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Abstract: Objectives: To elucidate the transcriptome of macrophages in an inflammation model induced by lipopoly-
saccharide (LPS), providing insight into the molecular basis of inflammation. Methods: We utilized RNA sequencing 
(RNA-seq) to analyze dynamic changes in gene expression in RAW264.7 macrophages treated with LPS at multiple 
time points. Differentially expressed genes (DEGs) were identified using the edgeR package. Short Time-series Ex-
pression Miner (STEM) and KEGG pathway enrichment analyses were conducted to determine temporal expression 
patterns during inflammation. Results: We identified 2,512 DEGs, with initial inflammatory responses occurring in 
two distinct phases at 1 h and 3 h. Venn diagram analysis revealed 78 consistently dysregulated genes throughout 
the inflammatory process. A key module of 18 dysregulated genes was identified, including Irg1, which may exert an 
inhibitory effect on inflammation. Further, a second metabolic shift in activated macrophages was observed at the 
late middle stage (12 h). Multi-omics analysis highlighted the ribosome’s potential regulatory role in the inflamma-
tory response. Conclusions: This study provides a detailed view of the molecular mechanisms underlying inflamma-
tion in macrophages and reveals a dynamic genetic landscape crucial for further research. Our findings underscore 
the complex interaction between gene expression, metabolic shifts, and ribosomal functions in response to LPS-
induced inflammation.
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Introduction

According to the Third International Consens- 
us Definitions for Sepsis (Sepsis-3), sepsis is 
defined as life-threatening organ dysfunction 
resulting from a dysregulated host immune 
response to infection [1]. The underlying mech-
anism of sepsis involves immune dysfunction 
characterized by early immune system over-
activation followed by late immune suppre- 
ssion [2]. The innate immune system, serving 
as the first line of defense against infections, 
involves key players such as neutrophils, mo- 
nocytes/macrophages, dendritic cells, natural 
killer cells, T cells, and others, all pivotal in the 
pathophysiology of sepsis [3].

Macrophages, critical components of the innate 
immune system, play a vital role in immune 
homeostasis and the inflammatory response 
[4]. They are distributed across various tissues 
and perform multiple functions during all stag-
es of sepsis, including phagocytosis, bacteri-
cidal action, antigen presentation, and secre-
tion of inflammatory factors and chemokines 
[5]. In the early stages of sepsis, macrophages 
release a large number of pro-inflammatory fac-
tors and chemokines, such as enzymes, com-
plement proteins, and regulatory factors like 
interleukin-1 (IL-1), which intensify the inflam-
matory response [6]. This response provides a 
basis for using macrophages in cell models to 
assess the pro-inflammatory effects of stimuli 
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including lipopolysaccharide (LPS) [7]. In the 
later stages of sepsis, excessive apoptosis of 
macrophages leads to immune suppression 
[8].

Current understanding reveals that the me- 
chanisms governing sepsis are complex and 
dynamic, influenced by various microbial and 
host factors that trigger typical inflammatory 
cascades [9]. Studies have shown that patho-
gen-associated molecular patterns such as 
LPS, flagellin, muramyl dipeptide in peptidogly-
can, and CpG bacterial DNA, are recognized by 
pattern recognition receptors of the innate 
immune system [6]. This recognition initiates 
intracellular signaling cascades crucial for in- 
flammatory and immune responses. For in- 
stance, LPS binding to toll-like receptor 4 on 
immune cell membranes activates the mito-
gen-activated protein kinase signaling path-
ways by both MyD88-dependent and indepen-
dent mechanisms. This activation leads to the 
phosphorylation and nuclear translocation of 
transcription factors such as nuclear factor-κB 
(NF-κB), activator protein-1, and interferon reg-
ulatory factor 3, which promote the expression 
of inflammatory cytokines in macrophages [10]. 
Despite significant advances in understanding 
sepsis pathophysiology, it remains a clinical 
challenge due to high mortality rates ranging 
from 28% to 50% [11]. Thus, a deeper compre-
hension of the molecular regulatory mecha-
nisms of the inflammatory response is ineeded. 
We explored the mechanisms underlying the 
inflammatory response of macrophage chal-
lenged with LPS.

Our previous study on the proteome of macro-
phages treated with LPS provided insight into 
the sequential changes in proteins indicative of 
the transition from early to late stages of inflam-
mation, suggesting a potential role for ribosom-
al proteins in inflammation development [12]. 
However, the quantitative correlation between 
mRNA and protein levels across various spe-
cies is generally low (R2~0.01-0.5), indicating 
that mRNA levels alone are often insufficient to 
predict protein levels [13, 14]. Therefore, inves-
tigating changes in the transcriptomes of mac-
rophages stimulated with LPS is crucial for a 
more comprehensive understanding of the 
inflammatory response.

Understanding the complex and dynamic mech-
anisms of sepsis requires both transcriptional 
and protein-level analyses of the immune re- 

sponse. Our previous study highlighted the pro-
teomic landscape of macrophages challenged 
with LPS, revealing sequential changes in pro-
teins and the potential role of ribosomal pro-
teins in inflammation [15]. We observed that 
mRNA and protein levels do not consistently 
correlate across various species (R2~0.01- 
0.5) [16, 17]. This discrepancy underscores the 
importance of investigating both mRNA expres-
sion in transcriptomes and protein levels in pro-
teomes to fully comprehend the inflammatory 
response.

Transcriptomics provides insight into the imme-
diate transcriptional activity of the genome, 
capturing early cellular responses to stimuli 
such as LPS. These changes in mRNA levels are 
crucial for understanding the activation of sig-
naling pathways and the ensuing cascade of 
events leading to inflammatory cytokine pro-
duction [18-22]. However, the translation of 
these mRNA transcripts into functional proteins 
is influenced by various regulatory mecha-
nisms, including post-transcriptional modifica-
tions, which may not be reflected solely by 
mRNA levels.

Proteomics, in contrast, examines the protein 
products of the genome and their functional 
roles within the cell. By analyzing the proteome, 
we can identify proteins differentially express- 
ed in response to LPS stimulation, which may 
not be predictable based solely on mRNA data. 
This aspect is particularly vital for understand-
ing the functional outcomes of the inflammato-
ry process, as proteins are the effector mole-
cules that mediate immune responses and 
cellular functions.

In this study, we utilized both transcriptomic 
and proteomic analyses to elucidate the molec-
ular mechanisms underlying the inflammatory 
response in macrophages induced by LPS. By 
integrating these two approaches, we aim to 
bridge the gap between gene expression and 
protein function, thereby providing a nuanced 
understanding of the molecular events that 
drive sepsis and inflammation.

RNA sequencing (RNA-seq), a second-genera-
tion sequencing technology, has become a piv-
otal method for transcriptome profiling. This 
technique offers a significantly more precise 
measurement of transcript levels compared to 
traditional methods and has been extensively 
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used for gene annotation, transcript profiling, 
and single-nucleotide polymorphism discovery 
across various species [15]. Transcriptional 
changes of coding genes in various inflamma-
tion models have been widely explored at the 
genome-wide level, but sequential transcrip-
tome analyses, particularly in LPS-induced 
macrophages, have been sparse [16].

We performed sequential transcriptome analy-
sis using RNA-seq to characterize the dynamic 
gene expression profiles during the macro-
phage inflammatory response to LPS. Addi- 
tionally, this study presents an integrative anal-
ysis of both the transcriptome and proteome in 
macrophages challenged with LPS at multiple 
time points. This systematic approach enhanc-
es our understanding of the comprehensive 
molecular mechanisms that underpin the 
dynamic process of inflammation and provides 
essential data for further investigations into 
macrophage responses to LPS.

Materials and methods

Cell culture and LPS treatment

RAW264.7 cells, obtained from the American 
Type Culture Collection (ATCC, Manassas, VA, 
USA), were cultured in Dulbecco’s Modified 
Eagle’s Medium (DMEM) (Cat# C11995500BT; 
Gibco, Grand Island, NY, USA) supplemented 
with 10% fetal bovine serum (FBS) (Cat# 
1795588; Gibco, Grand Island, NY, USA). The 
cells were maintained at approximately 80% 
confluence, with passage numbers not exceed-
ing ten. Cells were incubated in a humidified 
atmosphere containing 5% CO2 at 37°C. The 
medium was refreshed every other day. For 
experimental treatments, RAW264.7 cells were 
exposed to LPS (100 ng/ml) for durations of 0, 
1, 3, 6, 12, or 24 h.

Total RNA extraction

Total RNA was extracted using TriPure Isolation 
Reagent (Cat# A244914; Roche) following the 
manufacturer’s instructions. Cells were washed 
with DPBS (Cat# C14190500BT; Gibco, Grand 
Island, NY, USA), lysed with 200 µL of TRIzol, 
and tubes were gently inverted for 5 min. 
Following centrifugation at 12,000×g for 15 
min at 4°C, the supernatant was transferred to 
a new tube. An equal volume of isopropanol 

was added, the tubes were vigorously shaken 
for 15 s, and then left to stand at room tem-
perature for 3 minutes. After a further centrifu-
gation at 12,000×g for 10 min at 4°C, the 
supernatant was discarded, and the RNA pe- 
llet was washed with 75% precooled ethanol. 
Post-centrifugation for 5 min, the ethanol was 
removed, and the RNA pellet was air-dried for 5 
min and resuspended in 20 µL of RNase-free 
water. RNA integrity was verified using the RNA 
Nano 6000 Assay Kit and the Bioanalyzer  
2100 system (Agilent Technologies, CA, USA). 
RNA concentration and purity were measured 
using a NanoDrop spectrophotometer (Thermo 
Fisher Scientific, Wilmington, DE).

cDNA library preparation for RNA-seq

For each cell sample (approximately 1 million 
cells), 1 mL of TRIzol reagent was used for  
total RNA extraction according to the manufac-
turer’s protocol. Sequencing libraries were  
constructed using the Sample Preparation 
Guide of the MGIEasy RNA Library Kit V3.0  
(MGI Shenzhen, Cat#1000006384). mRNA 
was enriched using the Dynabeads mRNA puri-
fication protocol and fragmented into approxi-
mately 250 bp at 94°C for 8 min. This was fol-
lowed by first and second strand synthesis, end 
repair, A-tailing, adapter ligation, and 14 cycles 
of PCR amplification. The PCR products were 
purified and quantified with the Qubit dsDNA 
HS Assay. A yield of 1 pmol was required for 
Single Strand Circularization, which was then 
sequenced on the MGISEQ-2000 platform for 
50 cycles. The quality of the sequencing data is 
reported in Tables S1 and S2. RNA sequencing 
was performed on three independent samples 
of RAW264.7 cells treated with LPS for 1, 3, 6, 
12, and 24 h, and 3 control samples without 
treatment.

Quantitative real-time PCR

Pure RNA was treated with RNase-free DNase 
(Cat# M6101; Promega) and reverse tran-
scribed using the ReverTra Ace qPCR RT Kit 
(Cat# FSQ-101; Toyobo, Japan) in a 10 µL re- 
action volume following the manufacturer’s 
instructions. Transcript quantification was per-
formed by real-time PCR (RT-PCR) using SYBR 
qPCR Mix (Cat# QPK-201; Toyobo, Japan) on a 
7500 Fast Real-time PCR System (Applied 
Biosystems, Foster City, CA). The 50 µL qPCR 
reaction included 25 µL of SYBR Green PCR 
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Master Mix, 1 µmol/L of each primer, and 12.5 
µL of cDNA template. The amplification pro-
gram was set as follows: 50°C for 2 min, 95°C 
for 10 min, followed by 40 cycles of 95°C for 15 
s and 60°C for 1 min. Primers for amplifying 
target mRNAs (Cyp2u1, Cbx2, Irg1, Creb3l2, 
SPP1, and Slc15a3) were sourced from Beijing 
Genomics Institute (BGI) (Table S3). Data were 
analyzed using ABI 7500 Software (v2.0.1), and 
relative expression levels were calculated using 
the 2-∆∆CT method. Experiments were conduct-
ed in biological triplicate.

Quantification and analysis of differentially 
expressed genes (DEGs)

Gene expression levels were quantified using 
Reads Per Kilobase Million (RPKM). Differential 
expression analysis was conducted with the 
edgeR package [17]. P-values were adjusted 
using the Benjamini-Hochberg method to con-
trol the false discovery rate (FDR) [18]. Genes 
with an FDR ≤ 0.01 and an absolute log2(Fold 
Change) ≥ 2 were identified as DEGs.

Gene ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG enrichment 
analysis)

The biological functions of DEGs were explored 
using GO and KEGG enrichment analyses, per-
formed with the cluster Profiler R package [19]. 
Enriched terms with a P-value ≤ 0.05 were con-
sidered statistically significant and visualized 
using the ggplot2 R package [20].

Weighted gene co-expression network analysis 
(WGCNA)

The WGCNA R package was used to identify 
time trait-related gene modules [21]. Genes 
were clustered into different modules based on 
a topological overlap matrix-based dissimilarity 
measure, with a cut height set at 0.25, a mini-
mal module size of 30, and a threshold of 0.3. 
Modules with a P-value ≤ 0.01 were further 
analyzed for biological functions using the 
ClueGO plug-in of Cytoscape software.

Integrative analysis of the transcriptome and 
proteome by “mixOmics” R package

Integrative analysis of transcriptomic and pro-
teomic data across multiple time points was 
conducted using the mixOmics R package [22]. 

Reduced-dimensional data were further ex- 
plored to understand biological functions th- 
rough additional GO and KEGG enrichment 
analyses.

Integrative analysis of the transcriptome and 
proteome by “mixOmics” R package

RAW264.7 cells, sourced from the American 
Type Culture Collection (ATCC, Manassas,  
VA, USA), were cultured in DMEM (Cat# 
C11995500BT; Gibco, Grand Island, NY, USA) 
supplemented with 10% fetal bovine serum 
(FBS) (Cat# 1795588; Gibco). The cells were 
maintained in a humidified incubator at 37°C 
with 5% CO2. For treatments, cells were expos- 
ed to LPS (100 ng/ml) for 0, 3, 6, 12, or 24 h. 
Post-treatment, cells were washed with DPBS 
(Cat# C14190500BT; Gibco) and lysed using 
8M urea (Cat# U4883; Sigma, St. Louis, MO, 
USA) for protein extraction. Proteins were then 
digested into peptides, and peptide expression 
levels were quantified using liquid chromatog-
raphy-tandem mass spectrometry followed by 
peptide library comparison. Differentially ex- 
pressed proteins (DEPs) were identified based 
on p-values < 0.05 and fold changes (FC) > 1.5 
relative to controls. The detailed experimental 
procedures are illustrated in Figure S2.

Statistical analysis

Differential expression for transcriptomics data 
was assessed using the Student’s t-test, with 
genes considered significantly differentially 
expressed at a fold change (FC) ≥ 4 or ≤ 0.25 
and a FDR ≤ 0.01. For proteomic data, proteins 
with an FDR < 0.05 and an FC > 1.5 compared 
to the control group were identified as signifi-
cantly dysregulated.

Results

Dynamic transcriptomic response to LPS in 
macrophages

To understand the underlying mechanisms of 
macrophage response to LPS, we performed 
RNA-seq analyses at multiple time points. We 
analyzed global transcriptomic changes in 
RAW264.7 cells at six time points (0, 1, 3, 6, 
12, and 24 h), obtaining a total of 42.07 Gb of 
clean data across 18 samples, with each sam-
ple providing at least 1.88 Gb of data and Q30 
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Figure 1. Transcriptomic overview of RAW264.7 cells stimulated with lipopolysaccharide (LPS) over time. A. A prin-
cipal component analysis plot displays global transcriptome profiles. B-F. Volcano plots illustrate differentially ex-
pressed genes (DEGs) during LPS-induced inflammatory responses in macrophages at 1, 3, 6, 12, and 24 h com-
pared to control. Red spots indicate up-regulated DEGs, green spots show down-regulated DEGs, and black spots 
represent genes with no significant changes in expression. The horizontal axis (log2(FC)) shows the fold change of 
genes expressed in RAW264.7 cells treated with LPS compared to control, while the vertical axis (-log10(p-value)) 
displays the log-transformed p-value. DEGs were identified using cut-off criteria of p-value ≤ 0.01 and Log2FC ≥ 2 
or ≤ -2. G. A heatmap with hierarchical clustering dendrograms of DEGs shows responses to LPS stimulation at 0 
(control), 1, 3, 6, 12, and 24 h. Red represents higher expression levels, and blue indicates lower expression levels.

quality scores exceeding 81.72% (Table S1). 
The total number of mapped reads per sample 
ranged from 13.8 to 24.6 million, achieving 
mapping ratios between 77.3% and 86% (Table 
S2).

Principal component analysis was used to as- 
sess the reproducibility and clustering of the 

biological replicates. Replicates from the same 
treatment group clustered closely, confirming 
the reliability of the experimental conditions. 
Notably, samples from different LPS treatment 
times were distinctly separated from each 
other and from control groups, highlighting sig-
nificant LPS-induced changes in gene expres-
sion (Figure 1A).
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To visualize these differences, volcano plots for 
RAW264.7 cells treated with LPS at different 
time points. We established thresholds for 
DEGs with a FDR ≤ 0.01 and a log2-fold change 
(Log2FC) ≥ 2 or ≤ -2. In total, 2,512 DEGs were 
identified at different time points (1, 3, 6,  
12 and 24 h) treated with LPS (Table S3). 
Specifically, 270 DEGs (222 upregulated and 
48 downregulated) at 1 h, 833 DEGs (521 
upregulated and 312 downregulated) at 3 h, 
1,112 DEGs (572 upregulated and 540 down-
regulated) at 6 h, 1,311 DEGs (677 upregulat- 
ed and 634 downregulated) at 12 h, and 1,487 
DEGs (983 upregulated and 504 downregulat-
ed) at 24 h were identified (Figure 1B-F). It was 
observed that the late stages of LPS-induced 
inflammation exhibited more DEGs compared 
to the early stages.

Further analysis of mRNA relationships at dif-
ferent time points was conducted using hierar-
chical clustering, presented in a heatmap. This 
analysis revealed that LPS treatment induced 
more than three distinct mRNA expression pat-
terns in RAW264.7 cells, as indicated by vary-
ing color saturation (Figure 1G).

Following the hypothesis that gene classes rel-
evant to our experimental treatment should 
exhibit similar expression patterns, we con-
ducted a gene expression pattern analysis 
using the STEM on the OmicShare tools plat-
form, a free online platform for data analysis 
(www.omicshare.com/tools) [23]. This analysis 
retrieved 100 expression profiles, 24 of which 
were = significant (P ≤ 0.05) (Figure S1). These 
24 significant profiles were categorized into 
three groups: category A consists of expre- 
ssion modules that generally show increased 
abundance at 24 h compared to 0 h, including 
profiles 17, 31, 39, 41, 46, 50, 52, 57, 66, 67, 
76, 89, 90, 95, and 99 (Figure 2A); category B 
includes profiles that display a general decrea- 
se in abundance at 24 h compared to 0 h, 
including profiles 0, 6, 32, 33, 42, and 47; and 
category C comprises profiles t hat maintain a 
generally consistent abundance at 24 h com-
pared to 0 h, including profiles 2, 34, and 65 
(Figures S3, S4).

Based on the results from the KEGG pathway 
analysis, we identified distinct signaling path-
way networks in the genes comprising the pro-
files of category A (Figure 2A). Notably, path-
ways involved in the inflammatory response 

were predominantly associated with profiles 
66, 89, and 95. Genes within these profiles 
were upregulated during the early stages (1 h) 
and mid-early stage (3 h) of the inflammatory 
process, maintaining high levels thereafter. 
These profiles were significantly enriched in the 
JAK-STAT signaling pathway, TNF signaling path-
way, NOD-like receptor signaling pathway, and 
interactions between viral proteins and cyto-
kine receptors. Concurrently, pathways related 
to metabolism were primarily found in profile 
52, where gene expression was initially unaf-
fected by LPS treatment but later upregulated 
during the late middle stage (12 h) of inflam- 
mation. Enrichment analysis revealed signifi-
cant involvement in glycine, serine, and threo-
nine metabolism, biosynthesis of amino acids, 
and ABC transporters.

Further insights were obtained through GO 
enrichment analysis for the aforementioned 
profiles (profiles 66, 89, 95, and 52). We ob- 
served that genes in profiles 66, 89, and 95 
were primarily involved in biological process- 
es linked to the immune response, defense 
response, stress response, and positive re- 
gulation of immune system processes (Figure 
2B-D). These biological processes are intricate-
ly connected to the inflammatory and immune 
responses. In contrast, genes in profile 52 pre-
dominantly participated in biological processes 
related to the transmembrane transport of 
amino acids, L-amino acid transport, cellular 
catabolic processes, and organic substance 
catabolism (Figure 2E). These findings under-
score the diverse roles of these gene profiles in 
the cellular response to LPS stimulation.

A Venn diagram was used to investigate the 
dysregulated genes in macrophages during 
inflammation. DEGs were defined by criteria of 
|log2(fold change)| ≥ 2 and FDR ≤ 0.01 com-
pared to the control group. Stage-specific DEGs 
were exclusively identified in groups treated 
with LPS at 1, 3, 6, 12, and 24 h, numbering 
85, 156, 171, 144, and 536, respectively. A 
total of 78 DEGs were found to be consistently 
up- or down-regulated throughout the entire 
inflammatory process (Figure 3A). Notably, of 
these 78 genes, 76 were consistently upregu-
lated (Figure 3B), while only 2 genes, Cyp2u1 
and Cbx2, were consistently downregulated at 
all time points.
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Figure 2. Overview of the global temporal changes in gene abundance within category A during the inflammatory 
process in macrophages challenged with lipopolysaccharide (LPS). A. The top panel depicts genes with significant 
changes in abundance (P ≤ 0.05) throughout the time series. The bottom panel shows the functional enrichment 
analysis of KEGG pathways conducted using the “ClusterProfiler” R package. B-E. Highlight of the top 5 GO enrich-
ment terms for profiles 66, 89, 95, and 52, identifying gene regulatory networks related to biological function.

Further GO enrichment analysis predicted the 
biological functions of the 76 upregulated 

genes. The most significantly enriched GO term 
was “positive regulation of cytokine produc-
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Figure 3. Comparison of DEGs during the inflammation process induced by LPS. A. Venn diagram illustrates dys-
regulated genes specific to various inflammatory phases or shared across all stages. B. Another Venn diagram high-
lights upregulated genes that are either phase-specific or consistent throughout the process. C. The 76 consistently 
upregulated genes were functionally annotated using GO enrichment analysis. D. KEGG pathway analysis was con-
ducted to explore the enrichment of these 76 upregulated genes. E. STRING analysis revealed the protein-protein 
interaction network for these genes during inflammation. F. The MCODE plug-in of Cytoscape software identified the 
most significant module within the 76 upregulated genes.

tion” in biological processes, while “receptor 
ligand activity” was the top term in molecular 
functions (Figure 3C). KEGG enrichment analy-
sis revealed that the most enriched pathways 

among these 76 genes included inflammatory 
and immune response-related pathways such 
as the TNF signaling pathway, NF-kappa B sig-
naling pathway, and IL-17 signaling pathway 
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Figure 4. Weighted gene co-expression network analysis (WGCNA). A. A clustered dendrogram of the top 5000 genes 
using the dissimilarity measure. B. Heatmap illustrates the correlations between modules and time points, with the 
correlation coefficient and P-value included in each cell. C-E. Enrichment analyses were performed on genes within 
the pink, red, and turquoise modules, respectively, with a P-value < 0.05 to identify their biological functions.

(Figure 3D), underscoring the critical role of 
macrophages throughout the inflammatory 
process.

To delve deeper into the interrelationships 
among the 76 upregulated genes, interaction 
analysis was conducted using the STRING  
database. Most of these genes formed a  
tightly interconnected network (Figure 3E). The 
MCODE plug-in of Cytoscape software identi-
fied a key module comprising 18 genes, includ-
ing Tnf, Il1b, Il1a, Cxcl10, Cxcl2, Ccl4, Cd40, 
Csf3, Ptgs2, Csf1, Ccl5, Ccl3, Cxcl3, Irg1, Ccrl2, 
Ccl22, C5ar1, and Ifit1 (Figure 3F). Notably, the 
majority of these genes are associated with  
a proinflammatory response, except for Irg1, 
which is implicated in inhibiting inflammation 
through its role in producing itaconate.

Identification of time-resolved gene modules 
by WGCNA

WGCNA was utilized to identify gene modules 
associated with different time points during  
the inflammatory response. Nine modules were 
identified using a cut height of 0.25, a minimal 
module size of 30, and a threshold of 0.3 
(Figure 4A). Only modules with a P-value ≤ 0.01 
and a correlation coefficient greater than zero 
were considered significant and related to spe-
cific time points. The heatmap of module-trait 
relationships (Figure 4B) identified three mod-
ules (pink, red, and turquoise) that showed sig-
nificant correlations with the times at 1, 3, and 
12 hours, respectively. The ClueGO plug-in of 
Cytoscape was used to delineate the poten- 
tial biological processes of genes within these 
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modules. The pink module was strongly associ-
ated with positive regulation of T cell differenti-
ation, negative regulation of interleukin-1 beta 
production, and regulation of interleukin-2 pro-
duction (Figure 4C). The red module was relat-
ed to the regulation of I-κB kinase/NF-κB sig-
naling, neutrophil migration, negative regulation 
of viral genome replication, response to inter-
leukin-1 and chemokines, and granulocyte 
migration (Figure 4D). The turquoise module 
was closely linked to regulation of neutral 
amino acid transmembrane transporter activi-
ty, natural killer cell-mediated immunity, re- 
gulation of substrate adhesion-dependent cell 
spreading, and autophagy of mitochondria 
(Figure 4E).

Integrative analysis of the transcriptome and 
proteome in macrophages challenged with 
LPS

Building on the proteomics data collected at 
the same time points in our previous experi-
ment [12]. With the exception of the 1-hour 
time point, we employed the “mixOmics” R 
package for a multi-omics analysis to gain a 
comprehensive understanding of the biological 
functions during the inflammatory process in 
LPS-challenged macrophages. This integrative 
analysis aimed to identify the most significant 
omics variables contributing to the sepsis 
response. The heatmap of the multiomics  
signature from Principal Component 1 (PC1) 
revealed strong correlations between 126 dys-
regulated genes and 131 dysregulated proteins 
during sepsis (Figure 5A). These correlations 
featured positive (red modules) and negative 
(green modules) relationships.

To further elucidate the biological significance 
of these correlated genes and proteins, GO and 
KEGG enrichment analyses were performed. 
For the 126 DEGs, GO enrichment analysis 
highlighted their involvement in inflammation 
and immune response processes, such as  
positive regulation of defense response, leuko-
cyte cell-cell adhesion, and response to inter-
feron-beta (Figure 5B). The KEGG enrichment 
analysis identified the C-type lectin receptor 
signaling pathway as the most significantly 
enriched pathway (Figure 5C).

Interestingly, for the 131 differentially expre- 
ssed proteins (DEPs), the most significantly 
enriched GO term and KEGG pathway were 

related to ribonucleoprotein complex biogene-
sis and ribosome, respectively (Figure 5D,  
5E). These findings underscore the ribosome’s 
significant role in the inflammatory process, 
highlighting its involvement beyond traditional 
translational functions to potentially regulating 
inflammation in macrophages challenged with 
LPS.

Validation of global temporal changes in mac-
rophages challenged with LPS by RT-PCR for 
mRNA analysis

Six genes were randomly selected to validate 
the gene expression profiles obtained by se- 
quencing. The genes included Cyp2u1, Cbx2, 
Irg1, Creb3I2, Spp1, and Slc15a3 (Figure 6A-L). 
The expression profiles of these genes were 
consistent with their sequencing results, there-
by substantiating the reliability of our data.

Discussion

We utilized RNA-seq technology to explore the 
temporal dynamics of gene expression in 
RAW264.7 cells treated with LPS, with the aim 
of elucidating the mechanisms driving inflam-
mation. RNA-seq is notably sensitive for detect-
ing gene expression levels, especially in low-
abundance transcripts, and does not require 
prior knowledge of gene sequences, unlike 
microarrays [24]. This represents the first appli-
cation of time-resolved transcriptome profiling 
to investigate the molecular mechanisms and 
regulatory networks involved in LPS-induced 
inflammatory responses in macrophages.

The inflammatory process is intricately regulat-
ed through a series of signaling events by key 
pathway regulators [25]. Although changes in 
inflammation are gradual, distinct phases 
marking critical events suggest significant 
shifts during its progression. To identify poten-
tial key phases, we performed STEM analysis, 
identifying 24 statistically significant profiles  
(P ≤ 0.05) (Figure S1). Subsequent KEGG 
enrichment analysis of these profiles (particu-
larly 66, 89, and 95) highlighted their strong 
association with inflammatory response path-
ways (Figure 2A). GO enrichment analysis fur-
ther confirmed that these profiles are predo- 
minantly linked to inflammation and immune 
responses, including terms like inflammatory 
response, positive regulation of defense res- 
ponse, and response to external biotic stimulus 
(Figure 2B-D).
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Figure 5. Integrative analysis of the transcriptomics and proteomics datasets in the process of inflammation. A. 
Hierarchical clustering for canonical correlation analysis was conducted on genes and proteins. The mixOmics R 
package was employed to compute pairwise correlations between mRNA abundance (rows) and protein abundance 
(columns). B, C. GO and KEGG enrichment analyses determined the enriched terms for significantly dysregulated 
genes identified in the PC1. D, E. Similarly, enriched terms for significantly dysregulated proteins identified in the 
principal component 1 were determined through GO and KEGG enrichment analyses.

Our results also indicate that genes associated 
with inflammation are primarily upregulated in 
the early stage (1 h) and mid-early stage (3 h) of 
the inflammatory process. For instance, genes 
such as IL1a, Tnf, Cxcl1, and IL1b are upregu-
lated within the first hour, while IL6 and Ccl2 
show increased expression at the three-hour 

mark. Interestingly, previous studies have sh- 
own that IL6 levels rise more slowly than TNF 
levels in macrophage cultures stimulated with 
LPS [26], corroborating our findings. These 
observations suggest that the onset of inflam-
mation can be divided into two distinct phases: 
an initial rapid response within the first hour 



Network profiles of mRNA in macrophages challenged with LPS

1654 Am J Transl Res 2024;16(5):1643-1659

Figure 6. Validation of the differential expression of 6 candidate genes (Cyp2u1, Cbx2, Irg1, Creb3I2, Spp1 and 
Slc15a3) through quantitative real-time PCR (RT-PCR). RT-PCR analysis was performed using total RNA isolated from 
RAW264.7 cells treated with LPS (100 ng/mL) at 0, 1, 3, 6, 12, and 24 h. The fold change in mRNA was determined 
by normalizing the data against the average value of the control group. Gene expression levels were normalized 
to β-actin transcript levels. The results from RT-PCR (up) are consistent with those from RNA-seq (down) for all six 
candidate genes. (A, B) Cyp2u1, (C, D) Cbx2, (E, F) Irg1, (G, H) Creb3I2, (I, J) Spp1, (K, L) Slc15a3. Relative gene ex-
pressions were normalized by comparison with β-actin expression and analyzed using the 2-ΔΔCT method, with three 
biological replicates (n = 3). **P < 0.01.

and a subsequent amplification phase around 
three hours later, marking an expansion of the 
inflammatory response.

Previous studies have highlighted the crucial 
role of metabolism in macrophage function. 
Under normal physiologic conditions, macro-
phages predominantly utilize oxidative phos-

phorylation (OXPHOS) to meet their energy 
needs through glucose metabolism [27]. How- 
ever, when macrophages encounter pathogens 
or inflammatory agents such as lipopolysac- 
charide (LPS) and cytokines (e.g., TNF-α, IL-1), 
they undergo metabolic reprogramming, shift-
ing from OXPHOS to glycolysis [28]. This meta-
bolic shift enables the synthesis of ATP mole-
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cules necessary to meet the heightened energy 
demands of combating pathogens and inflam-
mogens [29]. The activation of macrophages is 
therefore critically supported by changes in 
metabolism, and the immunoregulatory func-
tions of macrophages are directly influenced  
by their metabolic state. Disruption of these 
metabolic processes can impair proper macro-
phage activation [30].

In our current study, KEGG pathway enrich- 
ment analysis identified that metabolism-relat-
ed pathways were predominantly associated 
with profile 52, where genes were significantly 
upregulated at 12 hours (Figure 2A). Consis- 
tent with these findings, GO enrichment analy-
sis showed significant enrichment for terms 
related to amino acid transport and catabolic 
processes within this profile (Figure 2B-E). 
These results indicate a substantial alteration 
in macrophage metabolism in response to LPS 
challenge at the 12-hour mark.

Additionally, we observed an increase in the 
AMP-activated protein kinase (AMPK) signaling 
pathway at 12 h in profile 41 (Figure 2A). 
Previous research has established that AMPK 
acts as a critical regulator of cellular energy 
metabolism, promoting catabolic processes 
that enhance the capacity of cells to oxidize 
fatty acids, amino acids, and glucose, thereby 
efficiently generating ATP through the electron 
transport chain (ETC) [31]. AMPK is typically 
activated by an increasing ADP (or AMP) to ATP 
ratio, suggesting that the metabolic changes 
observed at 12 h may be attributable to the 
activation of the AMPK pathway [31]. During 
the inflammatory response of macrophages 
treated with LPS, the ratio of ADP (or AMP) to 
ATP gradually increases, potentially triggering 
the AMPK pathway in the late middle stage (12 
h) of inflammation. Activation of this pathway 
would promote catabolic metabolism, thereby 
enhancing the ability of macrophages to oxidize 
substrates to fuel the ETC and generate ATP.

Furthermore, we found distinctively enriched 
GO terms in other profiles. For instance, profile 
50 showed enrichment for terms including 
entry into host cell, viral entry into host cell, 
positive regulation of angiogenesis, and posi-
tive regulation of vasculature development, 
among others (Figure S4). The genes in this pro-
file were upregulated in the late stage (24 h), 
suggesting that late-stage gene changes in 

macrophages may facilitate the resolution of 
inflammation by promoting the removal of 
necrotic tissue and supporting angiogenesis.

During the inflammation process in macro-
phages treated with LPS, 78 genes were con-
sistently dysregulated at all time points (Figure 
3A). Interestingly, of these, 76 genes were con-
sistently upregulated (Figure 3B), while only 
two genes, Cyp2u1 and Cbx2, were consistent- 
ly downregulated. Cyp2u1 encodes an enzyme 
belonging to the cytochrome P450 superfamily, 
which catalyzes reactions involved in the syn-
thesis of cholesterol, steroids, and the hydroxyl-
ation of fatty acids and their metabolites [32].  
It specifically metabolizes arachidonic acid, 
docosahexaenoic acid, and other long-chain 
fatty acids, suggesting a role in immune func-
tions [33]. Thus, the downregulation of Cyp2u1 
might lead to decreased metabolism of fatty 
acids, impacting the immune response. Pre- 
vious studies have shown that upon LPS sti- 
mulation, macrophage metabolism shifts from 
OXPHOS to glycolysis to meet increased energy 
demands, which includes reduced fatty acid 
metabolism [29]. These findings suggest that 
the downregulation of the Cyp2u1 gene is as- 
sociated with this metabolic shift from OXPHOS 
to glycolysis, potentially enhancing pro-inflam-
matory activity in macrophages.

Based on the metabolic changes observed in 
profile 52 (Figure 2A, 2E), the increased AMPK 
signaling pathway in profile 41 (Figure 2A), and 
the consistently downregulated gene Cyp2u1, 
we propose the following hypothesis. In the 
early stages of the inflammatory response in 
macrophages challenged by LPS, macrophage 
metabolism primarily relies on glycolysis to 
meet the rapidly increasing energy demand. As 
inflammation progresses to the middle and late 
stages, the accumulation of metabolites acti-
vates key energy metabolism regulators, such 
as the AMPK pathway, which is triggered by a 
high ADP (or AMP) to ATP ratio. Consequently, 
metabolic shifts occur once again during the 
late middle stage. However, genes regulating 
fatty acid metabolism, such as Cyp2u1, remain 
downregulated, so these metabolic changes 
are primarily associated with amino acid catab-
olism, as revealed in the GO enrichment analy-
sis of profile 52 (Figure 2E).

Regarding the gene Cbx2, previous studies had 
shown that its expression decreases in macro-
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phages upon viral infection consistently over 
time [34]. However, the role of Cbx2 proteins in 
innate immunity remains unclear. Subsequent 
RT-PCR results confirmed the continued decline 
of these two genes (Cyp2u1 and Cbx2) (Figure 
6A, 6C).

To further explore their biological functions dur-
ing the inflammation process, the consistently 
upregulated genes (76 genes) underwent GO 
and KEGG enrichment analyses. These analy-
ses revealed that significantly enriched terms 
were predominantly associated with inflamma-
tion and immunity. STRING analysis also dem-
onstrated that most of these 76 genes formed 
a tightly interconnected network. The MCODE 
plug-in of Cytoscape software was utilized to 
identify the most important module within this 
network, which consisted of 18 genes. Notably, 
the majority of these genes exhibit characteris-
tics associated with pro-inflammatory and im- 
mune responses, with notable examples in- 
cluding Tnf, Il1b, Il1a, Cxcl10, Cxcl2, and Ccl4. 
However, an exception was found in the immune 
responsive gene 1 (Irg1).

Previous research has identified Irg1 as a ne- 
gative regulator of Toll-like receptor-mediated 
inflammatory responses through its production 
of itaconate [35]. Although Irg1 inhibits inflam-
mation by producing itaconate, it also retains a 
bactericidal function. Prior studies have shown 
that itaconate exhibits antibacterial properties, 
notably affecting the glyoxylate shunt in pa- 
thogens such as Salmonella typhimurium and 
Mycobacterium tuberculosis, thus reducing th- 
eir viability [36]. However, recent studies sug-
gest that Irg1 may also exert pro-inflammatory 
effects. The depletion of Irg1 in myeloid cells 
has been shown to reduce inflammatory re- 
sponses and protect mice against lethal poly-
microbial sepsis, indicating a complex role in 
inflammation that warrants further investiga-
tion [37].

To identify potential critical phases in the 
course of inflammation, we employed WGCNA 
using time as the trait. We identified three  
significant modules (pink, red, and turquoise, 
P-value ≤ 0.01) that correspond to the 1, 3, and 
12-hour time points, respectively (Figure 4B). 
Genes with a gene significance (GS) > 0.2 and 
module membership (MM) > 0.8 within these 
modules were selected for further analysis. The 

ClueGO plug-in in Cytoscape software was then 
used to investigate the biological functions of 
these key eigengenes. The analysis revealed 
that the important enrichment GO terms in- 
clude negative regulation of interleukin-1 beta 
production, positive regulation of I-κB kinase/
NF-κB signaling, and neutral amino acid trans-
membrane transporter activity at the 1, 3, and 
12 h, respectively (Figure 4C-E).

These findings suggest that in the inflammatory 
process of LPS-stimulated macrophages, the 
critical nodes at 1 and 3 hours are closely asso-
ciated with the inflammatory response, while 
the critical node at 12 h is linked to metabolic 
processes. These observations are consistent 
with those from the STEM analysis (Figure 
2B-E). Therefore, our study demonstrates that 
although the overall process of inflammation 
undergoes gradual changes, certain time po- 
ints (1, 3, and 12 h) exhibit significant altera-
tions throughout the inflammatory process.  
Our work also indicates that the macrophage 
response to LPS stimulation evolves from the 
early to the late stages of inflammation, align-
ing with findings from a previous study [12].

We previously obtained proteomic data at the 
same time points (except for 1 h) in the same 
experimental setup [12]. Given that multi-omics 
analysis provides a more comprehensive view 
than single-omics approaches, we conducted 
an integrative analysis of the transcriptomics 
and proteomics datasets using the “mixOmi- 
cs” R package. This package facilitates data 
dimension reduction by employing components 
that are combinations of all variables, which 
are instrumental in generating insightful graph-
ical outputs. These outputs help elucidate  
the relationships and correlation structures 
between the integrated datasets [22]. In our 
analysis, the PC1 identified 126 dysregulated 
genes and 131 dysregulated proteins, which 
were deemed influential in the macrophage 
inflammatory response (Figure 5A).

Subsequent GO and KEGG enrichment analy-
ses revealed that the majority of the terms 
associated with the 126 dysregulated genes 
relate to immune response and metabolism 
(Figure 5B, 5C). This underscores the altera- 
tion in the metabolic profile of macrophages 
during inflammation, highlighting a close link 
between metabolism and macrophage func-
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tionality, consistent with previous findings [38]. 
However, the enrichment analysis for the 131 
dysregulated proteins primarily related to ribo-
some biogenesis and metabolism (Figure 5D, 
5E). Traditionally viewed as conserved molecu-
lar machines without regulatory roles in transla-
tion, ribosomes have recently been recogniz- 
ed for their potential regulatory functions. For 
example, Fujiwara et al. showed that mRNAs 
preferentially bound by RPL10a/uL1-containing 
ribosomes require RPL10a/uL1 for efficient 
translation [39]. Other studies have noted as- 
sociations between individual ribosomal pro-
teins (RPs) and specific mRNAs, such as RPS25, 
which is necessary for the efficient translation 
of C9orf72 and other nucleotide repeats linked 
to neurodegenerative diseases [40]. O’Neill et 
al. further demonstrated that RPs perform vari-
ous regulatory functions in cellular activities, 
development, and diseases through individual 
knockdown of 75 RPs [41]. Our previous high-
throughput LC-MS/MS analysis also revealed 
changes in ribosomal protein expression during 
the inflammatory response of macrophages, 
suggesting that ribosomes may regulate the 
inflammatory response in LPS-challenged mac-
rophages through similar mechanisms, offering 
new insights for future research on inflamma-
tion regulation mediated by ribosomal proteins 
[42].

Finally, our RT-PCR results confirmed the accu-
racy of our sequencing data, underscoring the 
reliability of our data analysis.

In summary, this study utilized RNA-seq tech-
nology to explore dynamic changes in the tran-
scriptome over time, revealing sequential gene 
changes that may represent crucial phases in 
the transition from early to late stages of in- 
flammation. Our findings underscore the pivotal 
role of metabolism in LPS-challenged macro-
phages and propose that macrophage metabo-
lism may undergo secondary changes during 
the middle to late stages of inflammation. The 
identification of 18 significant DEGs through- 
out the whole inflammatory response of macro-
phages stimulated by LPS, along with the cru-
cial role of ribosomes uncovered by multi-omics 
analysis, provides valuable resources for fur-
ther investigation into various inflammatory 
processes. This research will also be instru-
mental for clinical diagnostics through biomark-
er gene identification and therapeutic applica-
tions by drug target gene screening.
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Table S1. Summary for the transcriptome of macrophages in response to LPS at different time points 
using Illumina RNA-seq
Sample name Raw reads Clean reads Clean bases Q20 Q30 GC_rate
RNA_0H-1 22174731 22167667.0 2.22G 0.976422957 0.909650891 0.49370948
RNA_0H-2 16779166 16777306.0 1.68G 0.942510232 0.817211966 0.491175185
RNA_0H-3 21963072 21960177.0 2.20G 0.971956434 0.893876712 0.493822096
RNA_1H-1 22977414 22974263.0 2.30G 0.979712211 0.918648467 0.500412995
RNA_1H-2 26496671 26492916.0 2.65G 0.978606611 0.914413052 0.491301966
RNA_1H-3 21523089 21517583.0 2.15G 0.978852426 0.915616123 0.494358347
RNA_3H-1 29593713 29589830.0 3.00G 0.979078396 0.915313379 0.490136099
RNA_3H-2 21955827 21948046.0 2.20G 0.977349689 0.910534197 0.492060157
RNA_3H-3 22566750 22563250.0 2.26G 0.971211002 0.891274251 0.492458552
RNA_6H-1 25449011 25445238.0 2.54G 0.978612304 0.915488365 0.494050156
RNA_6H-2 24286655 24283035.0 2.43G 0.975148345 0.903076186 0.498134137
RNA_6H-3 26061588 26058283.0 2.61G 0.979903367 0.918507606 0.497953011
RNA_12H-1 23249622 23246894.0 2.32G 0.969392553 0.887212181 0.496203502
RNA_12H-2 23616581 23612632.0 2.36G 0.976922439 0.908771698 0.496939861
RNA_12H-3 19776064 19765696.0 1.98G 0.978070569 0.91418803 0.496222169
RNA_24H-1 18805445 18801043.0 1.88G 0.953476431 0.843826152 0.501629703
RNA_24H-2 26552977 26549616.0 2.66G 0.976551446 0.907672509 0.495954053
RNA_24H-3 26310005 26306536.0 2.63G 0.979119999 0.916406168 0.498539313

Table S2. Summary of clean reads mapped to the reference macrophage genome (mouse)
Sample name Total reads Mapped reads Mapped ratio
RNA_0H-1 22167667.0 18411096 83.05%
RNA_0H-2 16777306.0 13829697 82.43%
RNA_0H-3 21960177.0 16990462 77.37%
RNA_1H-1 22974263.0 19910395 86.66%
RNA_1H-2 26492916.0 22122206 83.50%
RNA_1H-3 21517583.0 18314018 85.11%
RNA_3H-1 29589830.0 24594881 83.12%
RNA_3H-2 21948046.0 17575435 80.08%
RNA_3H-3 22563250.0 18406879 81.58%
RNA_6H-1 25445238.0 19861379 78.06%
RNA_6H-2 24283035.0 20652759 85.05%
RNA_6H-3 26058283.0 22126179 84.91%
RNA_12H-1 23246894.0 19948690 85.81%
RNA_12H-2 23612632.0 20072830 85.01%
RNA_12H-3 19765696.0 16724484 84.61%
RNA_24H-1 18801043.0 15808418 84.08%
RNA_24H-2 26549616.0 21990660 83.23%
RNA_24H-3 26306536.0 21990660 83.59%



Network profiles of mRNA in macrophages challenged with LPS

2 

Table S3. Primers for amplification of the genes
Gene name Forward primer sequence Reverse primer sequence
Cyp2u1 TCGCCATTCCTCACATGACCTC CGATGAGGACAGAAGTCGTCTG
Cbx2 CATGAGAAGGAGGTTCAGAACCG GAGGACGAACTGCTGGATTTGG
Irg1 GGTATCATTCGGAGGAGCAAGAG ACAGTGCTGGAGGTGTTGGAAC
Creb3l2 TCGAACCTGCAAGTTAGCTGGC AGCCATCTTGGTGGCAGAAGGA
β-actin CCTCTATGCCAACACAGTGC CCTGCTTGCTGATCCACATC
Spp1 GCTTGGCTTATGGACTGAGGTC GCTTGGCTTATGGACTGAGGTC
Slc15a3 CTTGCGTTCCAAAACTGCTGTCC TTCACCAGCACCTGGAAGTTGG
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Figure S1. Profiles ordered based on the P value significance of number of genes assigned versus expected.
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Figure S2. Experimental flow 
chart.
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Figure S3. Patterns of global temporal changes in genes of category B and category C abundance during the inflam-
matory process of macrophages challenged with LPS.

Figure S4. Top 20 GO enrichment terms in profile 50 discloses gene regulatory networks governing biologic function.


