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Abstract: Objective: Aggregating evidence highlights the strong genetic basis underpinning congenital heart disease 
(CHD). Here BMP4 was chosen as a prime candidate gene causative of human CHD predominantly because BMP4 
was amply expressed in the embryonic hearts and knockout of Bmp4 in mice led to embryonic demise mainly from 
multiple cardiovascular developmental malformations. The aim of this retrospective investigation was to discover a 
novel BMP4 mutation underlying human CHD and explore its functional impact. Methods: A sequencing examina-
tion of BMP4 was implemented in 212 index patients suffering from CHD and 236 unrelated non-CHD individuals 
as well as the family members available from the proband carrying a discovered BMP4 mutation. The impacts of the 
discovered CHD-causing mutation on the expression of NKX2-5 and TBX20 induced by BMP4 were measured by em-
ploying a dual-luciferase analysis system. Results: A new heterozygous BMP4 mutation, NM_001202.6:c.318T>G;p.
(Tyr106*), was found in a female proband affected with familial CHD. Genetic research of the mutation carrier’s 
relatives unveiled that the truncating mutation was in co-segregation with CHD in the pedigree. The nonsense mu-
tation was absent from 236 unrelated non-CHD control persons. Quantitative biologic measurement revealed that 
Tyr106*-mutant BMP4 failed to induce the expression of NKX2-5 and TBX20, two genes whose expression is lost 
in CHD. Conclusion: The current findings indicate BMP4 as a new gene predisposing to human CHD, allowing for 
improved prenatal genetic counseling along with personalized treatment of CHD patients.
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Introduction

Congenital heart disease (CHD) is the most fre-
quent type of human birth malformation glob-
ally, occurring in approximately 0.8%-1.2% of all 
live births and roughly 10% of miscarriages 
globally, accounting for nearly 33% of all con-
genital deformations [1-3]. Notably, if minor 
cardiac developmental aberrations are encom-
passed, such as patent foramen ovale and aor-
tic bicuspid valve, the prevalence of CHD rises 
to around 5% of all live births [4-6]. As an array 
of cardiovascular developmental deformations, 

CHD is clinically categorized into > 30 distinct 
isoforms, encompassing double-outlet right 
ventricle (DORV) and ventricular septal defect 
(VSD) [2, 7-14]. Though certain mild/minor 
forms of CHD may resolve spontaneously [2], 
severe/complex forms of CHD usually lead to 
worse quality of life [15-17], reduced exercise 
performance [18-21], neurodevelopmental de- 
lay and structural brain anomaly [22-26], isch-
emic/thromboembolic stroke [27, 28], acute 
renal injury/chronic kidney disease [29-32], 
hepatic fibrosis [33, 34], pulmonary dysplasia/
pulmonary arterial hypertension [35-37], bacte-
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rial endocarditis [38-42], chronic heart failure 
[43-45], supraventricular/ventricular arrhyth-
mias [46-48], or premature cardiac death [49-
54]. During recent decades, striking advances 
have been made in pediatric cardiac surgical 
procedures and catheter-based interventional 
techniques for CHD along with perioperative 
intensive care of cases with CHD, which sub-
stantially decrease the mortality of CHD cases, 
allowing almost 95% of live births with various 
forms of CHD to reach adulthood, and now 
adults outnumber children among the survivors 
living with CHD [55-60]. Despite the marked 
improvement, the mortality among adult survi-
vors with CHD remains at high risk for miscel-
laneous cardiovascular comorbidities (encom-
passing cardiac dysrhythmias, heart failure, 
and infective endocarditis), neurodevelopmen-
tal disabilities, cerebrovascular thromboembo-
lism, pulmonary arterial hypertension, chronic 
kidney disease, cancer, or demise in later life 
[61-65]. Consequently, CHD causes morbidity 
and socioeconomic encumbrances, highlight-
ing a need to further decipher its molecular 
pathogenesis [2].

During vertebrate embryogenesis, cardiac 
organogenesis undergoes an exceedingly com-
plex biologic process that predominantly relies 
on precise spatiotemporal interactions between 
different multipotent heart progenitors [66]. A 
finely-coordinated sophisticated signaling net-
work, which principally consists of transforming 
growth factor-β (TGFβ), bone morphogenetic 
protein (BMP), Wnt family member (WNT), nodal 
growth differentiation factor (NODAL), and 
fibroblast growth factor (FGF), induces expres-
sion of a key cluster of cardiac transcription 
factors encompassing NKX2.5, TBX20/5/1, 
and GATA5/6/4 that work in a mutually-reinforc-
ing cascade to drive cellular lineage restriction 
and proliferation, differentiation, and migration 
of different progenitor cell populations to the 
proper chambers for specific types of cardiac 
cells [66]. Both environmental pathogenic fac-
tors and inheritable defects can disturb the 
heart-development process, giving rise to a 
diverse array of CHD [1, 3, 66-71]. It is believed 
that non-inherited risk factors account for 
about 30% of CHD, although the molecular 
mechanisms of CHD caused by detrimental 
environmental exposure are largely elusive 
[71]. Well-recognized non-genetic factors that 
enhance vulnerability to CHD include maternal 

disease, maternal ingestion of medication, 
maternal consumption of toxic chemical, and 
maternal exposure of gaseous pollutants, 
atmospheric particulate substances, and heavy 
metals during early pregnancy [71]. However, 
increasing evidence demonstrates that geneti-
cally compromised components are responsi-
ble for most CHD [1, 3, 66, 67]. In addition to 
chromosomal aneuploidies and copy number 
variations, a growing body of deleterious muta-
tions in > 100 genes, including NKX2.5 and 
TBX20, have been found to contribute to CHD 
[1, 3, 66, 67, 72-96]. Nevertheless, known 
genetic causes of CHD can explain < 40% of 
CHD patients, and in most (> 60%) cases, the 
genetic determinants for CHD remain uncertain 
[66, 96].

Recent investigations have established the 
essential role of BMP4 as an important mem-
ber of the TGFβ superfamily of polypeptide sig-
naling molecules in regulating the cardiovascu-
lar morphogenetic process, particularly at the 
early stages of cardiac development [97-101]. 
In mice, knockout of Bmp4 results in embryonic 
lethality, mainly because of abnormal cardiac 
development [98]; while conditional deletion  
of Bmp4 in cardiomyocytes leads to DORV, 
VSD, and atrioventricular canal defect [99]. 
Moreover, murine embryos with compound het-
erozygous deletion of Bmp4 and Bmp2 also 
manifest VSD [100, 101]. Furthermore, in hu- 
mans, BMP4 was found to be highly expressed 
in the heart with a similar expression level in 
the healthy and CHD-affected hearts (with no 
BMP4 mutation), and sustained mRNA and pro-
tein expressions of BMP4 were observed in 
CHD patients [97]. These findings highlight the 
crucial role of BMP4 in normal cardiac organo-
genesis. This suggests that genetically defec-
tive BMP4 predisposes to CHD in humans.

Materials and methods

Recruitment of research participants

The current retrospective case-control investi-
gation was accomplished in line with the 
Declaration of Helsinki. The ethical review com-
mittee of Tongji Hospital in Shanghai approved 
the protocols involved in human research (with 
an approved protocol code of LL(H)-09-07 and 
an ethical approval date of July 27, 2009). After 
ethical approval, the research subjects or their 
parents signed an informed consent form, at 
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the time of enrollment before the commence-
ment of the current study. For the present 
human research, 212 probands suffering from 
CHD and 236 unrelated non-CHD volunteers 
were recruited from the Chinese Han-ethnicity 
population. The pedigree members available 
from the CHD-affected probands were also 
enlisted. Each research subject underwent a 
comprehensive clinical evaluation at study 
entry, including a systemic review of personal 
and familial histories along with medical 
records, meticulous physical examination, 
echocardiographic/electrocardiographic imag-
es, and routine laboratory tests. For all research 
subjects, CHD was diagnosed based on the 
echocardiographic images and/or operative 
reports. All the patients had an echocardio-
gram-documented CHD, of whom most had 
medical records indicating surgical or catheter-
based treatment for CHD. The affected individ-
uals’ CHD was categorized based on the inter-
national nomenclature [102]. The inclusion and 
exclusion criteria for the CHD patient group and 
non-CHD control group are described else-
where [103]. The patients with syndromic CHD 
were excluded from the current study just 
because the genetic causes for most syndrom-
ic CHD were known and no evidence indicated 
the association of a BMP4 defect with syn-
dromic CHD. Patients with known causes 
(including chromosomal aneuploidy and a copy 
number variation) associated with CHD were 
also excluded. Clinical data and demographic 
information together with 1-3 mL of venous 
blood were acquired from every research 
participant.

Sequencing assay of BMP4

Isolation of genomic DNA from the research 
participants’ circulating leucocytes was com-
pleted by utilizing a genomic DNA purification 
kit (Thermo Fisher, USA) according to the man-
ual. The oligonucleotide primers applied to the 

amplification of the coding exons along with the 
splicing donors/acceptors of human BMP4 
(GenBank accession number: NC_000014.9) 
are given in Table 1. Polymerase chain reaction 
(PCR)-amplification of BMP4 from a research 
participant’s genomic DNA was fulfilled on a 
thermal cycler apparatus (Bio-Rad, USA) with a 
Taq DNA polymerase kit (New England Biolabs, 
USA) as well as the BMP4-specific primers 
mentioned above. The amplicons were frag-
mented through 1.6% agarose gel electropho-
resis and purified utilizing a gel extraction kit 
(Invitrogen, USA) following the manufacturer’s 
procedures. Direct PCR-DNA sequencing assay 
of the purified amplicons was performed as 
described elsewhere [103-105]. Additionally, 
for a detected human BMP4 mutation, the  
gnomAD database along with the SNP data-
base was accessed to confirm its novelty as 
described previously [103].

Production of gene-expressing constructs

As described previously [106], cDNA was pro-
duced by reverse transcription of the mRNA iso-
lated from the excised myocardial issue, which 
originated from a case experiencing surgical 
therapy for Fallot’s tetralogy. A 1368-bp frag-
ment including the entire coding region of wild-
type human BMP4 (Nucleotide accession num-
ber: NM_001202.6) was PCR-amplified from 
human heart cDNA using the AccuPrime™  
Taq DNA Polymerase Kit (Invitrogen, USA) and  
a human BMP4-specific pair of primers of 
5’-GTCGAATTCAACGCACTGCTGCAGCTTC-3’ 
(forward) and 5’-GTCTCTAGAGTGTATATCTGTC- 
TATCCTC-3’ (reverse). The amplified fragment 
containing whole human BMP4 cDNA and the 
pcDNATM3.1(+) vector (Invitrogen, USA) were 
doubly cut by EcoRI and XbaI, gel-purified,  
and recombined by T4 DNA ligase to construct 
the wild-type human BMP4-pcDNATM3.1(+)  
vector. Using the wild-type human BMP4-
pcDNATM3.1(+) vector as a template, the 

Table 1. Oligonucleotide primers for amplifying the coding sequences along with flanking introns of 
the human BMP4 gene
Coding exon Forward (from 5’ to 3’) Reverse (from 5’ to 3’) Amplicon size (bp)
1 CAGTTTGGGCAGCAGTTACAC GGCTCGAGATAGCTTGGACG 546
2 GGGTGAGACTTTCCCGACCT TAAAGGAGGTCCGACGGAAGG 670
3 TGCTTTCCATCTTGCCCCTC CTGGACTGGGGCTTTGATGT 606
4-a GGTTTGTTAGCTGCCCCACT CCCTTGAGGTAACGATCGGC 602
4-b GGCTAGCCATTGAGGTGACTC ATAAAAGTCCAGCTATAAGGAAGC 658
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Tyr106*-mutant human BMP4-pcDNATM3.1(+) 
vector was yielded employing a site-targeted 
mutagenesis kit (Thermo Scientific, USA) along 
with a complimentary pair of oligonucleotide 
primers (forward: 5’-CACTGGTCTTGAGTAGCCT- 
GAGCGCCCGGCC-3’; backward: 5’-GGCCGGGC- 
GCTCAGGCTACTCAAGACCAGTG-3’). The NKX2-
5-luc and TBX20-luc constructs were generat-
ed as previously described [106]. All construct-
ed vectors were verified by DNA sequencing 
analysis.

Cellular transfection with gene-expressing vec-
tors and dual-luciferase analysis

HeLa cells (a cervical cancer cell line derived 
from Henrietta Lacks) were routinely main-
tained as described elsewhere [106]. Cells 
were counted using a hemocytometer (Invi- 
trogen, USA) and seeded in a 24-well plate 
(Greiner Bio-One, USA), cultivated for 36 h,  
then transient cellular transfection with gene-
expressing vectors was conducted using the 
Lipofectamine® LTX & PLUSTM Reagent (Invitro- 
gen, USA). Specifically, cells were transfected 
with 15 ng of pGL4.75, 1.5 μg of NKX2-5-luc or 
TBX20-luc, and 0.6 μg of each gene-expressing 
vector (empty pcDNATM3.1(+), wild-type human 
BMP4-pcDNATM3.1(+), or Tyr106*-mutant hu- 
man BMP10-pcDNATM3.1(+), alone or together). 
Here, the renilla luciferase-expressing plasmid 
of pGL4.75 (Promega, USA) was employed as 
an internal control to balance transfection effi-
ciency. The empty pcDNATM3.1(+) plasmid was 
utilized as an external negative control. HeLa 
cells transfected with gene-expressing plas-
mids were harvested 36 h after cellular trans-
fection and lysed in a lysis buffer (Promega, 
USA). Cell lysates were applied to the mea- 
surement of firefly/renilla luciferase activities, 
respectively, as described in detail elsewhere 
[106]. For each gene-expressing vector, a  
cellular transfection experiment was accom-
plished in three independent replicates.

Statistics

Quantitative variables (age and promoter activ-
ity) are given as means ± standard deviations  
(
_
x  ± SD) throughout. Qualitative values (sex,  

race and positive family history of CHD) are 
expressed as frequency numbers (n) and per-
centages (%). An independently measured 
Student’s t-test was applied to compare con-
tinuous variables between two groups. To com-

pare continuous variables among over three 
groups, a one-way analysis of variance followed 
by the Tukey-Kramer post-hoc test was used. 
Categorical variables were compared between 
two groups using Fisher’s exact test or Pear- 
son’s chi-square (χ2) test when indicated. 
Statistical assay was done with SPSS v17 
(SPSS, USA). In all cases, a 2-sided P < 0.05 
denoted a statistical difference.

Results

Basic features of the CHD-affected proband 
cohort

In the current human investigation, 212 index 
patients with miscellaneous forms of CHD 
(including 95 female index patients and 117 
male index patients, with an average age of 5.8 
years) was evaluated clinically in comparison 
with 236 unrelated non-CHD volunteers with-
out family history of CHD (including 106 fe- 
male volunteers and 130 male volunteers, with 
an average age of 5.7 years). All the study indi-
viduals were enlisted from the Chinese Han-
race population. The included index patients 
had echocardiographic/surgical documenta-
tions suggesting the presence of CHD, while 
the included volunteers showed normal echo-
cardiograms, with no proof suggesting cardio-
vascular structural deformities. Of the 212 
CHD-affected probands, 61 probands reported 
a positive familial history of CHD, whereas none 
of the 236 volunteers employed as control sub-
jects had it. No research subjects had known 
non-heritable factors susceptible to CHD, 
including maternal obesity, diabetes mellitus, 
hypothyroidism, phenylketonuria, pre-eclamp-
sia, primary hypertension, nutritional deficien-
cy, epilepsy, connective tissue disease, acute 
febrile illness, along with exposure to therapeu-
tic medications, toxicants, and ionizing radia-
tion during gestation, and the vast majority of 
CHD-affected probands experienced catheter-
based interventional/surgical treatment for 
CHD. The basic demographic and phenotypic 
features of the 212 probands with a wide spec-
trum of CHD are summarized in Table 2.

Identification of a CHD-causative mutation in 
BMP4

By DNA sequencing examination of human 
BMP4 in 212 probands with a diverse array  
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of CHD, a heterozygous BMP4 mutation, NM_ 
001202.6:c.318T>G;p.(Tyr106*), was found in 
one female proband affected with congenital 
DORV and VSD. Sequencing assay of BMP4 in 
the mutation carrier’s available relatives dem-
onstrated that the truncating mutation co-seg-
regated with CHD in the family (arbitrarily desig-

Functional failure of Tyr106*-mutant BMP4 in 
inducing expression of NKX2-5

As presented in Figure 2, in grown HeLa  
cells expressing multiple constructs, encom-
passing empty pcDNATM3.1(+) as an external 
negative control (-), wild-type human BMP4-

Table 2. Basic characteristics of the research cohort comprising 
212 index patients affected with a wide spectrum of congenital 
heart disease

Variable Number or 
mean ± SD

Percentage  
or range

Demographics
    Female index patients 95 44.8
    Male index patients 117 55.2
    Age at initial recruitment (years) 5.8 ± 3.27 0.6-11.3
    Having a family history of CHD 61 28.8
Distribution of distinct forms of CHD
    VSD 53 25.0
    ASD 48 22.6
    PDA 16 7.5
    TOF 12 5.7
    DORV 10 4.7
    TGA 4 1.9
    HLV 4 1.9
    TAPVC 2 0.9
    PS 2 0.9
    CoA 1 0.5
    PTA 1 0.5
    AS 1 0.5
    VSD + PDA 18 8.5
    DORV + VSD 16 7.5
    VSD + ASD 9 4.2
    ASD + PDA 5 2.4
    TOF + ASD 5 2.4
    TGA + VSD 4 1.9
    PTA + VSD 1 0.5
Dysrhythmias
    AVB 15 7.1
    AF 11 5.2
Medical management
    Catheter-based treatment for CHD 117 55.2
    Surgical procedures for CHD 72 34.0
    Follow-up observation 23 10.8
AF: atrial fibrillation; AS: aortic stenosis; ASD: atrial septal defect; AVB: atrio-
ventricular block; CHD: congenital heart disease; CoA: coarctation of the aorta; 
DORV: double-outlet right ventricle; HLV: hypoplastic left ventricle; PDA: patent 
ductus arteriosus; PS: pulmonary stenosis; PTA: persistent truncus arteriosus; 
TAPVC: total anomalous pulmonary venous connection; TGA: transposition of the 
great arteries; TOF: tetralogy of Fallot; VSD: ventricular septal defect.

nated as Family C002). Genetic 
assay of Family C002 revea- 
led that CHD was inherited in  
an autosomal-dominant mode. 
Notably, all the six CHD-affected 
members (I-1, II-3, II-8, III-3,  
III-7, and IV-2 from Family C002) 
of the mutation-harboring pro-
band underwent surgical treat-
ment for CHD. The proband’s 
father’s grandfather (I-1) died of 
sudden cardiac death when he 
was 63 years old. The BMP4 
mutation was absent from the 
236 unrelated non-CHD con-
trols or from the gnomAD and 
SNP databases, verifying the 
novelty of the discovered BMP4 
nutation responsible for CHD. 
The DNA sequencing chromato-
grams displaying the heterozy-
gous c.318T>G mutation in 
BMP4 in contrast to its wild  
type are illustrated in Figure  
1A. The structural motifs of the 
wild-type and Tyr106*-mutant 
human BMP4 proteins are 
shown in Figure 1B. The pedi-
gree of the proband carrying  
the discovered human BMP4 
mutation is shown in Figure  
1C. In Family C002, there were 
21 family members available, 
including 10 male and 11 fe- 
male members, with ages vary-
ing from 1 to 78 years. All the  
six affected members suffered 
DORV and VSD and underwent 
surgery for CHD. No recognized 
environmental factors vulnera-
ble to CHD were unmasked in 
each pedigree member. The 
clinical characteristic profile as 
well as BMP4 mutation status  
of the living relatives with CHD 
from Family C002 are summed 
in Table 3.
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Figure 1. A new BMP4 mutation causing familial congenital cardiovascular malformations. A. Sequence chromato-
gram traces revealing the heterozygous BMP4 mutation in the CHD-affected proband (Mutant) along with corre-
sponding homozygous control in an unaffected family member of the proband (Wild type). A vertical arrow points 
to the nucleotide position where the heterozygous BMP4 mutation (c.318T>G) occurs. B. Schematic diagrams de-
lineating the structural domains of human BMP4 proteins. The Tyr106*-mutant BMP4 protein (Mutant) was pre-
dicted to lose 303 amino acids at the carboxyl terminus (COOH). TGFβ: transforming growth factor-beta; NH2: amino 
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pcDNATM3.1(+) (BMP4), and Tyr106*-mutant 
human BMP4-pcDNATM3.1(+) (Tyr106*), alone 
or together, BMP4 and Tyr106* induced the 
transcriptional activity of the NKX2-5 promoter 
by ~19-fold and ~2-fold, respectively (BMP4 
versus Tyr106*: t = 12.7416; P = 0.0002). 
When BMP4 and Tyr106* were co-expressed, 
the induced transactivation on the NKX2-5 pro-
moter was ~10-fold (BMP4 versus Tyr106* + 
BMP4: t = 5.9808; P = 0.0039). Equivalent sta-
tistical results were obtained when multiple 
comparisons were carried out (F = 94.983, P = 
6.514 × 10-8). Specifically, for (-) versus BMP4, 
t = 17.1833; P < 0.0001; for (-) versus Tyr106*, 
t = 0.3167; P = 0.9978; for (-) versus BMP4 + (-), 
t = 8.9933; P < 0.0001; for (-) versus Tyr106* + 
BMP4, t = 8.6367; P < 0.0001; for BMP4 ver-
sus Tyr106*, t = 16.8667; P < 0.0001; for 
BMP4 versus BMP4 + (-), t = 8.1900; P = 
0.0001; for BMP4 versus Tyr106* + BMP4, t = 
8.5467; P < 0.0001; for Tyr106* versus BMP4 
+ (-), t = 8.6767; P < 0.0001; for Tyr106* versus 
Tyr106* + BMP4, t = 8.3200; P < 0.0001; for 
BMP4 + (-) versus Tyr106* + BMP4, t = 0.3567; 
P = 0.9965.

Inability of Tyr106*-mutant BMP4 to induce 
transcription of TBX20

As illustrated in Figure 3, in maintained HeLa 
cells expressing multiple plasmids, encom-
passing empty pcDNATM3.1(+) plasmid (-), wild-
type human BMP4-pcDNATM3.1(+) (BMP4), and 
Tyr106*-mutant human BMP4-pcDNATM3.1(+) 
(Tyr106*), separately or together, BMP4 and 
Tyr106* induced the transactivation on the 
TBX20 promoter by ~14-fold and ~2-fold, res- 
pectively (BMP4 versus Tyr106*: t = 13.1716;  

P = 0.0002). When BMP4 and Tyr106* were 
expressed in combination, the elicited tran-
scriptional activity of the TBX20 promoter was 
~6-fold (BMP4 versus Tyr106* + BMP4: t = 
7.4809; P = 0.0017). Parallel statistical results 
were achieved when multiple comparisons 
were made (F = 76.560, P = 1.847 × 10-7). 
Specifically, for (-) versus BMP4, t = 12.1267;  
P < 0.0001; for (-) versus Tyr106*, t = 0.0400; 
P = 1.0000; for (-) versus BMP4 + (-), t = 5.8167; 
P = 0.0002; for (-) versus Tyr106* + BMP4, t = 
4.7833; P = 0.0011; for BMP4 versus Tyr106*, 
t = 12.0867; P < 0.0001; for BMP4 versus 
BMP4 + (-), t = 6.3100; P = 0.0001; for BMP4 
versus Tyr106* + BMP4, t = 7.3433; P < 
0.0001; for Tyr106* versus BMP4 + (-), t = 
5.7767; P = 0.0002; for Tyr106* versus 
Tyr106* + BMP4, t = 4.7433; P = 0.0012; for 
BMP4 + (-) versus Tyr106* + BMP4, t = 1.0333; 
P = 0.7116.

Discussion

In humans, the BMP4 gene is mapped at chro-
mosome 14q22.2, which codes for a growth 
factor comprising 408 amino acids, a secreted 
ligand with multiple functions belonging to the 
TGFβ superfamily. It consists of over 30 ligands 
recognized so far [97]. The TGFβ superfamily is 
classified into several subcategories, including 
BMPs, TGFβs, growth and differentiation fac-
tors (GDFs), as well as activins/inhibins. TGFβ 
superfamily signaling occurs through a het-
erodimeric complex comprising two types of 
receptors (types I and II) [97]. BMPs were ini-
tially demonstrated to account for the develop-
ment of bone as well as cartilage. Further 
research has substantiated their pivotal roles 

terminus. C. Pedigree manifesting autosomal-dominant inheritance of ventricular septal defect and double-outlet 
right ventricle. An oblique arrow points to the index patient. A family member’s genotype is marked with “+” or “-”, 
of which “+” signifies a member harboring the heterozygous BMP4 mutation, while “-” signifies a member with no 
BMP4 mutation.

Table 3. Clinical characteristic profile and BMP4 mutation status of the living relatives from Family 
C002 suffering congenital heart defects
Individual (Family C002) Sex Age (years) Cardiovascular structural deformities BMP4 mutation (Tyr106*)
II-3 Male 54 DORV, VSD +/-
II-8 Female 50 DORV, VSD +/-
III-3 Male 27 DORV, VSD +/-
III-7 Male 26 DORV, VSD +/-
IV2 Female 2 DORV, VSD +/-
VSD: ventricular septal defect; DORV: double-outlet right ventricle; +/-: heterozygote for the human BMP4 mutation.
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in embryonic development with a diverse array 
of effects, encompassing growth and differen-

chymal transition of endocardial cells at the 
outflow tract and inducing the invasion of car-

Figure 2. No induction of NKX2-5 expression by Tyr106*-mutant BMP4. In 
maintained HeLa cells, dual-luciferase measurement of the expression of 
the NKX2-5 promoter-driven firefly luciferase (NKX2-5-luc) in the presence of 
wild-type human BMP4-pcDNATM3.1(+) vector (BMP4) or Tyr106*-mutant hu-
man BMP10-pcDNATM3.1(+) vector (Tyr106*), separately or in combination, 
showed that Tyr106* failed to induce the expression of NKX2-5. For every 
expression vector, functional experiments were performed three times in trip-
licate. Here, “a” means P < 0.001, and “b” means P < 0.005, in comparison 
to BMP4 (600 ng).

Figure 3. Inability of Tyr106*-mutant BMP4 to induce TBX20 expression. 
Dual-reporter analysis of the expression of the TBX20 promoter-driven firefly 
luciferase (TBX20-luc) in grown HeLa cells in the presence of wild-type hu-
man BMP4-pcDNATM3.1(+) vector (BMP4) or Tyr106*-mutant human BMP10-
pcDNATM3.1(+) vector (Tyr106*), singly or in both, revealed that Tyr106* 
failed to induce the expression of TBX20. For each expression vector, three 
independent biological measurements were conducted in triplicate. Here, “c” 
signifies P < 0.001, and “d” indicates P < 0.005, when compared with BMP4 
(600 ng).

tiation along with apoptosis 
of multiple cell types, such as 
chondroblasts, osteoblasts, 
epithelial cells, and neuronic 
cells [97]. In the heart, BMP 
signaling first activates the 
endocardium by the estab-
lishment of a proper environ-
ment, followed by the promo-
tion of epithelial-mesenchy- 
mal transition as well as inva-
sion of the mesenchymal 
cells into the endocardial 
cushion with the aid of TGFβ 
as well as Notch signaling 
[97]. The BMP ligands bind 
receptors (type II), resulting in 
activation of receptors (type 
I), which phosphorylates the 
SMAD signal transducers, 
playing a crucial role in induc-
ing transcription of target 
genes [97]. Additionally, non-
SMAD signaling pathways  
are also involved in gover- 
ning BMP signaling [97, 107]. 
Although all BMP proteins 
possess a similar protein 
structure, each BMP protein 
has a unique tissue expres-
sion spectrum along with a 
distinct physiologic function 
[108, 109]. To date, six BMP 
members have been validat-
ed to be amply expressed in 
the embryonic heart, encom-
passing BMP4, BMP6, BMP2, 
BMP5, BMP7, and BMP10, of 
which BMP4 was shown to  
be highly expressed in the 
mesoderm as well as the out-
flow tract myocardium [110]. 
It exerts multiple functions 
during cardiac organogene-
sis, particularly during the 
early period of cardiac orga- 
nogenesis [97, 103, 111]. 
Specifically, BMP4 functions 
to induce the formation of 
endocardial cushion and out-
flow tract cushion mainly by 
increasing epithelial-mesen-
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diac neural crest into the outflow tract and aor-
topulmonary septum cushions during embryo-
genesis [97, 99]. BMP4 was shown to play an 
essential role in regulating cardiovascular mor-
phogenesis by interaction with transcription 
factors [97]. Furthermore, recent investigations 
have shown that BMP4 can induce the expres-
sion of multiple important downstream genes, 
encompassing NKX2-5 and TBX20 [97, 112-
114], which encodes transcription factors cru-
cial for normal cardiovascular development, 
and disease-causing mutations in both NKX2-5 
and TBX20 have been involved in the occur-
rence of CHD [85, 115-117]. In the current 
study, the discovered Tyr106* mutation was 
anticipated to yield a truncated BMP4 protein 
lacking pivotal structural motifs. Results from 
functional experiments showed that Tyr106*-
mutant BMP4 failed to induce the expression of 
NKX2-5 as well as TBX20. Collectively, these 
findings suggest that BMP4 haploinsufficiency 
is a molecular determinant of CHD in humans.

In experimental mice, functionally defective 
BMP4 results in CHD. Deletion of Bmp4 caused 
embryonic lethality, mainly due to cardiovascu-
lar developmental abnormalities [98]; while 
conditional ablation of Bmp4 in cardiomyocytes 
caused early embryonic death, along with 
DORV, VSD, and atrioventricular canal defect 
[99]. Moreover, loss of Bmp4 from the anterior 
heart field in mice led to a remarkably reduced 
number of cells in the developing endocardial 
cushions within the outflow tract, abnormal 
cushion remodeling, persistent truncus arterio-
sus, VSD, and semilunar valve deformity [118]. 
Additionally, murine embryos with the com-
pound heterozygous knockout of both Bmp4 
and Bmp2 also manifested VSD [100, 101]. 
Conditional deletion of both Bmp4 and Bmp7  
in the murine second heart field led to defec-
tive epithelial to mesenchymal transition, 
decreased cardiac neural crest ingress, and 
persistent truncus arteriosus [119]. Conditional 
inactivation of Bmp4 from TBX1-expressing 
cells in mouse embryos resulted in a spectrum 
of malformations resembling the cardiovascu-
lar anomalies of patients with DiGeorge syn-
drome, mainly affecting the remodeling of out-
flow tract and pharyngeal arch arteries [120]. 
Taken together, these experimental animal 
studies underscore the essential role of BMP4 
in cardiovascular development, so that BMP4 
insufficiency may be a molecular basis of CHD.

In humans, BMP4 was validated to be amply 
expressed in the heart, with a similar expres-
sion level in normal and CHD-affected hearts 
(with no BMP4 mutation). Sustained mRNA and 
protein expressions of BMP4 were observed in 
CHD patients [97]. Furthermore, a common 
BMP4 intronic SNP (rs762642) was reported to 
confer an enhanced vulnerability to sporadic 
CHD in a Chinese population [119], though the 
functional effect of the rs762642 polymor-
phism was not explored [121]. These results 
support that genetically compromised BMP4 
contributes to CHD.

Limitations of the current study are as follows. 
First, we could not rule out that other genetic 
defects might also contribute to CHD in the 
patients harboring a BMP4 mutation. Whole-
genome or whole-exome sequencing analysis 
would be needed to assess this. Second, more 
cellular functional experiments should be per-
formed, especially for the further cell experi-
ments performed in cardiomyocytes. Third, 
establishment of a mouse model with the 
BMP4 mutation knocked in would help to vali-
date the causative effects of the BMP4 muta-
tion. Finally, BMP4 should be screened in popu-
lations of different ethnicities to evaluate the 
mutational spectrum and prevalence of BMP4.

Conclusion

This research indicates BMP4 as a causative 
gene responsible for human CHD and unveils  
a new molecular mechanism underpinning 
human CHD. This has hypothetical clinical 
implications for prenatal diagnosis and person-
alized prophylaxis of CHD in a subgroup of 
patients.
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