterized by the activa-
tion of inflammasome and release of pro-inflam-
matory factors [8]. Recent research has sug-
gested that GSDME-induced pyroptosis can 
enhance the chemotherapy sensitivity of NSC- 
LC cells to DDP, while silencing GSDME could 
reverse DDP-induced inhibition of NSCLC 
growth in vivo [9]. Ferroptosis is initiated by  
the iron-dependent excessive accumulation of 
intracellular reactive oxygen species (ROS), 
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leading to the oxidation of polyunsaturated 
fatty acids (PUFAs) on the plasma membrane, 
leading to subsequent cellular membrane 
destruction [10]. Ferroptosis is crucial in radia-
tion-induced cell death, and increased ferrop- 
tosis has been associated with a better 
response and longer disease-free survival in 
cancer patients undergoing radiotherapy [11]. 
Autophagy-dependent cell death involves a 
multistep lysosomal degradation pathway that 
supports nutrient recycling and metabolic 
adaptation [12]. Studies have shown that inhib-
iting autophagy using pharmacological inhibi-
tors or genetic knockdown can increase PD-L1 
expression in gastric cancer cells, suggesting 
that targeting autophagy may enhance the effi-
cacy of immunotherapy in cancer treatments 
[13]. Necroptosis is a programmed form of 
necrosis characterized by morphological fea-
tures similar to necrosis and can be triggered 
by multiple stimuli [14]. Cuproptosis is a re- 
cently discovered copper-triggered mode of  
cell death that may be associated with several 
diseases [15]. Parthanatos is a PARP1 (poly 
ADP-ribose polymerase 1)-dependent PCD 
pathway activated by oxidative stress-induced 
DNA damage and chromatinolysis [16]. Entotic 
cell death is a non-apoptotic cell death pro-
gram that occurs in matrix-detached cells due 
to the invasion of one cell into another, result-
ing in a transient state where a live cell is con-
tained within a neighboring host cell [17]. 
Netotic cell death is driven by the release of 
neutrophil extracellular traps (NETs) generated 
by cells in response to various stresses [18, 
19]. Lysosome-dependent cell death is medi-
ated by lysosomal membrane permeabilization 
and the subsequent leakage of lysosomal con-
tent into the cytosol [20]. Alkaliptosis is a type 
of PCD associated with intracellular alkaliniza-
tion [21]. Oxeiptosis is a ROS-sensitive, cas-
pase-independent, and non-inflammatory cell 
death pathway [22]. Although the precise roles 
of PCD pathways in LUAD are not yet fully under-
stood, recent studies have suggested that they 
may play important roles in cancer initiation, 
progression, and treatments [23].

In this study, we aimed to offer significant 
insights into the prognostic value and clinical 
characteristics of PCD-related genes (PRGs) in 
LUAD. Additionally, we aimed to develop a novel 
signature based on these genes to accurately 
predict the prognosis and guide the treatment 
of LUAD patients.

Materials and methods

Data collection

Transcriptome data of seven independent 
LUAD cohorts (TCGA-LUAD, n = 504; GSE684- 
65, n = 442; GSE26939, n = 113; GSE31210, 
n = 226; GSE37745, n = 106; GSE42127, n = 
133; GSE50081, n = 127) were downloaded 
from two online open databases: The Cancer 
Genome Atlas (TCGA, https://portal.gdc.can-
cer.gov/) and Gene Expression Omnibus (GEO, 
https://www.ncbi.nlm.nih.gov/geo/). The corre-
sponding clinical data were also obtained. 
Clinical data of the seven independent LUAD 
cohorts were exhibited in Table 1.

Acquisition of programmed cell death-related 
genes

We collected 1254 PCD-related genes (PRGs) 
from MSigDB gene sets and former articles 
[24]. The following genes were identified: 580 
apoptosis genes, 52 pyroptosis genes, 87 fer-
roptosis genes, 367 autophagy genes, 101 
necroptosis genes, 14 cuproptosis genes, 9 
parthanatos genes, 15 entotic cell death 
genes, 8 netotic cell death genes, 220 lyso-
some-dependent cell death genes, 7 alka- 
liptosis genes, and 5 oxeiptosis genes 
(Supplementary Table 1).

Clustering and differential analysis of PRGs

We performed clustering analysis of PRGs 
using the R package “ConsensusClusterPlus”. 
The differential analysis of PRGs was carried 
out using the R package “limma” to identify dif-
ferentially expressed genes (DEGs) among dif-
ferent clusters with FDR < 0.05 and |logFC| > 
1.

Construction and validation of the prognostic 
signature

We constructed a signature to calculate the 
risk score by summing the coefficient of each 
gene multiplied by its corresponding expres-
sion level. To obtain prognostic genes (PGs),  
we merged the TCGA-LUAD and GSE68465 
cohorts, resulting in a combined cohort (n = 
946). This combination cohort was randomly 
divided into a training cohort and a test cohort 
at a ratio of 6:4. Subsequently, we performed 
univariate Cox regression analysis, least abso-
lute shrinkage and selection operator (LASSO) 
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Cox regression analysis, and multivariate Cox 
regression analysis on the training cohort (n = 
568) to construct the signature. We then uti-
lized the median risk score of the training 
cohort as the cutoff to categorize the patients 
into high- and low-risk groups within the train-
ing cohort, as well as the combination and test 
(n = 378) cohorts. Additionally, we validated the 
prognostic value of the signature in indepen-
dent cohorts, including GSE26939, GSE31210, 
GSE37745, GSE42127, and GSE50081.

Molecular and immune analysis among clus-
ters and between risk groups

To assess the levels of immune cell infiltration 
for 23 different types of immune cells and eval-
uate the activity of 13 immune-related func-
tions, we employed the single sample gene  
set enrichment analysis (ssGSEA) algorithm to 

calculate the normalized enrichment score 
(NES). The gene sets were shown in the 
Supplementary Table 2. Additionally, we utilized 
the R package “GSVA” to quantify the enrich-
ment of Kyoto Encyclopedia of Genes and 
Genomes (KEGG, Version 5)-related pathways 
through gene set variation analysis (GSVA) [25]. 
The R package “clusterProfiler” was used to 
annotate the Gene Ontology (GO) functions of 
the DEGs. In order to determine the stromal 
score, immune score, and ESTIMATE score, we 
employed the ESTIMATE (Estimation of stromal 
and immune cells in malignant tumor tissues 
using expression data) algorithm. Furthermore, 
we identified active molecular pathways using 
gene set enrichment analysis (GSEA) with the 
following criteria: p value < 0.05, |normalized 
enrichment score (NES)| > 1, and false discov-
ery rate (FDR) < 0.25 [26].

Table 1. Clinical data of the seven independent LUAD cohorts
TCGA GSE68465 GSE42127 GSE50081 GSE31210 GSE26939 GSE37745

Survival state
    Alive 334 206 90 76 191 49 29
    Dead 188 236 43 51 35 66 77
Age
    < 65 223 212 40 164 53 54
    ≥ 65 280 228 87 62 63 52
Gender
    Male 242 221 68 65 105 53 46
    Female 280 219 65 62 121 63 60
TNM stage
    I 279 89 92 168 62 70
    II 124 22 35 58 19 19
    III 85 20 19 13
    IV 26 1 2 4
Stage T
    T1 172 149 43
    T2 281 251 82
    T3 47 28 2
    T4 19 12
Stage N
    N0 335 299 94
    N1-3 175 141 33
Stage M
    M0 353 127
    M1 25
Relapse
    Yes 159 157 37 64 26
    No 442 205 90 162 27

http://www.ajtr.org/files/ajtr0153425suppltab2.xlsx


A signature based on PCD to predict LUAD prognosis

2085 Am J Transl Res 2024;16(5):2082-2102

Cell culture and transfection

Two human LUAD cell lines, A549 and PC9, 
were cultured in RPMI-1640 (Gibco, USA) and 
the immortalized bronchial epithelial cell line, 
BEAS-2B, was cultured in DMEM (Gibco, USA). 
All cells were obtained from China Center  
Type Culture Collection (CCTCC, Shanghai) and 
grown with 10% fetal bovine serum and 1% 
penicillin/streptomycin at 37°C with 5% CO2.

A549 and PC9 cells were transfected with 
DDIT4-targeted small interfering RNA (siRNA, 
synthesized by Shanghai Genechem Com- 
pany). The sequences of siRNAs: Si-1 5’-GA- 
UGAACACUUGUGUGCCATT-3’; Si-2 5’-GGAAUA- 
GUGUUUCCCAGGATT-3’ were listed. Transfec- 
tion was performed using Lipo8000™ Trans- 
fection Reagent (Beyotime, C0533, China) 
according to the manufacturer’s protocol.

Quantitative real-time polymerase chain reac-
tion (qRT-PCR)

Total RNAs were extracted from A549, PC9  
and BEAS-2B cells using Trizol reagent 
(Invitrogen, 15596018CN, USA). HiScript II 
(Vazyme, R223-01, China) was used to syn- 
thesize cDNA. For mRNA expression analysis, 
qRT-PCR was performed using SYBR Green 
Master Mix (Vazyme, Q111-02/03, China). A 
typical cycling condition included 95°C for 30  
s followed by 40 cycles at 95°C for 10 s,  
60°C for 30 s. Melting curve analysis was per-
formed according to the instrument documen-
tation. β-actin was used as the internal stan-
dard control. Each sample was run in tripli- 
cate and relative expression values for each 
gene were calculated using the 2-ΔΔCT me- 
thod. The primer sequences used were as fol-
lows: GAPDH-forward: ACAACTTTGGTATCGTG- 
GAAGG, GAPDH-reverse: GCCATCACGCCACAG- 
TTTC; DDIT4-forward: GGACCAAGTGTGTTTGT- 
TGTTTG, DDIT4-reverse: CACCCACCCCTTCCT- 
ACTCTT; E2F2-forward: GAGCTCACTCAGACCC- 
CAAG, E2F2-reverse: AACAGGCTGAAGCCAAA- 
AGA; DAPK2-forward: TCCTGGATGGGGTGAAC- 
TAC, DAPK2-reverse: CAGCTTGATGTGTGGAAT- 
GG; MET-forward: TGCACAGTTGGTCCTGCCAT- 
GA, MET-reverse: CAGCCATAGGACCGTATTTC- 
GG; PIM2-forward: CCAGGAGATTCTGGAAGCT- 
GAG, PIM2-reverse: TACATCCTCGGCTGGTGTT- 
TGC; FOXF1-forward: AGCAGCCGTATCTGCACC- 
AGAA, FOXF1-reverse: CTCCTTTCGGTCACACA- 
TGCTG.

Western blot (WB)

Whole cell lysate was prepared using RIPA lysis 
buffer (Beyotime, P0013B, China) with PMSF, 
protease inhibitors (Beyotime, ST505, China), 
and their concentrations were measured using 
the Detergent Compatible Bradford Protein 
Assay Kit (Beyotime, P0006C, China). Sub- 
sequently, 10 µg of each protein sample was 
separated by 12% SDS-polyacrylamide gel 
electrophoresis (SDS-PAGE), transferred onto 
polyvinylidene fluoride membranes, and incu-
bated with a blocking buffer. The membranes 
were then incubated with primary antibodies, 
followed by secondary antibodies, and protein 
levels were detected using an enhanced che- 
miluminescence (ECL) reagent (Xinsaimei, 
P2300, China). Antibodies were purchased 
from manufacturers: DDIT4 (Santa Cruz, USA, 
sc-271158), β-Actin (CST, USA, #3700).

Colony formation assay

Transfected cells were seeded onto 6-well 
plates at a density of 500 cells per well. Then 
the cells were incubated at 37°C with 5% CO2 
for 7 days. After the incubation, cells were 
washed with PBS, fixed with 4% paraformalde-
hyde for 20 minutes, stained with 0.5% crystal 
violet for 20 minutes, and washed twice. 
Colonies were photographed and counted with 
ImageJ.

Cell counting kit-8 (CCK-8) assay

Transfected cells were cultivated on 96-well 
plates (1000 cells/well). At day 1, 2, 3, and 4, 
the medium was replaced with a kit solution 
(TransDetect cell counting kit, Transgene, 
Beijing, China) and complete culture medium  
at a ratio of 1:9. The samples were then incu-
bated for 2 h at 37°C before analyzing the 
absorbance of each sample at 450 nm.

Flow cytometry analysis

Flow cytometry was performed to measure  
cell apoptosis using FACS ARIA II SORP (BD 
Biosciences). 2×105 cells were collected and 
labeled with the Annexin V-FITC/PI apoptosis 
detection kit for 15 minutes, following the  
manufacturer’s instructions (Beyotime, C10- 
62L, China). The samples were then analyzed 
by fluorescence activated cell sorter (FACS). 
Annexin V(+)/PI(-) represents early apoptosis, 
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while Annexin V(+)/PI(+) denotes late apoptosis 
and necrosis.

Statistical analysis

Statistical analysis was performed using R  
software (version 4.1.1, www.r-project.org). We 
used the independent t-test to compare con-
tinuous values between the two groups and  
the χ2 test to examine categorical data. All 
observations were confirmed to be indepen-
dent before the tests. Spearman’s analysis  
was utilized to check the correlation between 
the groups. We performed univariate survival 
analysis using the K-M survival analysis, and 
multivariate survival analysis using the Cox 
regression signature. Results with two-side of  
P < 0.05 were considered statistically signifi-
cant (*: P < 0.05, **: P < 0.01, ***: P < 0.001, 
****: P < 0.0001).

Results

Cluster analysis of PRGs

To comprehensively investigate the roles of 
PRGs in LUAD, we conducted a cluster analysis 
using the combined cohort of 946 LUAD 
patients. The results indicated that these 
patients can be classified into two distinct clus-
ters based on PRGs when k = 2 (Figure 1A). 
This classification was further confirmed by 
Principal Component Analysis (PCA), which 
demonstrated clear separation between the 
two clusters (Figure 1B). Notably, patients in 
PRGcluster B exhibited a significantly longer 
overall survival (OS) compared to those in 
PRGcluster A (P = 0.003, Figure 1C), suggest-
ing a close association between the expression 
levels of PRGs and the prognosis of LUAD.

To gain insights into the biological implications 
of these PRG clusters, we performed Gene Set 
Variation Analysis (GSVA) to examine pathway 
enrichment. The results revealed an enrich-
ment in PCD-related and immune-related path-
ways in PRGcluster B (Figure 1D). Further- 
more, when analyzing clinical characteristics, 
we observed significant differences in gend- 
er, TNM stage, tumor size, and lymphatic 
metastasis between the two PRGclusters 
(Supplementary Figure 1), indicating potential 
associations between PRG expression patterns 
and clinicopathological features of LUAD.

To further investigate the immune landscape 
within the PRG clusters, we performed single-
sample Gene Set Enrichment Analysis (ssG-
SEA) to evaluate the infiltration levels of vari- 
ous immune cell populations. Our analysis 
revealed that patients in PRGcluster B exhibit-
ed higher infiltration levels of activated B cells, 
CD4+ T cells, CD8+ T cells, dendritic cells, 
CD56 bright natural killer cells, eosinophils, 
gamma delta T cells, immature B cells, den- 
dritic cells, myeloid-derived suppressor cells 
(MDSCs), macrophages, mast cells, mono-
cytes, natural killer T cells, natural killer cells, 
plasmacytoid dendritic cells, regulatory T cells, 
T follicular helper cells, as well as type 1 and  
17 T helper cells (Figure 1E). Conversely, 
patients in PRGcluster B showed lower infiltra-
tion levels of CD56 dim natural killer cells, neu-
trophils, and type 2 T helper cells. Moreover, 
ssGSEA analysis demonstrated that patients in 
PRGcluster B exhibited enhanced functional 
activities of several immune-related pathways, 
including antigen-presenting cell (APC) co-inhi-
bition and co-stimulation, chemokine receptor 
(CCR) signaling, immune checkpoint signaling, 
cytolytic activity, human leukocyte antigen 
(HLA) presentation, inflammation-promoting 
pathways, class I major histocompatibility com-
plex (MHC) expression, parainflammation, T cell 
co-inhibition and co-stimulation, as well as  
type I and II interferon (IFN) responses (Figure 
1F). These findings indicated that the expres-
sion patterns of PRGs are associated with dis-
tinct immune cell compositions within the 
tumor microenvironment and the activation of 
immune-related pathways, potentially influenc-
ing the anti-tumor immune response and over-
all prognosis of LUAD patients.

Construction of the prognostic signature

First, differential analysis was utilized to iden- 
tify 215 DEGs between LUAD and normal tis-
sues (Figure 2A). Among these DEGs, 58 were 
found to be significantly correlated with LUAD 
prognosis (Figure 2B). To gain insights into  
the functional implications of these DEGs, GO 
and KEGG pathway analyses were conducted. 
The results revealed that these DEGs were 
mainly associated with apoptosis, autophagy, 
ferroptosis, and necroptosis (Figure 2C, 2D), 
suggesting their potential roles in tumor pro-
gression and survival. Subsequently, we 
employed LASSO Cox regression analysis on 
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Figure 1. Cluster analysis of PRGs. A. LUAD patients were classified into two distinct clusters when k = 2, based on 
the PRGs. B. PCA showed that the PRGs could well distinguish PRGcluster A from PRGcluster B. C. Kaplan-Meier plot 
of the prognosis of LUAD patients belonging to PRGcluster A and B. D. GSVA analysis of the two PRGclusters based 
on the KEGG genesets, and the top 20 pathways with most significant difference were shown. E. ssGSEA analysis 
of the immune infiltration of the two PRGclusters, the blue and yellow boxes respectively represent PRGcluster A 
and B, and the dots mean outliers of the data. F. ssGSEA analysis of the immune function of the two PRGclusters, 
the blue and yellow boxes respectively represent PRGcluster A and B, and the dots mean outliers of the data. *: P 
< 0.05, **: P < 0.01, ***: P < 0.001.

the 58 prognostic DEGs to construct a predic-
tive model. Through this analysis, we identified 
a 7-gene signature (Figure 2E) consisting of 
DDIT4 (DNA damage-inducible transcript 4), 
DAPK2 (death-associated protein kinase 2), 
E2F2 (E2F transcription factor 2), GAPDH (glyc-
eraldehyde-3-phosphate dehydrogenase), MET 
(mesenchymal-epithelial transition factor), 
FOXF1 (forkhead box F1), and PIM2 (proviral 
integration site for moloney murine leukemia 
virus kinase 2).

Notably, three of these genes were derived 
from apoptosis, four of these genes were 
derived from autophagy, and one of these 
genes was derived from lysosome-dependent 
cell death (Figure 2F). Additionally, we in- 
vestigated the interrelationships among the 
signature-forming genes (Figure 2F) and uti-
lized Kaplan-Meier analysis to determine  
their respective influence on the OS of LUAD 
(Supplementary Figure 2A). We also compared 
their expression levels between LUAD and nor-
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mal tissues (Supplementary Figure 2B). The 
risk score for each patient was calculated  
using the gene expression values and the cor-
responding coefficients from the formula:  

Risk score = (-0.13565315xDAPK2 exp.) + 
(0.1459314xDDIT4 exp.) + (0.1368973xE2- 
F2 exp.) + (0.2656330xGAPDH exp.) + 
(0.0862583xMET exp.) + (-0.1901584xPIM2 

Figure 2. Construction of the prognostic signature. A. Heatmap of DEGs between LUAD tissue and normal tissue. B. 
Forest plot of DEGS with prognostic value. C. GO analysis of the DEGS. D. KEGG analysis of the DEGs. E. Selection of 
the 7 model-forming genes by LASSO cox regression and cross-validation of the constructed signature. F. Prognostic 
value of the model-forming genes and the correlation among them. G. Distribution of risk score in different T and N 
stages. *: P < 0.05, **: P < 0.01, ***: P < 0.001, ****: P < 0.0001.
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exp.) + (-0.1950222xFOXF1 exp.). Based on  
the median risk score, we divided the training 
cohort, combination cohort, and test cohort 
into high- and low-risk groups. The seven signa-
ture-forming genes could distinctly classify  
the combination cohort into two MRGclusters 
(Supplementary Figure 3A, 3B). There was a  
difference in risk score between the two 
MRGclusters (Supplementary Figure 3C). The 

majority of MRGcluster A was classified  
into high-risk group while the majority of 
MRGcluster B was from low-risk group 
(Supplementary Figure 3D-F). Moreover, pati- 
ents with higher risk score were more likely to 
have higher T and N stages (Figure 2G). In sum-
mary, our 7-gene signature has potential prog-
nostic value in LUAD, and further validation is 
needed.

Figure 3. Internal training and test of the prognostic signature. A. Distribution of risk score according to the survival 
status and time in the training, combination, and test cohorts. B. Expression of the signature-forming genes in the 
three cohorts. C. Kaplan-Meier analysis of the prognosis of LUAD patients belonging to the three cohorts. D. Re-
ceiver operator characteristic (ROC) analysis of the prognostic value of the three cohorts.
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Figure 4. The prediction value of the prognostic signature. A. Univariate Cox regression analysis involved age, gen-
der, T stage, N stage, and risk score in the training cohort. B. Multivariate Cox regression analysis involved age, 
gender, T stage, N stage, and risk score in the training cohort. C. A nomogram was established to predict the prog-
nostic of LUAD patients. D. Calibration plot showing the probability of 1-, 2-, and 3-year overall survival in the training 
cohort. E. Kaplan-Meier analyses for LUAD patients based on the nomogram score. *: P < 0.05, **: P < 0.01, ***: 
P < 0.001.
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Internal validation of the prognostic signature

Next, we proceeded to assess the prognos- 
tic value of our signature by comparing the sur-
vival outcomes of LUAD patients with different 
risk scores in the training, combination, and 
test cohorts. Our findings consistently revealed 
that patients with higher risk scores exhibited  
a poorer OS compared to those with lower risk 
score (Figure 3A). Upon examining the individu-
al gene expression patterns, we observed that 
DAPK2, PIM2, and FOXF1 were predominantly 
expressed at higher levels in the low-risk gro- 
up, whereas DDIT4, E2F2, GAPDH, and MET 
showed higher expression in the high-risk  
group (Figure 3B). Importantly, there was a sig-
nificant difference in OS between the two 
groups, with patients in the low-risk group dem-
onstrating a higher likelihood of longer survival 
compared to those in the high-risk group (P < 
0.001, Figure 3C). To further evaluate the pre-
dictive accuracy of our signature, we calculat- 
ed the area under the curve (AUC) values for 1-, 
2-, and 3-year survival in the training, combina-
tion, and test cohorts. Encouragingly, the 
results consistently demonstrated high accu-
racy of our signature in predicting survival out-
comes at these time points (Figure 3D).

Prediction value of the prognostic signature

In order to evaluate the independent prognos-
tic value of the risk score, we conducted uni-
variate and multivariate Cox regression analy-
ses using the training cohort. The results of 
univariate Cox regression analysis indicated 
that risk score could serve as a significant risk 
factor (HR = 2.025, 95% CI: 1.752-2.341, and  
P < 0.001, Figure 4A) for LUAD patients. 
Subsequently, after adjusting for other factors, 
the multivariate analysis indicated that risk 
score was an independent prognostic factor 
(HR = 1.770, 95% CI: 1.505-2.082, P < 0.001, 
Figure 4B) in LUAD patients. Consistently, the 
univariate and multivariate Cox regression 
analyses conducted on the combination and 
test cohorts (Supplementary Figure 4A, 4B, 4E, 
4F) also confirmed that the risk score could 
independently predict the prognosis of LUAD 
patients.

To further enhance the predictive accuracy of 
our model, we employed multivariable Cox and 
stepwise regression analyses to establish a 

nomogram model in the training cohort. This 
nomogram incorporated several important  
clinical variables, including gender (male vs. 
female), T stage (T3-4 vs. T1-2), age, risk (high-
risk vs. low-risk), and N stage (N1-3 vs. N0) 
(Figure 4C). The calibration curves demonstrat-
ed the high accuracy of this nomogram model 
in predicting the survival rates of LUAD pa- 
tients (Figure 4D). Notably, patients with higher 
monogram scores were more likely to have 
shorter OS than those with lower scores (Figure 
4E). Moreover, we also constructed the nomo-
gram model and corresponding calibration 
curves for the combination and test cohorts 
(Supplementary Figure 4C, 4D, 4G, 4H).

External validation of the prognostic signature

Subsequently, to further test the prognostic 
value of the signature, we conducted external 
validation of the prognostic signature using  
five validation cohorts: GSE26939, GSE31210, 
GSE37745, GSE42127, and GSE50081. Simi- 
lar to the training cohort, these validation 
cohorts were stratified into high- and low-risk 
groups based on the median risk score deriv- 
ed from our signature. The analysis of these 
cohorts revealed that patients with lower risk 
scores had better overall survival rates com-
pared to those with higher risk scores (Figure 
5A). Furthermore, patients in high-risk group 
had significantly shorter survival time than 
those in low-risk group (Figure 5B). These find-
ings reinforce the consistent prognostic sig- 
nificance of our signature across multiple 
cohorts. To further evaluate the predictive 
accuracy of our signature, we calculated the 
area under the curve (AUC) values in each of 
the five validation cohorts. The results demon-
strated high AUC values, indicating the robust-
ness and accuracy of our signature in predict-
ing 1-, 2-, and 3-year survival outcomes in  
LUAD patients (Figure 5C). This confirms the 
reliability and generalizability of our signature 
beyond the training cohort. In addition to over-
all survival, we also assessed the progression-
free survival (PFS) and relapse-free survival 
(RFS) of the cohorts. Encouragingly, patients in 
the low-risk group exhibited a lower likelihood 
of disease progression or relapse, further 
emphasizing the clinical relevance of our signa-
ture in predicting not only overall survival but 
also disease control and relapse outcomes 
(Supplementary Figure 5).
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Figure 5. External validation of the prognostic signature. A. Distribution of risk score according to the survival status and time in GSE26939, GSE31210, GSE37745, 
GSE42127, and GSE50081. B. Kaplan-Meier analysis of the prognosis of LUAD patients based on the five validation cohorts. C. Receiver operator characteristic 
(ROC) analysis of the prognostic value of the five cohorts.
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Figure 6. Tumor microenvironment state of the prognostic signature. A. Violin plots of the comparison of stromal 
score, immune score, ESTIMATE score, and tumor purity between high- and low-risk groups. B. ssGSEA analysis of 
the immune infiltration of the two groups, the blue and red boxes respectively represent low- and high-risk groups, 
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Tumor microenvironment (TME) state of the 
prognostic signature

As PCD might be associated with tumor immu-
nity [3], we performed an analysis based on 
several databases to identify differences in the 
immune situation between the two risk groups. 
We used the ESTIMATE algorithm and found 
that the low-risk group had a higher stromal 
score, immune score, and ESTIMATE score  
but lower tumor purity (Figure 6A). The ssGSEA 
analysis found that patients in the low-risk 

group had higher infiltration of activated B cell, 
CD8+ T cell, dendritic cell, eosinophil, imma-
ture B cell, MDSC, macrophage, mast cell, 
monocyte, natural killer T cell, natural killer cell, 
plasmacytoid dendritic cell, regulatory T cell, T 
follicular helper cell, and type 1 T helper cell  
but lower infiltration of activated CD4+ T cell, 
gamma delta T cell, neutrophil, and type 2 T 
helper cell (Figure 6B). The ssGSEA analysis 
also found that patients belonging to low-risk 
group enjoyed better functional activity of  
APC co-inhibition, CCR, check-point, cytolytic 

and the dots mean outliers of the data. C. ssGSEA analysis of the immune function of the two groups, the blue and 
red boxes respectively represent low- and high-risk groups, and the dots mean outliers of the data. D. Heatmap of 
immune-related cell enrichment based on TIMER, XCELL, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, 
and EPIC algorithms. *: P < 0.05, **: P < 0.01, ***: P < 0.001.

Figure 7. Immunotherapy prediction of the signature. A. Comparison of immune checkpoint gene expression in the 
two groups, the blue and red boxes respectively represent low- and high-risk groups, and the dots mean outliers of 
the data. B. Comparison of risk score between patients with response or non-response based on IMvigor210 cohort. 
C. Kaplan-Meier analysis for the two groups based on the risk score calculated in IMvigor210 cohort. *: P < 0.05, 
**: P < 0.01, ***: P < 0.001.
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activity, HLA, T cell co-inhibition & co-stimula-
tion, and type II IFN response but worse func-
tional activity of class I MHC (Figure 6C). We 
then used TIMER, CIBERSORT, CIBERSORT-
ABS, QUANTISEQ, MCPCOUNTER, XCELL, and 
EPIC algorithms to measure the enrichment 
scores of immune-related cells (Figure 6D).

We compared immune checkpoint gene en- 
richment in the two groups, and found that  
multiple genes were highly expressed in the 
low-risk group and negatively related to risk 
score (CD40LG, CD80, CD27, TNFRSF14, 
TNFSF15, CD244, TNFRSF4, CD28, CD200, 
LGALS9, TNFRSF25, BTNL2, LAIR1, TNFRSF8, 

CD44, CTLA4, HHLA2, CD160, CD48, TNFSF18, 
ICOS, TNFSF14), whereas only TNFSF4 and 
TNFSF9 were enriched in the high-risk group 
and positively related to risk score, and CD274 
was not differentially expressed in the two 
groups (Figure 7A). Finally, we utilized data 
from the IMvigor210 cohort to investigate the 
prediction value of this signature for immuno-
therapy outcomes. We found little difference in 
the risk score between patients who responded 
or did not respond to immunotherapy, whereas 
patients in low-risk group seemed to survive 
much longer after immunotherapy (Figure 7B, 
7C).

Figure 8. Molecular characteristics of the signature. A, B. GSEA analysis of high- and low-risk groups based on 
KEGG genesets. C. GSVA analysis of high- and low-risk groups based on hallmark genesets. D. GO analysis of DEGs 
between two groups.

Figure 9. DDIT4 in pan-cancers. A. Histogram of DDIT4 expression levels in BEAS-2B and A549 cell lines. Data rep-
resent the means ± SD of 3 independent experiments and t test was used to analyze the difference. Variables are 
presented as mean ± SD. B. Forest plot of cancer types whose prognosis was significantly correlated with DDIT4. C. 
Differential analysis of DDIT4 expression in pan-cancers obtained from the TIMER 2.0 database. *: P < 0.05, **: P 
< 0.01, ***: P < 0.001. Variables are presented as mean ± SD.
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Molecular characteristics of the prognostic 
signature

Furthermore, to gain insights into the underly-
ing biological mechanisms contributing to the 
differences observed between the high-risk 
and low-risk groups, we conducted additional 
pathway analyses. Our GSEA analysis reveal- 
ed distinct pathway enrichments in the two 
groups. In the high-risk group, we observed 
enrichment in pathways associated with cell 
cycle regulation, DNA replication, glycolysis, 
gluconeogenesis, mismatch repair, and nucleo-
tide excision repair (Figure 8A). These findings 
suggest that the high-risk group may exhibit 
dysregulated cell proliferation, metabolic alter-
ations, and impaired DNA repair mechanisms, 
which could contribute to disease progression 
and poorer outcomes. Conversely, in the low-
risk group, our GSEA analysis identified enrich-
ment in pathways related to B and T cell recep-
tor signaling, cytokine-cytokine receptor inter-
action, FC epsilon signaling, and intestinal 
immune network for IgA production (Figure  
8B). These pathways are involved in immune 
responses and suggest an enhanced immune 
activation and potential anti-tumor immune 
surveillance in the low-risk group. The activa-
tion of these immune-related pathways may 
contribute to a more favorable tumor microen-
vironment and better disease control. To fur-
ther investigate the molecular characteristics 
associated with the risk groups, we performed 
GSVA analysis. Our results demonstrated that 
the high-risk group displayed pronounced hall-
marks of proliferation, indicating increased cel-
lular proliferation and growth potential within 
this subgroup (Figure 8C). Additionally, we con-
ducted differential analysis to identify genes 
differentially expressed between the high-risk 
and low-risk groups, revealing 699 differen- 
tially expressed genes (DEGs). Further Gene 
Ontology (GO) analysis of these DEGs demon-
strated enrichment in immune-related gene 
sets (Figure 8D).

DDIT4 might play a major role in the signature

To clarify the underlying mechanism of the sig-
nature, we utilized qPCR to check the gene 
expression in BEAS-2B and A549 cell lines. 
DDIT4, one of the signature-forming genes, 
showed the highest fold change between the 
immortalized bronchial epithelial cell line, 

BEAS-2B, and the lung adenocarcinoma cell 
line, A549 (Figure 9A). Univariate Cox regres-
sion analysis revealed that DDIT4 is a signifi-
cant risk factor in several cancers, including 
HNSC, LUAD, CESC, MESO, LAML, PAAD, KIRP, 
and ACC (Figure 9B).

Furthermore, the TIMER 2.0 database indicat-
ed that DDIT4 is highly expressed in various 
cancers, such as BLCA, BRCA, CHOL, COAD, 
ESCA, GBM, HNSC, KIRC, LIHC, LUAD, LUSC, 
READ, THCA, and UCEC (Figure 9C). Notably, 
DDIT4 showed differential expression and 
worse prognosis in LUAD, suggesting its poten-
tial specificity in this cancer type. To investigate 
further, we used siRNAs to knock down DDIT4 
expression in two LUAD cell lines, A549 and 
PC9, and verified the knockdown efficacy 
(Figure 10A). Knock-down of DDIT4 impaired 
LUAD cell colony formation (Figure 10B) and 
proliferation (Figure 10C), possibly through pro-
moting apoptosis (Figure 10D, 10E). These 
results suggest that DDIT4 may play a critical 
role in the identified prognostic signature and 
contribute to the progression of LUAD.

Discussion

PCD plays a critical role in various diseases, 
particularly cancers, and encompasses multi-
ple forms, including apoptosis, pyroptosis, fer-
roptosis, autophagy-dependent cell death, 
necroptosis, cuproptosis, parthanatos, entotic 
cell death, netotic cell death, lysosome-depen-
dent cell death, alkaliptosis, and oxeiptosis. 
Due to the complexity of tumorigenesis and 
treatment resistance mechanisms in LUAD, 
there is an urgent need for comprehensive 
management, including prognosis and therapy 
effect prediction. Therefore, our study aimed to 
construct a signature based on genes related 
to pan-PCD to investigate the impact of PCD on 
LUAD prognosis and treatment.

Initially, we performed differential and uni- 
variate Cox regression analysis, leading to the 
identification of 58 prognostic DEGs from the 
combination cohort. Subsequently, we devel-
oped a prediction signature of LUAD prognosis 
using the training cohort and validated its  
excellent performance in two internal cohorts 
(the combination and test cohorts) as well as 
five external cohorts (GSE26939, GSE31210, 
GSE37745, GSE42127, and GSE50081). The 
signature was calculated based on the expres-
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Figure 10. DDIT4 knock-down retarded the proliferation of LUAD cells in vitro. (A) qPCR and WB showed the efficiency of siRNAs. Data represent the means ± SD of 
3 independent experiments and t test was used to analyze the difference. (B, C) Colony formation assays and growth curves (days 1-4) represent the proliferation 
of A549/PC9 cells infected with si-NC or DDIT4-si1/2. Representative images of the crystal violet staining of cells in 6-well plates were shown. Data represent the 
means ± SD of 3 independent experiments and t test was used to analyze the difference. (D, E) DDIT4 knockdown resulted in increased apoptosis in LUAD cells. 
Representative FACS images were shown. Data represent the means ± SD of 3 independent experiments and t test was used to analyze the difference (D), and 
representative in situ fluorescence images (20× magnification) were also shown (E). Scale bars = 100 μm. *: P < 0.05, **: P < 0.01, ***: P < 0.001. Variables are 
presented as mean ± SD.
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sion of seven genes: DAPK2, DDIT4, E2F2, 
GAPDH, MET, PIM2, and FOXF1. Moreover, our 
in vitro study further confirmed the significance 
of DDIT4 as a crucial oncogene and a potential 
treatment target in LUAD.

DDIT4 can be induced by a variety of stress 
conditions such as oxidative stress, hypoxia, 
and starvation, and has been shown to pro-
mote cancer cell proliferation [27]. In gastric 
cancer, Du et al. demonstrated that knock- 
down of DDIT4 increased 5-fluorouracil-induc- 
ed apoptosis and cell cycle arrest through P53 
and MAPK pathways [28]. DDIT4 has been 
implicated in other prognostic signatures in 
LUAD, specifically associated with cell death 
and resistance to EGFR-TKI (epidermal growth 
factor receptor-tyrosine kinase inhibitor) resis-
tance [29, 30]. DAPK2 is a Ca2+-regulated ser-
ine/threonine kinase that can directly interact 
with and suppress mTORC1 activity, thereby 
promote autophagy and apoptosis induction 
[31, 32]. A recent study revealed that downreg-
ulation of DAPK2 enhances the proliferation 
and migration abilities of NSCLC cells in vitro 
and in vivo by activating NF-κB signaling path-
way [33]. E2F2, a canonical transcription fac-
tor, is involved in transcription regulation, cell 
cycle, and tumorigenesis. Overexpression of 
E2F2 accelerates cell growth, cell cycle pro-
gression, and cell motility in LUAD cells, while 
E2F2 knockdown inhibits these malignant phe-
notypes [34]. GAPDH, a housekeeping gene, 
functions in glycolysis and played a vital role in 
maintaining aerobic glycolysis in various can-
cers [35]. AMPK-dependent phosphorylation  
of GAPDH under glucose deprivation may medi-
ate autophagy initiation [36]. Additionally, 
GAPDH is involved in iron metabolism and oxi-
dative stress [37, 38], which might influence 
tumor cell proliferation and invasion. MET is  
a single-pass transmembrane receptor that, 
upon ligand binding, undergoes MET homodi-
merization, leading to the phosphorylation of 
key intracellular tyrosine residues and down-
stream activation of MAPK and PI3K/AKT/
mTOR pathways, which promote cell migra- 
tion, proliferation, and survival [39]. MET plays 
a crucial role in chemoresistance and EGFR- 
TKI resistance [40, 41], and it has become a 
target for LUAD treatments. FOXF1, a transcrip-
tion factor, plays a critical role in regulat- 
ing mesenchymal-epithelial interactions during 
lung development [42]. A recent study found 

that FOXF1 could transcriptionally activate 
VEGFA, promoting angiogenesis and acceler- 
ating resistance to bevacizumab (a VEGFA-
targeting monoclonal antibody) [43]. PIM2,  
activated by JAK/STAT pathway, is a serine/
threonine protein kinase known to enhance  
the proliferation, invasion, and metastasis of 
tumor cells [44]. Yang et al. suggested that 
PIM2 phosphorylates HK2 on Thr473, increas-
ing HK2 enzyme activity and promoting breast 
cancer cell growth and paclitaxel resistance in 
vitro and in vivo [45]. However, in LUAD, PIM2 
appears to be a favorable prognostic factor, 
and further investigation is needed to clarify 
the underlying mechanism.

PCD could shape the immune landscape of the 
TME through the release of intracellular com-
ponents such as cytokines (mainly IL-1), dam-
age-associated molecular patterns (including 
ATP and HMGB1), and mitochondrial DNA [46-
49]. Depending on their ability to initiate adap-
tive immune response, PCD could be catego-
rized as either immunogenic cell death (ICD)  
or non-immunogenic (or tolerogenic) cell death 
[50]. While typical apoptosis is commonly re- 
garded as non-immunogenic cell death, under 
certain conditions like caspase deficiency, 
apoptosis could trigger adaptive anti-tumor 
responses via the NF-κB signaling pathway 
[51]. Autophagy can cross-talk with other forms 
of ICD and actively regulate both cancer me- 
tastasis and anti-tumor immunity [52, 53]. Our 
findings indicated that pro-PCD genes were 
highly expressed in the patients classified as 
high-risk group, which correlated with their 
poor tumor immunity.

Although our signature demonstrated excell- 
ent value in both the training and validation 
cohorts, there are still some limitations to con-
sider. First, the patient samples were retro-
spectively collected, which may inevitably intro-
duce certain biases due to uncontrollable  
sampling methods and clinical intervention. 
Second, there is a discrepancy between the 
prognosis value of PIM2 predicted by our signa-
ture and its biological function as reported in 
former studies [54, 55], which necessitates 
further experimental research. Therefore, addi-
tional randomized controlled multicenter trials 
with large sample size and longer follow-up 
periods are necessary to provide additional 
validation.
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In conclusion, the PCD-related gene signature 
constructed in the study is a practical prognos-
tic predictor of LUAD patients that may hold 
clinical relevance.
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Supplementary Figure 1. The difference of (A) age, (B) gender, (C) TNM stage, (D) T stage, (E) N stage, and (F) M 
stage between the two PRG clusters. P value was obtained using X2 test.
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Supplementary Figure 2. A. Kaplan-Meier analysis of the model-forming genes. B. Comparison of the expression of the model-forming genes in LUAD tissue and 
normal tissue. *: P < 0.05, **: P < 0.01, ***: P < 0.001.
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Supplementary Figure 3. (A) LUAD patients were classified into two distinct clusters when k = 2 based on the model-forming genes. (B) PCA of the two MRGclusters. 
(C) Boxplot of comparison of risk score between two MRGclusters. Alluvial diagram showed the interrelationship between MRGclusters, risk groups, and survival 
status in the training (D), combination (E), and test (F) cohorts.
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Supplementary Figure 4. Univariate Cox regression analysis involved age, gender, T stage, N stage, and risk score 
in the combination cohort (A) and the test cohort (E). Multivariate Cox regression analysis involved age, gender, T 
stage, N stage, and risk score in the combination cohort (B) and the test cohort (F). A nomogram was established to 
predict the prognostic of LUAD patients based on the combination cohort (C) and the test cohort (G). (D) Calibration 
plot showing the probability of 1-, 2-, and 3-year overall survival in the combination cohort (D) and the test cohort 
(H). *: P < 0.05, **: P < 0.01, ***: P < 0.001.
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Supplementary Figure 5. A. Progress free survival (PFS) of the training, combination, and test cohorts (from left 
to right, respectively). B. Relapse free survival (RFS) of GSE31210 and GSE37745 (from left to right, respectively).


