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Abstract: Lung adenocarcinoma (LUAD) is one of the most prevalent and lethal cancers worldwide, signifying a 
critical need for improved prognostic tools. A growing number of studies have highlighted the role of microRNAs 
(miRNAs) and their regulatory functions in tumorigenesis and cancer progression. In this context, we performed an 
extensive analysis of bulk RNA- and miRNA-sequencing to identify LUAD-associated prognostic genes. A risk score 
system based on 11 miRNA-regulated and surface-protein genes was developed, which was later validated by in-
ternally and externally using the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), respectively. 
Further single-cell RNA sequencing analysis revealed significant interactions between various cellular subpopula-
tions within the tumor microenvironment, with the most pronounced differences observed between endothelial 
and epithelial cells. The mutational analysis highlighted TP53 as a key signaling pathway associated with the risk 
score. The study underscores that immune suppression, indicated by a positive association with regulatory T cells 
(Tregs) and an inverse correlation with M1-type macrophages, is prevalent in high-risk LUAD patients. These find-
ings provide a promising prognostic tool for clinical outcomes of LUAD patients, facilitating future development of 
therapeutic strategies and enhancing our understanding of the regulatory function of miRNAs in LUAD.

Keywords: Bulk-RNA sequencing, lung adenocarcinoma, miRNA sequencing, risk score, single-cell RNA sequenc-
ing, TCGA and GEO databases

Introduction

Lung adenocarcinoma (LUAD), a prevalent his-
tologic subtype of non-small-cell lung cancer,  
is found in 38.5% of all lung cancer cases [1]. 
LUAD exhibits unique pathological and genetic 
features that impact patients’ prognosis and 
treatment. The prognosis of LUAD patients 
remains unsatisfactory despite advances in 
LUAD diagnosis and management, with a best 
five-year survival of 70%, which drops to 30% in 
locally advanced patients [2] and to 5% in those 
with metastases [3]. The identification of clini-
cally relevant prognostic genome-wide survival 
models for cancer using gene expression has 
gained considerable attention [4]. Currently, 
numerous studies have constructed gene ex- 
pression-based survival scores in LUAD to pre-
dict patients’ survival [5-9]. Survival scores are 
predictive tools that utilize gene expression 

profiling to stratify patients according to their 
risk of adverse clinical outcomes. For instance, 
a recent study identified a 4-mRNA signature-
based prognostic model, with its robust prog-
nostic power demonstrated, which is a better 
predictor of clinical outcomes than traditional 
methods for LUAD [10]. Moreover, through the 
identification of crucial molecular pathways 
involved in the pathogenesis of LUAD, these 
gene-based prognostic models could enable 
more personalized treatment options, poten-
tially improving the outcomes of patients with 
LUAD. Although the early results are promising, 
there is still a need for innovative and refined 
gene-based prognostic models, as well as fur-
ther research exploring the potential of gene-
based survival scores in the precision treat-
ment of LUAD.

MicroRNAs (miRNAs) play a fundamental role in 
controlling gene expression through their bind-
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Figure 1. Workflow of data processing, analysis, and validation in the cur-
rent study. LUAD, lung adenocarcinoma; TCGA, cancer Genome Atlas; GEO, 
Gene Expression Omnibus.

ing to their target 3’ untranslated region (UTR) 
of mRNAs, resulting in post-translational re- 
pression or degradation of target mRNAs [11]. 
MiRNAs have been shown to considerably con-
tribute to the pathogenesis and progression of 
various cancers [12, 13], including LUAD [2, 
14]. Numerous miRNAs have been identified as 
prognostic markers, suggesting their potential 
as critical tools for predicting patient prognosis. 
For example, miR-21 has repeatedly been link- 
ed to poor prognosis in LUAD patients since its 
upregulation promotes tumor growth, invasion, 
and metastasis [15]. Additionally, miR-let7 fam-
ily members, particularly miR-let7a, have sup-
pressive effects on LUAD, and their downregu-

lation is correlated with ad- 
vanced disease stages and 
shorter overall survival (OS) 
[16]. These studies highlight 
the prognostic significance of 
specific miRNAs in LUAD, un- 
derscoring their potential as 
essential indicators for guiding 
treatment decisions and pre-
dicting patient prognosis [16]. 
The miRNA-mRNA regulatory 
network in LUAD is complex 
and involves multiple interac-
tions among different mole-
cules. Several studies have 
explored the correlation be- 
tween specific miRNAs and tar-
get mRNAs in LUAD, highlight-
ing the potential of these regu-
latory networks as prognostic 
biomarkers. For instance, miR-
21 and miR-221/222 have 
been identified as oncogenic 
miRNAs that promote tumori-
genesis in LUAD by targeting 
several tumor suppressor ge- 
nes, including PTEN, PDCD4, 
and TIMP3 [17].

The application of computa-
tional methods to the miRNA-
mRNA regulatory network in 
LUAD has facilitated the iden- 
tification of novel therapeutic 
targets and prognostic mark-
ers [17, 18]. Co-expression 
network analysis, for instance, 
has been used to identify dif-
ferentially expressed miRNA-
mRNA signatures associated 

with LUAD prognosis [19]. Other research has 
explored the use of machine learning algo-
rithms to integrate multiple datasets and iden-
tify regulatory modules in LUAD [19]. A compre-
hensive understanding of the miRNA-mRNA 
regulatory network in LUAD is essential for 
identifying key biomarkers, predicting patient 
outcomes, and developing new interventions.

In this study, we combined mRNA- (mRNA-seq) 
and miRNA-sequencing (miRNA-seq) results 
from the open database, The Cancer Genome 
Atlas (TCGA), as shown by the workflow (Figure 
1). By analyzing genes from the differentially 
expressed gene (DEG) list from mRNA-seq and 
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and the co-recognized targeted mRNAs were 
used for subsequent research. Cytoscape 
(v3.8.2) was used for the visualization of the 
gene miRNA-mRNA networks.

Construction of a nomogram model

A nomogram was built based on regression 
analysis, which was plotted on the same plane 
with scaled line segments according to a cer-
tain ratio based on risk scores and clinical man-
ifestations to express the relationship among 
variables in the prediction model. Through the 
construction of a multivariate Cox regression 
model, the value of each influencing factor was 
scored according to its contribution degree in 
the model to the outcome variable (that is, the 
size of the regression coefficient). The scores 
were then added together to get the total  
score, based on which the predicted value was 
calculated.

Gene set enrichment analysis (GSEA)

The patients were assigned to either a high- or 
a low-risk group according to the high or low 
risk score, for GSEA of the inter-group differ-
ences in signaling pathways. The background 
gene set utilized in the GSEA was obtain- 
ed from the Molecular Signatures Database 
(MSigDB, version 4.1.0; URL: https://www.
gsea-msigdb.org/gsea/msigdb/) and was des-
ignated as the annotated gene set of the sub-
type pathway. Through differential pathway ex- 
pression analyses among different subtypes, 
the differentially enriched gene sets were iden-
tified based on the consistency score, where- 
by those with adjusted p-values <0.05 were 
selected.

Analysis of immune cell infiltration

We used the CIBERSORT algorithm to analyze 
patient data and infer the relative proportions 
of 22 kinds of tumor-infiltrating immunocytes. 
Then, gene expression profiles and immune cell 
contents were analyzed by Spearman correla-
tion analysis.

Tumor mutation burden (TMB) and neoantigen 
data analysis

TMB was defined by calculating variant fre-
quencies and variant counts/exon lengths for 
each tumor sample, dividing the non-synony-

predicting regulatory genes from the DEG list 
from miRNA-seq, we generated a series of over-
lay genes highly likely to be regulated by miR-
NAs and influence LUAD progression. Based on 
this gene list, we selected genes related to 
prognosis and constructed a risk score system 
(RSS). We used multiple datasets to validate 
the prognostic value of this risk system, dem-
onstrating its high sensitivity and specificity in 
predicting patients’ survival outcomes.

Data and methods

Data acquisition

We obtained datasets from the open Gene 
Expression Omnibus (GEO; URL: https://www.
ncbi.nlm.nih.gov/geo/) and TCGA (URL: https://
portal.gdc.cancer.gov/). The LUAD original 
mRNA expression data, consisting of a normal 
(n=59) and a tumor (n=541) group, as well as 
the LUAD original miRNA data that included a 
normal (n=46) and a tumor (n=518) group, 
were downloaded from TCGA. The DEGs (sc- 
reening criteria: P-value <0.05 & |logFC| >1) 
between groups was identified using the limma 
package. The following datasets were down-
loaded from GEO. The Series Matrix File data of 
the GSE30219 dataset (epigenetic alterations, 
bulk RNA-seq) was downloaded, and informa-
tion on survival and complete gene expression 
profiles of 85 LUAD patients were extracted, 
with the annotation platform being GPL570. 
Series Matrix File data (bulk RNA-seq) was also 
downloaded from the GSE50081 dataset, as 
well as information on survival and complete 
gene expression profiles of 127 LUAD patients, 
with the annotation platform also being 
GPL570. The GSE149655 data file and data 
from four patients with LUAD were extracted  
for single-cell analysis (SCA) by single-cell RNA 
sequencing.

Selection of surface protein genes

We searched surface protein-associated gene 
sets in the GeneCards database (URL: https://
www.genecards.org/), extracted those with a 
relevance score >20, and intersected them 
with the DEGs.

Prediction of miRNA target genes

miRNA-mRNA interactions were predicted by 
miRDB, miRTarBase, and TargetScan jointly, 
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mous mutated loci by the total length of the 
protein-coding region [20]. The neoantigen of 
each patient was assessed using NetMHC- 
panv3.0 [21].

Single cell analysis (SCA)

This study used the Seurat package to process 
the data, the tSNE algorithm to determine the 
positional relationship between clusters, and 
the Celldex package to annotate the clusters; 
cells that were vital for tumorigenesis were 
annotated. By setting FindAllMarkers (the logic 
threshold parameter) to 1, we finally extracted 
the marker genes for each cell subtype from 
the single-cell expression profile.

Intercellular communication analysis

CellChat can quantitatively infer and analyze 
cell-to-cell communication networks from sin-
gle-cell data. This analysis quantified the close-
ness of the interactions in terms of the number 
of times (count), using standardized single-cell 
expression profiles and cell subtypes obtained 
from the SCA as the input data and SCA infor-
mation, respectively, to observe cell activities 
and influence on the disease.

Immunohistochemical staining (IHC)

The immunohistochemical data of 9 model 
genes in LUAD or normal lung tissue speci- 
mens were obtained from the Human Pro- 
tein Atlas (HPA; URL: https://www.proteinatlas.
org/). Four paired LUAD tissue and normal lung 
tissue specimens were collected from LUAD 
patients undergoing pulmonary resection at 
the Department of Pathology, Fenyang Hos- 
pital, Shanxi Province. Tissue sections (thick-
ness: 5 µm) prepared from representative 
tumor-containing FFPE blocks were subjected 
to IHC for TGFβ-2 (1:50, Cat# ab80059, Abcam) 
and ECT2 (1:100, Cat# ab236502, Abcam).

Statistical methods

Patient survival was visualized by Kaplan- 
Meier curves and comparatively analyzed by 
the Log-rank test. Multivariate analyses were 
carried out with the Cox proportional hazards 
model. R language was employed for statistical 
analyses, with the significance level set as 
P<0.05.

Results

Screening of cell surface protein-related genes 
that were differentially expressed in the LUAD 
cohort

By utilizing mRNA expression profile from the 
TCGA database, we initially identified 1969 
DEGs, comprising 700 up- and 1269 down-reg-
ulated genes (Figure 2A, 2B). Surface proteins 
located on the outer surface of the cell mem-
brane offer convenient access for detection 
and analysis in both tumor tissue and blood 
samples. Furthermore, surface proteins show 
greater stability compared to plasma proteins 
or nuclear transcription factors, enabling them 
to endure multiple freeze-thaw cycles and mak-
ing them more suitable for long-term storage 
and analysis. Consequently, we proceeded to 
select all genes that transcribe surface pro-
teins by overlaying the surface protein-coding 
genes with the entire DEG dataset (Figure 2C).

Identification of differentially expressed miR-
NAs and target gene prediction in the LUAD 
cohort

Through miRNA expression data analysis from 
the TCGA database, 243 differentially expre- 
ssed miRNAs were identified in LUAD, including 
132 up- and 111 down-regulated genes (Figure 
3A, 3B). miRNAs generally bind to their target 
3’UTR of mRNAs, causing mRNA degradation or 
decreased trancription, thus providing critical 
insight into post-transcriptional gene regula-
tion. To predict miRNA-mRNA interactions, we 
integrated miRDB, miRTarBase, and TargetScan 
databases, resulting in 2,990 predicted miR-
NA-target mRNAs, which we narrowed down  
to commonly identified candidates. Cytoscape 
was then utilized to visualize these miRNA-
mRNA interactions (Figure S1). We performed 
an intersect analysis of the 2,990 identified 
DEGs with 509 cell surface protein genes and 
obtained a set of 100 intersecting genes to  
prioritize future studies (Figure 3C), represent-
ing potential targets for future investigation in 
LUAD.

Prognosis-related gene identification and prog-
nosis model building

Clinical data was collected from LUAD patients 
to identify prognostic genes among the 100 
intersection genes using univariate Cox regres-
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Figure 2. Identification of differentially expressed cell surface protein-related genes. A. Volcano plots of differentially 
expressed genes in LUAD patients versus normal controls. B. Heatmap for differentially expressed genes in LUAD 
cases versus normal controls. C. Venn diagrams showing the intersection between differentially expressed genes 
and surface protein-coding genes. LUAD, lung adenocarcinoma.

Figure 3. Identification of differentially expressed miRNA-regulated genes. A. Volcano plots of differentially ex-
pressed miRNAs in LUAD patients versus normal controls. B. Heatmap for differentially expressed miRNAs in LUAD 
cases versus normal controls. C. Venn diagrams showing the intersection between differentially expressed surface 
protein-coding genes and differentially expressed miRNAs. LUAD, lung adenocarcinoma.
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Figure 4. Identification of prognosis-related gene and construction of a prognosis model. A. 37 genes identified by 
cox-regression that show a significant association with prognosis of LUAD patients. B. 11 key genes selected from 
37 prognostic genes, used to construct the risk score formula. C. Association of the risk score with LUAD patients’ 
survival from internal TCGA dataset. D. Association of the risk score with LUAD patients’ survival from external GEO 
dataset. LUAD, lung adenocarcinoma; TCGA, Cancer Genome Atlas; GEO, Gene Expression Omnibus.

sion, which identified 37 genes with significant 
association to prognosis (P<0.05) (Figure 4A). 
Further narrowing down the key genes, a Le- 

ast Absolute Shrinkage and Selection Operator 
(LASSO) regression feature selection algorithm 
was performed using clinical information from 
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LUAD patients (Figure 4B). Risk score calcu- 
lation formula: Risk score = KAT2B × 
(-0.018519793) + BTG2 × (-0.00544217) + 
ATP1A2 × (-0.000134602) + FGF2 × 
0.01179126 + HSPD1 × 0.017023729 + 
AKAP12 × 0.017567014 + HMGA1 × 
0.022685445 + TGFB2 × 0.050171332 + 
LATS2 × 0.089590696 + ECT2 × 0.091278183 
+ LDHA × 0.155482721. The patients were 
randomized into a training set and a validation 
set in a 4:1 ratio. Then, the cutoff for each  
sample was calculated by LASSO regression 
(Figure S3A, S3B), enabling the classification of 
patients into either the high- or the low-risk 
group by the median risk score value. In both 
the training and test sets, Kaplan-Meier curves 
demonstrated an obviously lower OS in the 
high-risk group versus the low-risk group 
(Figure 4C). Additionally, the good performance 
of the model in both the training and validation 
sets was confirmed by the receiver operating 
characteristic (ROC) curve analysis (Figure S3C, 
S3D). To further explore the prediction stability 
of our RSS, we utilized an external dataset from 
GEO to analyze the survival difference between 
patients at low and high risk of LUAD. Similar to 
the previous findings, high-risk patients show- 
ed statistically lower OS than low-risk patients 
in the GEO external validation set (Figure 4D), 
demonstrating the robustness of the prognos-
tic model constructed.

Independent prognosis factors of LUAD out-
comes by the 11-genes RSS

The patients were assigned to high- and low-
risk groups according to the median risk score 
value to discuss the independent risk and prog-
nostic factors of LUAD. Regression analysis 
was conducted, and the results were present- 
ed in nomograms. As indicated by the logistic 
regression analysis, the risk score contribut- 
ed significantly to the scoring process of the 
nomogram prediction model (Figure 5A). More- 
over, prediction analysis was performed for 
both one-year and three-year prognosis of 
LUAD patients (Figure S2), and the consistent 
prediction results further confirm the reliability 
of the findings. The tumor-nodes-metastasis 
(TNM) stage system is critical for acc- 
urately diagnosing and staging LUAD, which, in 
turn, helps determine appropriate treatment 
options. To evaluate the correlation of the inci-
dence risk with various clinical stage informa-

tion, we correlated the risk score with several 
clinical indicators, including the general stage 
(Figure 5B), T (primary tumor) stage (Figure 
5C), N (regional lymph nodes) stage (Figure 
5D), and follow-up state (Figure 5E), using the 
rank sum test. The results showed a significant 
distribution of risk score values for several  
clinical indicators among the groups (p-value 
<0.05), which indicates that the risk score 
obtained from modeling analysis is applicable 
to the classification of LUAD samples. Overall, 
these findings suggest that risk score is a use-
ful predictor of outcomes in LUAD patients and 
can be effectively used in combination with 
clinical indicators for this purpose.

Expression profiles of model genes in different 
cell types in the LUAD tumor microenviron-
ment (TME)

To investigate how our model genes influence 
LUAD patients’ survival, we assessed gene 
expression profiles across different cell types. 
We conducted cell clustering using the t-distrib-
uted stochastic neighbor embedding (t-SNE) 
algorithm and identified 16 subtypes (Figure 
6A). These subtypes were further classified 
with the R package SingleR into six distinct cell 
categories, including epithelial cells, endotheli-
al cells, T cells, and tissue stem cells, as well as 
macrophages and monocytes (Figure 6B). The 
expression patterns of the 11 model genes 
across these 6 cell types were depicted (Figure 
6C, 6D). Interestingly, high-risk patients were 
found to have a higher proportion of epithelial 
cells (Figure 6E, 6F), suggesting that our model 
genes facilitate epithelial cell-related process-
es that contribute to LUAD progression and 
poor patient prognosis. To further explore this 
possibility, we investigated the communication 
patterns among different cell subtypes and 
found that epithelial cells and endothelial cells 
were the centers of cell communication (Figure 
6G, 6H). This indicates that these model genes 
play a key role in the cellular communication 
that contributes to LUAD progression. To vali-
date our findings, we gathered histological 
staining data for some of our model genes  
from the open-access Human Protein Atlas 
database (Figure 7, available at https: //www.
proteinatlas.org/) and the results were consis-
tent with our expectations. Furthermore, clini-
cal samples were collected to test the genes 
associated with our predictive model (Figure 8). 
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Figure 5. Risk score system and its correlation with various clinicopathological factors. A. Nomogram model for pre-
dicting LUAD patients’ 1- and 3-year survival. B-E. Correlations between the risk score and general stage, T (primary 
tumor) stage, N (regional lymph nodes) stage, and follow-up state. LUAD, lung adenocarcinoma.

The histological data corroborated our findings, 
further confirming the validity and significance 
of our research. Collectively, these results shed 

insights into the role of our model genes in 
LUAD and their impact on cell types associated 
with disease progression.
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Figure 6. Expression profiles of model genes in the LUAD tumor microenvironment. A. t-SNE algorithm classification of all DEGs into 16 clusters. B. Six cell types 
were obtained by SingleR package annotation of cell types for all cell subpopulations. C, D. Expression of 11 models in those 6 cell types. E, F. Comparison of cell 
composition in the tumor microenvironment between patients at high risk and those at low risk. G, H. Communication patterns between different cell subtypes. 
LUAD, lung adenocarcinoma.
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Figure 7. Histological analysis of marker genes. Expres-
sion of model genes in lung tissues from LUAD patients 
and healthy controls, with data selected from the Human 
Protein Atlas database. LUAD, lung adenocarcinoma.

Core signal pathway analysis

To comprehensively investigate the molecular 
mechanisms underlying the correlation of risk 

scores with tumor progression, we studied spe-
cific signal pathways. Patients were further 
assigned to high- and low-risk groups based on 
their risk level for GSEA analysis of the inter-
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Figure 8. Histological analysis of marker genes. Expression of model genes in lung tissues from LUAD patients and 
healthy controls. LUAD, lung adenocarcinoma.

group differences in signal pathways. Intere- 
stingly, we found that central carbon metabo-
lism in cancer, HIF-1 signaling, and p53 signal-
ing pathway were among the pathways (Figure 

9A). To gain a deeper understanding of these 
pathways, we mapped out the molecular inter-
action network for each pathway (Figure 9B). To 
investigate the genetic landscape of high- and 
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Figure 9. Core signal pathway analysis. A. Gene set enrichment analysis of high- and low-risk patients. B. Molecular 
interactions between those signal pathways. C. Mutation profiles of high- and low-risk patients. D. Model genes that 
are positively correlated with TP53. E. Model genes that are negatively correlated with TP53.

low-risk patients, we examined the mutation 
profiles. Strikingly, the high-risk group showed 
an evidently higher proportion of TP53 and 
other gene mutations than the low-risk group 
(Figure 9C), highlighting the potential role of 
TP53 in predicting high-risk status and tumor 
progression. Following these findings, we visu-

alized the co-expression of the model genes 
and the tumor progression gene TP53 across 
six cell marker genes (Figure 9D, 9E). This an- 
alysis provides insight into the potential inter-
action between the model gene and TP53 in 
different cell types, shedding light on possi- 
ble mechanisms underlying their cooperative 
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effect in driving tumor progression. Thus, our 
comprehensive analysis of the signaling path-
ways, immunotherapy-related tumor markers, 
mutation profiles, and co-expression patterns 
reinforces the significance of our risk model in 
understanding LUAD progression. These find-
ings provide a basis for further exploration of 
the mechanisms and potential therapeutic tar-
gets associated with these model genes and 
their interactions with TP53 in various cell 
types.

The association of the prognosis model with 
the immune microenvironment

We further investigated the correlation of the 
risk score with common immunotherapy-relat-
ed tumor markers to gain insights into the 
immunogenic profiles of the high- and low-risk 
patients. The two groups are statistically differ-
ent in TMB (Figure 10A) and neoantigens 
(Figure 10B). Specifically, the high-risk group 
showed higher levels of TMB and neoantigens. 
These observations suggest the potential of 
the risk score as a predictor of immunotherapy 
response. To further explore this possibility, we 
examined the contents of immune cells. The T 
cells focal helper, regulatory T cells (Tregs), nat-
ural killer (NK) cells activated dendritic cells 
resting, and mast cells resting were found to be 
obviously reduced in high-risk patients than in 
low-risk patients. Conversely, high-risk patients 
had obvious increases in activated CD4 memo-
ry T cells and M0 and M1 macrophages than 
low-risk patients (Figure 10C). In addition, the 
investigation of the association of the risk score 
with immune cell contents revealed a positive 
connection between the risk score and activat-
ed CD4 memory T cells and resting NK cells but 
an inverse relationship with resting mast cells 
and Tregs (Figure 10D). Next, we conducted a 
detailed analysis of immune regulatory genes 
by examining differences in the expression pro-
files of immune-associated chemokines, im- 
munosuppressors, immunostimulating factors, 
and immunoreceptors between the two groups 
(Figure S4A-D). These findings expand our 
understanding of the immune landscape asso-
ciated with high- and low-risk groups and pro-
vide greater insights into the correlation of risk 
scores with immunotherapy response. More- 
over, to determine the sensitivity of high- and 
low-risk patients to anti-tumor immunotherapy, 
we predicted their response to immunotherapy, 

and the findings depicted poorer response in 
high-risk patients (Figure 10E). Based on our 
observed immune cell contents and immune-
related gene expression patterns, the poor 
response to immunotherapy in high-risk pa- 
tients may be attributed to an increase in M1 
macrophages, which promotes tumor develop-
ment. All in all, the above findings provide a 
rounded analysis of the immune landscape 
associated with risk groups and offer potential 
avenues for developing personalized immuno-
therapeutic approaches to treat LUAD patients 
based on risk score.

Discussion

LUAD, the most prevalent type of lung cancer, is 
associated with an unsatisfactory prognosis 
despite advances in clinical management. A 
recent domain of investigation in LUAD progno-
sis is the role of miRNAs in regulating gene 
expression. miRNAs, as a class of endogenous 
non-coding RNAs, play dynamic roles in the 
modulation of genetic expression at the post-
transcriptional level. A recent review summa-
rized a close link between differentially ex- 
pressed miRNAs to LUAD cell invasion, metas-
tasis, and malignant behavior [14]. Due to their 
important regulatory roles in these processes, 
miRNAs represent important biomarkers for 
assessing the severity and prognosis of LUAD. 
Additionally, miRNAs may serve as crucial ther-
apeutic targets in designing novel therapies for 
LUAD treatment.

Novel miRNA-associated target genes have 
been identified for prognostic prediction and 
therapeutic decision-making in LUAD. For ex- 
ample, Wei et al. [22] identified eight miRNA-
associated target genes and constructed a 
prognostic model, revealing that high-risk pa- 
tients had poorer prognoses, lower immune 
scores, and a lower response to immunothera-
py. However, surface-protein gene signatures 
were not reported. To harness this potential, we 
conducted an extensive analysis of bulk RNA-
seq and miRNA-seq data. We identified a range 
of overlapping, miRNA-regulated genes, which 
were subsequently subjected to Cox regres- 
sion and LASSO regression processes, to pin-
point gene that is closely associated with 
patient prognosis. A highly selective 11 gene-
based risk score formula was then establish- 
ed: KAT2B × (-0.018519793) + BTG2 × 
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Figure 10. The correlation of the prognosis model with the immune microenvironment. A, B. Comparison of tumor 
mutation burden (TMB) and neoantigens between two groups. C. Comparison of immune cell components between 
high- and low-risk patients. D. Correlation of the risk score with immune cell content. E. Predicted response to im-
munotherapy between high- and low-risk patients.
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(-0.00544217) + ATP1A2 × (-0.000134602) + 
FGF2 × 0.01179126 + HSPD1 × 0.017023729 
+ AKAP12 × 0.017567014 + HMGA1 × 
0.022685445 + TGFB2 × 0.050171332 + 
LATS2 × 0.089590696 + ECT2 × 0.091278183 
+ LDHA × 0.155482721. These genes are  
miRNA-regulated and surface-protein encoded, 
enhancing their potential for future clinical 
applications as easily detectable surface mark-
ers. This marks a significant advancement in 
understanding the intricate role of miRNAs in 
LUAD and their regulatory influence on mRNAs.

The 11 gene-based risk score formula devel-
oped in this study consists of miRNA-regulated 
genes, each of which plays a specific role in 
LUAD pathogenesis. For instance, the first two 
genes, KAT2B and ATP1A2, are essential in 
maintaining genome integrity and regulating 
cell proliferation, growth, and differentiation 
[23, 24]. Meanwhile, KAT2B has been associ-
ated with higher immune filtration and more 
satisfactory efficacy of immunotherapy in 
NSCLC [25]. Additionally, BTG2 is an anti-onco-
gene that is usually downregulated in several 
cancer types, including LUAD [26]. Its silencing 
in various cancer cell lines has been shown to 
enhance cellular migration, resulting in the pro-
motion of tumor growth [27, 28]. In addition to 
these three protective genes, the remaining 
eight risk-adding genes also contribute signifi-
cantly to cancer biology. HMGA1, another gene 
included in the 11-gene panel, promotes cell 
proliferation and presents elevated levels in 
cancers characterize by increased tumor malig-
nancy and enhanced invasion [29-31]. TGFB2 
plays a crucial role in regulating the response  
to cellular stress, including inflammation and 
immune regulation [32]. It has also been sug-
gested to have a dual function in cancer devel-
opment, possessing both tumor suppressive 
and oncogenic effects [33]. FGF2 is essential 
for the growth and differentiation of multiple 
cell types in the body, including cells in the lung 
parenchyma and vasculature [34]. Recently, 
this gene has been identified as a marker for 
drug resistance in LUAD [35].

Altered glucose metabolism in cancers has 
long been recognized, which is reflected in the 
increased activity of lactate dehydrogenase A 
(LDHA) in tumors [36]. LDHA catalyzes the final 
step of glycolysis, producing lactate and ulti-
mately promoting tumor growth. Therefore, its 

upregulation is indicative of a higher risk in 
LUAD patients [37]. On the other hand, LATS2, 
ECT2, and AKAP12 are involved in cell cycle 
regulation and checkpoint control. LATS2, 
known as an anti-oncogene, regulates the Hi- 
ppo signaling pathway to control cellular prolif-
eration and differentiation [38]. Previous re- 
search suggests that AKAP12 influences cell 
migration and invasion in multiple cancer typ- 
es, including ovarian, breast, and prostate can-
cers, and its downregulation is associated with 
aggressive tumor behavior in LUAD [39]. ECT2 
is a crucial regulator of cytokinesis and cell divi-
sion and has been linked to tumor progression, 
migration, and invasion [40]. Meanwhile, high 
expression of ECT2 is considered as an inde-
pendent prognostic factor for poor OS and 
recurrence in LUAD [41].

Internal datasets from TCGA and external data-
sets from the GEO database were utilized to 
validate the prognostic significance of this RSS. 
The highly specific and sensitive results deriv- 
ed from both datasets bolster the credibility of 
this RSS. Further analysis using single-cell RNA 
sequencing facilitated a deeper exploration of 
the differences between high- and low-risk 
patients in cell sub-population inside the TME, 
leading to a more in-depth understanding of 
how our model genes express themselves dif-
ferently across various cell subtypes. It was 
concluded that the largest inter-group differ-
ences lay in the endothelial and epithelial cells. 
We also conducted an inter-group analysis of 
gene mutations and identified the TP53 signal-
ing pathway as a key factor. A great deal of 
effort and attention has been devoted to ex- 
ploring the complex mechanisms of LUAD, but 
the current understanding, especially in terms 
of the TME, therapeutic targets, and prognostic 
factors, remains far from being satisfactory. In 
this study, we first constructed the LUAD TME 
using gene expression profiling and further 
investigated its immune infiltration landscape. 
As expected, some immune cells showed sig-
nificant differences between the hyper- and 
hypo-immune groups. The TME is often defin- 
ed as the environment surrounding the tumor, 
including the extracellular matrix, vasculature, 
and cellular players such as immune cells and 
neurons, all of which are strongly associated 
with tumor progression and treatment out-
comes [42]. A growing number of studies have 
experimentally elucidated the facilitating role of 
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TME infiltration in immunotherapeutic respons-
es and drug resistance in different types of 
tumors and explored its impact on patient prog-
nosis [43-45]. In another important observa-
tion, it was deduced that the risk score was 
positively associated with Treg cells and in- 
versely related to anti-tumor M1 macrophages, 
indicating an immunosuppressive environment 
in high-risk patients. Subsequently, the immu-
notherapy prediction analyses also revealed a 
lower response in high-risk patients.

Although this study provides a comprehensive 
view of LUAD and establishes a powerful model 
for prognostic prediction, there are still two 
major drawbacks that require further investiga-
tion. First, we were limited to data solely from 
TCGA and GEO portals and could not cover 
other data sources. This hindered us from test-
ing the robustness of the model when used for 
other data. Second, the risk signatures were 
established using retrospective data from  
public databases. Therefore, prospective and 
multi-center LUAD cohorts are required to elimi-
nate bias. Third, we only validated the protein 
levels of genes in clinical samples. Thus, we will 
subsequently collect clinical data for further 
testing of the prognostic model. Collectively, 
the 11 genes identified in this study play a vital 
role in modulating cellular activities (e.g., cell 
proliferation, differentiation, migration, and 
survival). Understanding the specific role of 
these genes and how they interact with miRNAs 
have significant implications for the develop-
ment of targeted therapies for LUAD. Moreover, 
their surface expression makes them ideal can-
didates for potential therapeutic targets and 
diagnoses. Therefore, the risk score formula 
developed in this study sheds valuable light on 
the potential mechanisms of LUAD and can be 
considered a significant contribution to the 
field. Our novel RSS shows tremendous poten-
tial in predicting clinical outcomes in LUAD 
patients while laying a strong foundation for 
further investigation into the regulatory func-
tion of miRNAs in LUAD.

Disclosure of conflict of interest

None.

Address correspondence to: Chendan Zou, Depart- 
ment of Biochemistry and Molecular Biology, Harbin 
Medical University, Harbin 150000, Heilongjiang, 
China. Tel: +86-18604506752; E-mail: zouchen-
dan1114@126.com

References

[1] O’Brien TD, Jia P, Aldrich MC and Zhao Z. Lung 
cancer: one disease or many. Hum Hered 
2018; 83: 65-70.

[2] Song Y, Kelava L and Kiss I. MiRNAs in lung 
adenocarcinoma: role, diagnosis, prognosis, 
and therapy. Int J Mol Sci 2023; 24: 13302.

[3] Huang CY, Chen BH, Chou WC, Yang CT and 
Chang JW. Factors associated with the progno-
sis and long-term survival of patients with met-
astatic lung adenocarcinoma: a retrospective 
analysis. J Thorac Dis 2018; 10: 2070-2078.

[4] Smith JC and Sheltzer JM. Genome-wide iden-
tification and analysis of prognostic features in 
human cancers. Cell Rep 2022; 38: 110569.

[5] Wang Z, Zhang J, Shi S, Ma H, Wang D, Zuo C, 
Zhang Q and Lian C. Predicting lung adenocar-
cinoma prognosis, immune escape, and phar-
macomic profile from arginine and proline-re-
lated genes. Sci Rep 2023; 13: 15198.

[6] Ren Q, Li Q, Shao C, Zhang P, Hu Z, Li J, Wang 
W and Yu Y. Establishing a prognostic model 
based on immune-related genes and identifi-
cation of BIRC5 as a potential biomarker for 
lung adenocarcinoma patients. BMC Cancer 
2023; 23: 897.

[7] He J, Li W, Li Y and Liu G. Construction of a 
prognostic model for lung adenocarcinoma 
based on bioinformatics analysis of metabolic 
genes. Transl Cancer Res 2020; 9: 3518-
3538.

[8] Chen Q, Chen S, Wang J, Zhao Y, Ye X, Fu Y and 
Liu Y. Construction and validation of a hypoxia-
related risk signature identified EXO1 as a 
prognostic biomarker based on 12 genes in 
lung adenocarcinoma. Aging (Albany NY) 
2023; 15: 2293-2307.

[9] Ma B, Geng Y, Meng F, Yan G and Song F. Iden-
tification of a sixteen-gene prognostic biomark-
er for lung adenocarcinoma using a machine 
learning method. J Cancer 2020; 11: 1288-
1298.

[10] Liu L, He H, Peng Y, Yang Z and Gao S. A four-
gene prognostic signature for predicting the 
overall survival of patients with lung adenocar-
cinoma. PeerJ 2021; 9: e11911.

[11] O’Brien J, Hayder H, Zayed Y and Peng C. Over-
view of microRNA biogenesis, mechanisms of 
actions, and circulation. Front Endocrinol (Lau-
sanne) 2018; 9: 402.

[12] Peng Y and Croce CM. The role of microRNAs in 
human cancer. Signal Transduct Target Ther 
2016; 1: 15004.

[13] Ali Syeda Z, Langden SSS, Munkhzul C, Lee M 
and Song SJ. Regulatory mechanism of mi-
croRNA expression in cancer. Int J Mol Sci 
2020; 21: 1723.

[14] Liu J, Zhang F, Wang J and Wang Y. MicroRNA-
mediated regulation in lung adenocarcinoma: 

mailto:zouchendan1114@126.com
mailto:zouchendan1114@126.com


11-miRNA-regulated and surface-protein genes signature in lung adenocarcinoma

1585 Am J Transl Res 2024;16(5):1568-1586

signaling pathways and potential therapeutic 
implications (Review). Oncol Rep 2023; 50: 
211.

[15] Du J, Qian J, Zheng B, Xu G, Chen H and Chen 
C. miR-21-5p is a biomarker for predicting 
prognosis of lung adenocarcinoma by regulat-
ing PIK3R1 expression. Int J Gen Med 2021; 
14: 8873-8880.

[16] Pop-Bica C, Pintea S, Magdo L, Cojocneanu R, 
Gulei D, Ferracin M and Berindan-Neagoe I. 
The clinical utility of miR-21 and let-7 in non-
small cell lung cancer (NSCLC). A systematic 
review and meta-analysis. Front Oncol 2020; 
10: 516850.

[17] Kunz M, Göttlich C, Walles T, Nietzer S, Dan-
dekar G and Dandekar T. MicroRNA-21 versus 
microRNA-34: lung cancer promoting and in-
hibitory microRNAs analysed in silico and in 
vitro and their clinical impact. Tumour Biol 
2017; 39: 1010428317706430.

[18] Malik S, Zafar Paracha R, Khalid M, Nisar M, 
Siddiqa A, Hussain Z, Nawaz R, Ali A and Ah-
mad J. MicroRNAs and their target mRNAs as 
potential biomarkers among smokers and non-
smokers with lung adenocarcinoma. IET Syst 
Biol 2019; 13: 69-76.

[19] Wang XJ, Gao J, Wang Z and Yu Q. Identifica-
tion of a potentially functional microRNA-
mRNA regulatory network in lung adenocarci-
noma using a bioinformatics analysis. Front 
Cell Dev Biol 2021; 9: 641840.

[20] Zhou B and Gao S. Construction and validation 
of a novel immune and tumor mutation bur-
den-based prognostic model in lung adenocar-
cinoma. Cancer Immunol Immunother 2022; 
71: 1183-1197.

[21] Castillo-Peña A and Molina-Pinelo S. Land-
scape of tumor and immune system cells-de-
rived exosomes in lung cancer: mediators of 
antitumor immunity regulation. Front Immunol 
2023; 14: 1279495.

[22] Wei Y, Zhong W, Bi Y, Liu X, Zhou Q, Liu J, Wang 
M, Zhang H and Chen M. Molecular subtypes 
and prognostic models for predicting progno-
sis of lung adenocarcinoma based on miRNA-
related genes. Curr Med Chem 2023; [Epub 
ahead of print].

[23] Walters BW, Tan TJ, Tan CT, Dube CT, Lee KT, 
Koh J, Ong YHB, Tan VXH, Jahan FRS, Lim XN, 
Wan Y and Lim CY. Divergent functions of his-
tone acetyltransferases KAT2A and KAT2B in 
keratinocyte self-renewal and differentiation. J 
Cell Sci 2023; 136: jcs260723.

[24] Zhang B, Zhu Z, Zhang X, Li F and Ding A. Inhi-
bition of the proliferation, invasion, migration, 
and epithelial-mesenchymal transition of pros-
tate cancer cells through the action of ATP1A2 
on the TGF-β/Smad pathway. Transl Androl 
Urol 2022; 11: 53-66.

[25] Zhou X, Wang N, Zhang Y, Yu H and Wu Q. 
KAT2B is an immune infiltration-associated 
biomarker predicting prognosis and response 
to immunotherapy in non-small cell lung can-
cer. Invest New Drugs 2022; 40: 43-57.

[26] Zhang XZ, Chen MJ, Fan PM, Jiang W and Liang 
SX. BTG2 serves as a potential prognostic 
marker and correlates with immune infiltration 
in lung adenocarcinoma. Int J Gen Med 2022; 
15: 2727-2745.

[27] Li YJ, Dong BK, Fan M and Jiang WX. BTG2 in-
hibits the proliferation and metastasis of os-
teosarcoma cells by suppressing the PI3K/AKT 
pathway. Int J Clin Exp Pathol 2015; 8: 12410-
12418.

[28] Mao B, Zhang Z and Wang G. BTG2: a rising 
star of tumor suppressors (Review). Int J Oncol 
2015; 46: 459-464.

[29] Wang Y, Hu L, Zheng Y and Guo L. HMGA1 in 
cancer: cancer classification by location. J Cell 
Mol Med 2019; 23: 2293-2302.

[30] Zhong J, Liu C, Zhang QH, Chen L, Shen YY, 
Chen YJ, Zeng X, Zu XY and Cao RX. TGF-β1 in-
duces HMGA1 expression: the role of HMGA1 
in thyroid cancer proliferation and invasion. Int 
J Oncol 2017; 50: 1567-1578.

[31] Pang B, Fan H, Zhang IY, Liu B, Feng B, Meng L, 
Zhang R, Sadeghi S, Guo H and Pang Q. 
HMGA1 expression in human gliomas and its 
correlation with tumor proliferation, invasion 
and angiogenesis. J Neurooncol 2012; 106: 
543-549.

[32] Massagué J and Sheppard D. TGF-β signaling 
in health and disease. Cell 2023; 186: 4007-
4037.

[33] Principe DR, Doll JA, Bauer J, Jung B, Munshi 
HG, Bartholin L, Pasche B, Lee C and Grippo 
PJ. TGF-β: duality of function between tumor 
prevention and carcinogenesis. J Natl Cancer 
Inst 2014; 106: djt369.

[34] Danopoulos S, Shiosaki J and Al Alam D. FGF 
signaling in lung development and disease: 
human versus mouse. Front Genet 2019; 10: 
170.

[35] Jiang H, Li C, Gong Q and Qie H. Identification 
and validation of basic fibroblast growth factor 
as a prognostic biomarker for the response of 
lung adenocarcinoma patients to bevacizum-
ab treatment. Immunobiology 2023; 228: 
152764.

[36] Feng Y, Xiong Y, Qiao T, Li X, Jia L and Han Y. 
Lactate dehydrogenase A: a key player in carci-
nogenesis and potential target in cancer thera-
py. Cancer Med 2018; 7: 6124-6136.

[37] Hou XM, Yuan SQ, Zhao D, Liu XJ and Wu XA. 
LDH-A promotes malignant behavior via activa-
tion of epithelial-to-mesenchymal transition in 
lung adenocarcinoma. Biosci Rep 2019; 39: 
BSR20181476.



11-miRNA-regulated and surface-protein genes signature in lung adenocarcinoma

1586 Am J Transl Res 2024;16(5):1568-1586

[38] Luo SY, Kwok HH, Yang PC, Ip MS, Minna JD 
and Lam DC. Expression of large tumour sup-
pressor (LATS) kinases modulates chemother-
apy response in advanced non-small cell lung 
cancer. Transl Lung Cancer Res 2020; 9: 294-
305.

[39] Chang J, Liu S, Li B, Huo Z, Wang X and Zhang 
H. MiR-338-3p improved lung adenocarcino-
ma by AKAP12 suppression. Arch Med Sci 
2019; 17: 462-473.

[40] Fields AP and Justilien V. The guanine nucleo-
tide exchange factor (GEF) Ect2 is an onco-
gene in human cancer. Adv Enzyme Regul 
2010; 50: 190-200.

[41] Zhou S, Wang P, Su X, Chen J, Chen H, Yang H, 
Fang A, Xie L, Yao Y and Yang J. Correction: 
high ECT2 expression is an independent  
prognostic factor for poor overall survival  
and recurrence-free survival in non-small cell 
lung adenocarcinoma. PLoS One 2018; 13: 
e0196354.

[42] Zhang Y, Yang M, Ng DM, Haleem M, Yi T, Hu S, 
Zhu H, Zhao G and Liao Q. Multi-omics data 
analyses construct TME and identify the im-
mune-related prognosis signatures in human 
LUAD. Mol Ther Nucleic Acids 2020; 21: 860-
873.

[43] de Visser KE and Joyce JA. The evolving tumor 
microenvironment: from cancer initiation to 
metastatic outgrowth. Cancer Cell 2023; 41: 
374-403.

[44] Kang W, Qiu X, Luo Y, Luo J, Liu Y, Xi J, Li X and 
Yang Z. Application of radiomics-based mul-
tiomics combinations in the tumor microenvi-
ronment and cancer prognosis. J Transl Med 
2023; 21: 598.

[45] Naser R, Fakhoury I, El-Fouani A, Abi-Habib R 
and El-Sibai M. Role of the tumor microenviron-
ment in cancer hallmarks and targeted thera-
py (Review). Int J Oncol 2023; 62: 23.



11-miRNA-regulated and surface-protein genes signature in lung adenocarcinoma

1 

Figure S1. 2990 prediceted mRNAs visualized using cytoscape.
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Figure S2. Prediction analysis on the one-year and three-year periods of lung adenocarcinoma. A: Calibration curve; 
B: ROC curve.
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Figure S3. The characteristic genes in lung adenocarcinoma screened by lasso regression feature selection algorith. 
A: LASSO coefficient profiles of genes; B: Cross-validation for tuning parameter selection in the LASSO model; C: ROC 
curveof the genes in training dataset; D: ROC curve of the genes in testing dataset.
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Figure S4. Immune status in high and low risk group. A: The expression differences of immune-related chemokines between the high and low risk groups; B: 
The expression differences of immune-inhibitory factors between the high and low risk groups; C: The expression differences of immune receptors between the 
high and low risk groups; D: The expression differences of immune stimulatory factors between the high and low risk groups; *P<0.05, **P<0.01, ***P<0.001, 
****P<0.0001.


