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Abstract: Background: The estrogen receptor (ER) serves as a pivotal indicator for assessing endocrine therapy ef-
ficacy and breast cancer prognosis. Invasive biopsy is a conventional approach for appraising ER expression levels, 
but it bears disadvantages due to tumor heterogeneity. To address the issue, a deep learning model leveraging 
mammography images was developed in this study for accurate evaluation of ER status in patients with breast can-
cer. Objectives: To predict the ER status in breast cancer patients with a newly developed deep learning model le-
veraging mammography images. Materials and methods: Datasets comprising preoperative mammography images, 
ER expression levels, and clinical data spanning from October 2016 to October 2021 were retrospectively collected 
from 358 patients diagnosed with invasive ductal carcinoma. Following collection, these datasets were divided 
into a training dataset (n = 257) and a testing dataset (n = 101). Subsequently, a deep learning prediction model, 
referred to as IP-SE-DResNet model, was developed utilizing two deep residual networks along with the Squeeze-
and-Excitation attention mechanism. This model was tailored to forecast the ER status in breast cancer patients 
utilizing mammography images from both craniocaudal view and mediolateral oblique view. Performance measure-
ments including prediction accuracy, sensitivity, specificity, and the area under the receiver operating characteristic 
curves (AUCs) were employed to assess the effectiveness of the model. Results: In the training dataset, the AUCs 
for the IP-SE-DResNet model utilizing mammography images from the craniocaudal view, mediolateral oblique view, 
and the combined images from both views, were 0.849 (95% CIs: 0.809-0.868), 0.858 (95% CIs: 0.813-0.872), and 
0.895 (95% CIs: 0.866-0.913), respectively. Correspondingly, the AUCs for these three image categories in the test-
ing dataset were 0.835 (95% CIs: 0.790-0.887), 0.746 (95% CIs: 0.793-0.889), and 0.886 (95% CIs: 0.809-0.934), 
respectively. A comprehensive comparison between performance measurements underscored a substantial en-
hancement achieved by the proposed IP-SE-DResNet model in contrast to a traditional radiomics model employing 
the naive Bayesian classifier. For the latter, the AUCs stood at only 0.614 (95% CIs: 0.594-0.638) in the training 
dataset and 0.613 (95% CIs: 0.587-0.654) in the testing dataset, both utilizing a combination of mammography 
images from the craniocaudal and mediolateral oblique views. Conclusions: The proposed IP-SE-DResNet model 
presents a potent and non-invasive approach for predicting ER status in breast cancer patients, potentially enhanc-
ing the efficiency and diagnostic precision of radiologists.
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Introduction

Breast cancer stands as the most frequently 
diagnosed cancer in females, holding the fore-
most position in incidence globally, while rank-
ing second in cancer-related mortality among 
women [1]. Tailoring treatments for patients 
with breast cancer entails consideration of  
various molecular subtypes, with the estrogen 

receptor (ER) positive subtype constituting the 
most prevalent [2]. Such patients exhibit high 
sensitivity to endocrine drugs, enabling endo-
crine therapy to markedly reduce the risk of 
breast cancer recurrence and enhance patients’ 
survival rates [3]. Consequently, selective ER 
modulators have emerged as the cornerstone 
treatment for ER-positive patients with breast 
cancer in their early stage [4].

http://www.ajtr.org
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While tissue biopsy remains the primary meth-
od for detecting ER expression [5], factors  
such as the heterogeneity of breast cancer [6], 
heightened risks of tumor metastasis [7], the 
need for repeated tumor sampling, time con-
straints, and relatively high costs can impede 
the accuracy and representativeness of biopsy 
results. Hence, there is a pressing need for a 
simple, effective, and non-invasive approach to 
assess ER expression status in patients with 
breast cancer.

Mammography remains the predominant exam-
ination method for diagnosing breast cancer. 
Several studies have indicated a correlation 
between the features of digital mammography 
images and ER expression [8-10]. However,  
the interpretation of these images faces chal-
lenges, such as errors from the subjective or 
experience-dependent judgements of the radi-
ologist, resulting in inconsistent decision-mak-
ing in clinical treatments between physicians. 
Machine learning, a technology assisted by 
computers to process and learn from the in- 
put data, holds great capacity in the extraction 
of high-dimensional features from standard 
medical images and in the analysis of these 
features to facilitate clinical decision-making. 
Preliminary studies have unveiled correlations 
between quantitative radiomic features ex- 
tracted from mammography images and mo- 
lecular biological indices of breast cancer 
patients [11]. However, conventional radiomics 
approaches hinge upon precise tumor bound-
ary segmentation, necessitating manual and 
time-intensive labeling, which can easily over-
look crucial radiomic features within the  
microenvironment and tumor-adjacent tissues. 
Deep learning (DL)-based radiomics circum-
vents these challenges with an autonomous 
learning strategy [12, 13], obviating the neces-
sity for meticulous tumor boundary segmenta-
tion processes. Due to their robust feature-
learning capabilities, DL models have demon-
strated outstanding performance in the detec-
tion and classification of breast tumors [14- 
16]. However, regardless of the substantial 
advancements made in DL-based classification 
of breast cancer, existing DL models often 
struggle to achieve desired performance. For 
instance, Ueda utilized weighted averages of 
probability scores from four DL-based models 
and yielded an area under the receiver operat-
ing curves (AUCs) for either ER-positive or -neg-
ative breast cancer patients of only 0.67 (0.58-

0.76) [17]. Hence, in this study, a novel algo-
rithm was introduced to help build a proficient 
DL model for strengthening the efficiency of 
predicting ER expression in breast cancer 
patients. This algorithm, aiming at extracting 
ER status-associated information from mam-
mography images for the prediction of ER 
expression levels in patients with invasive 
breast cancer, facilitated the construction of 
the proposed IP-SE-DResNet model.

Materials and methods

Patients

The institutional review board of the First 
Affiliated Hospital of Nanchang University 
granted approval to this study. Images were  
collected from 491 patients diagnosed with 
invasive breast cancer between October 2016 
and October 2021. Digital mammograms were 
obtained using the Senographe Essential sys-
tem (GE Medical Systems). Patients were in- 
cluded if: (i) they were diagnosed with primary 
invasive breast cancer by histological examina-
tion, (ii) their ER expression status in tumor 
samples were confirmed by definitive patholog-
ic examination [18], and (iii) their preoperative 
mammograms were available. Patients were 
excluded if: (i) their clinical information was 
incomplete, (ii) they had undergone preopera-
tive treatment, and (iii) their lesions were en- 
tirely blocked by glands or partially showed in 
mammograms. Ultimately, 358 out of the 491 
patients, ranging in age from 22 to 83 years 
old, with a mean age ± standard deviation of 
52.8±6.36, were included in this study. Each 
patient underwent mammography from both 
the craniocaudal (CC) view and the mediolater-
al oblique (MLO) view on the affected side. 
Tumor samples were acquired through surgical 
excision. Immunohistochemical testing was 
conducted, classifying tumor cells were deter-
mined as ER-positive if their ER expression 
level was ≥1% [19], resulting in 227 cases clas-
sified as positive and the remaining 131 cases 
as negative. These ER-positive and -negative 
designations served as the expected classifica-
tion labels during the supervised training and 
testing phases of the IP-SE-DResNet model. 
Consequently, three datasets encompassing 
358 mammography images captured from the 
CC view (C_Dataset), 358 images from the MLO 
view (M_Dataset), and 358 images from both 
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CC and MLO views (CM_Dataset), respectively, 
were established, with each dataset bearing  
its own classification label. Within the CM_
Dataset, each sample consisted of a two-chan-
nel mammogram, where one channel repre-
sented the CC view image and the other chan-
nel the MLO view image. Subsequently, the 
three datasets were randomly subdivided into  
a training dataset (n = 257) and a testing data-
set (n = 101), following an approximate 7:3 
ratio. Notably, an image sample in the CM_
Dataset was generated by combining images  
of a patient from both the CC and MLO views. 
The workflow of the study is shown in Figure 1. 
The 7:3 ratio for the division between training 
and testing datasets is a well-established stan-
dard in the literature, commonly employed for 
this purpose [20].

Data preprocessing

In this study, each dataset contained only 358 
images, a sample size that was relatively small. 
To expand the sample size in each dataset, the 

mammograph images were rotated or flipped 
[21]. As a result, a total of 847 images were 
included in each dataset. The tumors in the 
images were delineated and labeled by a pro-
fessional radiologist. The region of the interest 
(ROI) was determined as the smallest rectangle 
encompassing the tumor boundary, which was 
subsequently isolated to undergo data normal-
ization procedures. Following data normaliza-
tion, the ROI was cropped, with pertinent infor-
mation including the entire tumor and some 
surrounding background retained. To facilitate 
the transfer of initial network parameters from 
ResNet34 to ResNet50, all ROIs were resized 
to a resolution of 224×224 pixels. The images 
were zoomed out using the Cv2.resize function 
in the Python library. Since the original resolu-
tions of most ROIs were less than 224×224 pix-
els, the zooming-out process did not result in 
any information loss. To mitigate information 
loss caused by the reduction in image resolu-
tion, the bilinear interpolation option in the Cv2.
resize function was selected for several ROIs 
sized at 702×931 pixels. 

Figure 1. The workflow of the study.
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Proposed models

The IP-SE-DResNet model: DL aims to extract 
inherent abstract representations from data, 
thereby discerning the mapping relationship 
between sample data and their corresponding 
classification labels. Over recent years, notable 
advancements in DL encompass convolutional 
neural networks (CNNs) [12, 22], deep residual 
networks (ResNets) [23, 24], and attention 
mechanism [25, 26]. CNNs, specialized neural 
networks, are frequently noted for their compu-
tational efficiency and applied in various fields, 
such as image classification, target detection 
and semantic segmentation. ResNets are neu-
ral networks that employ residual mapping to 
address complex issues like the “vanishing  
gradient” in an efficient manner. Common Res- 
Nets include ResNet18, ResNet34, ResNet50, 
ResNet101, and ResNet152 [27-31]. ResNet18 
and ResNet34 utilize a basic residual struc- 
ture, while ResNet50, ResNet101, and Res- 
Net152 are constructed with a bottleneck 
residual structure. The basic residual structure 
comprises two 3×3 convolutional layers, main-
taining the number of channels in the input fea-
ture map unchanged. The bottleneck residual 
structure comprises a 1×1 convolutional layer, 
a 3×3 convolutional layer, and a subsequent 
1×1 convolutional layer. Here, the 1×1 convolu-
tional layer reduces the number of channels in 
the feature map, the 3×3 convolutional layer 
preserves the existing number of channels, and 
the post 1×1 convolutional layer restores the 
feature map to a higher number of channels. In 
CNNs, the incorporation of an attention mecha-
nism mimics human capabilities in identifying 
salient regions within complex scenes. Existing 
attention mechanisms encompass various cat-
egories, including channel attention, spatial 
attention, temporal attention, branch attention, 
channel and spatial attention, and spatial and 
temporal attention [32]. The SENet [25], which 
serves as the foundation in our study, pio-
neered channel attention. At the core of SENet 
lies the squeeze-and-excitation module, metic-
ulously designed to aggregate global informa-
tion, emphasize channel-wise relationships, 
and enhance representational capacity.

In this study, a prediction model that incorpo-
rated double ResNets with the squeeze-and-
excitation attention mechanism, i.e the IP-SE-
DResNet model, was proposed to predict the 

ER status in patients with breast cancer. The 
structure of the proposed IP-SE-DResNet model 
is shown in Figure 2.

The proposed IP-SE-DResNet is comprised of 
the following components and operates as 
follows:

1. The IP-SE-DResNet combined two sub-net-
works, SE-ResNet34 and SE-ResNet50, which 
variants of ResNet34 and ResNet50, respec-
tively, enhanced with the SE attention mecha-
nism, as illustrated in Figure 2. The final predic-
tion result was based on the average probabili-
ty values derived from SE-ResNet34 and 
SE-ResNet50.

2. The SE-ResNet34 sub-network was com-
prised of a pre-convolutional layer, a stack of 
three convolution-attention-residual subnets 
(CarsNet34), three post-convolutional layers,  
a fully connected layer, and a softmax. Within 
this network, the first, second, and third Cars- 
Net34s featured 4, 4, and 6 ResNets, respec-
tively, each containing two convolutional layers 
equipped with an SE channel attention module. 
Notably, the final ResNet in each CarsNet34 
incorporated a dimension-adjusting shortcut 
due to a stride of 2 in its initial convolutional 
layer.

3. The SE-ResNet50 sub-network was com-
prised of a pre-convolutional layer, a bottle-
neck-featured ResNet with a channel attention 
module and a dimension-adjusting shortcut, a 
series of three convolution-attention-residual 
subnets (CarsNet50), two post-ResNets featur-
ing a bottleneck design and an SE attention 
module, a fully connected layer, and a softmax. 
Within this network, the first, second, and third 
CarsNet50s included 3, 4, and 6 bottleneck-
featured ResNets with an SE attention module, 
respectively. Notably, the final ResNet in each 
CarsNet50 incorporated a dimension-adjusting 
shortcut due to a stride of 2 in its initial convo-
lutional layer.

4. During the network training or testing pro-
cess, an image sample from the C_dataset, 
M_dataset, or CM_dataset was fed into both 
the SE-ResNet34 and SE-ResNet50, which out-
put a probability value suggesting if the image 
sample was positive or negative. Positive imag-
es indicates positive ER status, and vice versa. 
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The average of two probability values was 
regarded as the IP-SE-DresNet’s probability 
output, determining the final classification  
label for the image sample. Generally, a simple 
average ensemble is sufficient because unless 
the holdout validation dataset is large and rep-
resentative, a weighted ensemble is prone to 

overfitting in comparison to a simple average 
ensemble.

Radiomic model: The radiomics model [11] is a 
convectional model employed in the process-
ing and classification tasks for diverse medical 
images. Early research on radiomics models 

Figure 2. Illustration of the IP-SE-DResNet model. The IP-SE-DResNet model integrated two sub-networks, SE-
ResNet34 and SE-ResNet50. During the process of network training or testing, an image sample which contained a 
minimum rectangular tumor region with a resolution of 224×224 pixels from the C_dataset, M_dataset, or CM_da-
taset was fed into both the SE-ResNet34 and SE-ResNet50, which output a probability value of the image sample. 
The average of the two prediction probability values was regarded as the IP-SE-DresNet model’s probability output, 
based on which the final classification label for this image sample was obtained.
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generally used radiological characteristics to 
predict the molecular grading of breast cancer. 
The following listed the operating procedures  
of the radiomics models for comparison pur-
pose. First, the preoperative mammography 
images of patients are randomly divided into a 
training set and a testing set in a 7:3 ratio. The 
ROIs was segmented manually by a radiologist, 
who had been in the practice for over 10 years. 
Following the segmentation, 95 features were 
extracted from the breast cancer images using 
the Pyradiomics toolkit. Subsequently, 22 of 
the 95 features were selected using the Lasso- 
CV feature selection method in images cap-
tured from the CC, MLO, and CC-and-MLO 
views. Next, 4 out of the 22 features were 
screened out by a circular traversal approach, 
which were fed into the naive Bayesian classifi-
er. Finally, the model that produced the best 
classification effect was selected, with its fea-
tures being recorded. The recorded character-
istics of the CC view images were CC_Original_
glrlm_GrayLevelNonUniformity, CC_original_fir-
storder_Energy, CC_original_glszm_Sizezone- 
nonuniformity, and CC_original_gldm_Large- 
DependenceHighGrayLevelEmphasis. The re- 
corded characteristics of the MLO view im- 
ages were MLO_original_firstorder_Minimum, 
MLO_original_shape_MeshVolume, MLO_origi-
nal_glrlm_GrayLevelNonUniformity, and MLO_
original_firstorder_Median. The circular tra-
versal approach was employed again to select 
4 features out of the 8 recorded features for 
exploring features of images from the CC  
view in conjunction with the MLO view. The 
characteristics of images from the combin- 
ed views were CC_original_firstorder_Energy, 
MLO_original_firstorder_Minimum, MLO_origi-
nal_shape_MeshVolume, and MLO_original_
glrlm_GrayLevelNonUnifor-mity.

Statistical analysis

To begin with, the Kolmogorov-Smirnovtest test 
was employed to assess the normality of the 
measurement data. The IBM SPSS software 
version 17 was utilized for statistical analysis in 
the study. For measurement data conforming 
to normal distribution, the independent sample 
t-test was adopted to assess the significance of 
the mean age differences between the ER- 
positive and -negative groups. For counting 
data, the chi-squared test was used to evalu-
ate the difference in categorical variables, such 

as breast density and pathological grade, in  
all cohorts. PyCharm-Python 3.7 and PyTorch 
1.9.0 were used as the integrated develop- 
ment environment and deep learning symbolic 
library, respectively. Positive image sample  
was defined as ER-positive, and vice versa. 
According to this definition rule, four result 
types, including true positive (TP), true negative 
(TN), false positive (FP), and false negative (FN), 
were obtained. Next, the prediction accuracy, 
specificity, and sensitivity of the proposed 
model were determined according to TP, TN, FP, 
and FN results. Subsequently, the determined 
accuracy, specificity, sensitivity, and the area 
under the receiver operating characteristic 
curves (AUCs) were used to evaluate the perfor-
mance of the prediction model. After that, 
MedCalc was employed to determine the 95% 
confidence interval of the AUCs. DeLong test 
was used to compare the AUC values between 
the proposed model and the radiomics model. 
P-value <0.05 (two-sided) was considered sta-
tistically significant.

Results

Patient characteristics

Table 1 outlines the clinical characteristics of 
the patients. There were no significant differ-
ences between the training and testing datas-
ets in terms of age, pathological axillary lymph 
node (ALN) status, and gland density. However, 
a statistical difference was observed in the 
pathological grade between the two datasets, 
suggesting variability in ER expression levels 
across different pathological grades in breast 
cancer patients. This underscores the limita-
tion of local puncture in fully reflecting the path-
ological basis, which holds significance in clini-
cal treatment.

Prediction performance overview

Table 2 presents the prediction performance  
of the proposed IP-SE-DResNet model. Per- 
formance measurements such as the AUCs, 
prediction accuracy, sensitivity, and specificity 
were utilized to evaluate the model’s effective-
ness. The results suggested that when trained 
by images from both the CC-and-MLO views, 
the model performed better in predicting the 
ER status of breast cancer patients in compari-
son to that when trained by images from either 
the CC view or MLO view alone. The AUCs, accu-
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racy, sensitivity, and specificity values were 
0.895 (95% CIs: 0.886-0.913), 0.882, 0.815, 
and 0.954 in the training dataset and 0.886 
(95% CIs: 0.809-0.934), 0.831, 0.810, and 
0.850 in the testing dataset, respectively.

Comparison between the different datasets 
from different views

This research was based on transfer learning. 
For comparison, the proposed model was 
trained separately with three datasets, the C_
Dataset, the M_dataset, and the CM_Dataset. 
Specifically, the proposed model underwent 
training from scratch each time by being transi-
tioned to a pre-trained status (ResNet34 and 
NesNet50). This transfer guaranteed a fresh 
start for every training process, preventing any 

potential interference between different train-
ing processes. Figure 3 shows the ROCs for  
the training and testing datasets. According to 
results presented in Figure 3, all ROCs yielded 
by the proposed model when trained by images 
from the CC, MLO, and CC-and-MLO views were 
relatively smooth, indicating that the IP-SE-
DResNet model was unlikely to be over-fitted. 
The AUCs of the model when trained by images 
from the CC, MLO, and CC-and-MLO views in 
the training and testing datasets were 0.849 
(95% CIs: 0.809-0.868) and 0.835 (95% CIs: 
0.790-0.887) (CC views alone), 0.858 (95% 
CIs: 0.813-0.872) and 0.846 (95% CIs: 0.793-
0.889) (MLO views alone), and 0.895 (95%  
CIs: 0.886-0.913) and 0.886 (95% CIs: 0.809-
0.934) (CC-and-MLO views), respectively. It was 
observed that the AUCs for the proposed model 

Table 1. Clinical characteristics of the 358 breast cancer patients

Clinicopathological features
Training dataset (n = 257)

P
Testing dataset (n = 101)

PER Positive  
(n = 163)

ER Negative 
(n = 94)

ER Positive 
(n = 64)

ER Negative 
(n = 37)

Age, mean ± SD, years 52.77±10.57 51.40±9.82 0.306 52.06±9.68 49.43±9.12 0.182
Breast density 0.684 0.717
    Fatty 24 10 6 3
    Scattered 57 32 28 14
    Heterogeneous 64 38 22 17
    Extreme 18 14 8 3
Pathological Grade 0.005 0.019
    I 16 3 6 0
    II 120 55 47 23
    III 27 36 11 14
Pathological ALN status 0.744 0.573
    Positive 85 51 39 21
    Negative 78 43 25 16
ALN, pathological axillary lymph node; ER, Estrogen receptor.

Table 2. Comparison of performance measurements between the IP-SE-DResnet model and the 
radiomics model

Method
Training dataset (n = 593) Testing dataset (n = 254)

Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC
Radiomics (CC) 0.590 0.684 0.530 0.607 0.552 0.833 0.365 0.599
Radiomics (MLO) 0.552 0.540 0.573 0.576 0.590 0.392 0.704 0.570
Radiomics, CC+MLO 0.635 0.430 0.750 0.614 0.571 0.314 0.815 0.613
IP-SE-DResNet, CC 0.816 0.765 0.872 0.849 0.735 0.777 0.690 0.835
IP-SE-DResNet, MLO 0.836 0.790 0.884 0.858 0.767 0.744 0.791 0.846
IP-SE-DResNet 0.882 0.815 0.954 0.895 0.831 0.810 0.850 0.886
CC-and-MLO
CC, cranio caudal; MLO, mediolateral oblique.
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when trained by images from the CC-and-MLO 
views in both the training and testing datasets 
were extremely close and the highest, indicat-
ing that the application of images from the 
CC-and-MLO views for model training achieved 
more accurate results in predicting the ER sta-
tus in breast cancer patients than the employ-
ment of images captured from either the CC 
view or the MLO view alone. The DeLong test 
results showed no significant differences in the 
comparison of AUCs between the C_Dataset 
and the M_dataset (P = 0.075). However, sta-
tistically significant differences were observed 
in the comparison of AUCs between the C_
Dataset and the CM_dataset, as well as 
between the M_Dataset and the CM_dataset 
(P<0.0001).

Comparison of prediction performance be-
tween the IP-SE-DResNet model and the ra-
diomics model

The quantitative performance comparison out-
lined in Table 2 indicates that the proposed 
IP-SE-DResNet model exhibited superior per-
formance in predicting ER status in breast  
cancer patients compared to the radiomics 
model based on the naive Bayesian classifier 
across all three sub-datasets that encom-

images of breast cancer patients were fed into 
the IP-SE-DresNet model, an attention map 
was thus generated. This attention map was 
extracted from the last layer of the first convo-
lution-attention-residual subnets (CarsNet34) 
in the SE-ResNet34 sub-network. It showed  
the attention degree of the areas in the input 
images that attracted the attention of the 
model. These areas were important because 
they were in direct association with the ER sta-
tus in breast cancer patients. Therefore, these 
areas were considered suspicious that requir- 
ed further investigation. In the study, 0.5 was 
the threshold value for pixels in the attention 
map to preserve the suspicious areas. It was a 
standard derived from previous report [33].

Ablation studies

Ablation studies were performed to analyze  
the distinct contributions of various sub-net-
works in the selection process. The pre-trained 
ResNet18, ResNet34, ResNet5, ResNet101, 
and ResNet152 models were downloaded  
from the PyTorch official website. According to 
the principle of transfer learning, the pre-
trained network parameters of all the above 
ResNets models were loaded into the IP-SE-
DResNet model to replace the previous 

Figure 3.  Comparison of the ROCs between the IP-SE-DResnet model and 
the radiomics model.

passed images from the CC 
view, the MLO view, and the 
CC-and-MLO view. The IP-SE-
DResNet model demonstrated 
higher accuracy in predicting 
ER status in both the training 
and testing datasets than the 
traditional radiomics model 
did. In addition, the proposed 
model consistently outper-
formed the radiomics mod- 
el in all evaluation measure-
ments, with the AUC for the 
former exceeding that for the 
latter by as high as 27 percent 
(P<0.001).

Suspicious tumor area dis-
covery

Figure 4 depicts the suspi-
cious areas identified by the 
proposed IP-SE-DResNet mod- 
el. When the mammography 
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ResNet34 or/and SE-ResNet50 parameters. 
The performances of the model with different 
sub-network configurations are presented in 
Table 3. From Table 3, we selected the top two 
networks with the highest AUC to be included in 
the modeling of this study.

Discussion

Over recent years, there has been a growing 
body of research examining the correlation 
between ER status and mammogram features. 
Brigid K. et al. found no statistical difference 

Figure 4. Suspicious tumour area discovery. The attention maps show the attention degree of those areas in the 
input tumor images that attract the attention of the proposed model. These suspicious areas are directly related to 
the ER status. ER, Estrogen receptor.

Table 3. Comparison of prediction performances between different SE-Resnets
Method View Accuracy Precision Recall F1-score AUC
SE-Resnet18 CC 0.714 0.705 0.769 0.735 0.771

MLO 0.682 0.680 0.719 0.699 0.774
CC-and-MLO 0.703 0.657 0.828 0.733 0.774

SE-Resnet34 CC 0.731 0.742 0.736 0.739 0.788
MLO 0.708 0.728 0.686 0.706 0.785
CC-and-MLO 0.746 0.780 0.672 0.722 0.806

SE-Resnet50 CC 0.726 0.748 0.711 0.729 0.785
MLO 0.703 0.714 0.702 0.708 0.783
CC-and-MLO 0.746 0.818 0.621 0.706 0.793

SE-Resnet101 CC 0.731 0.723 0.777 0.749 0.787
MLO 0.699 0.712 0.694 0.703 0.779
CC-and-MLO 0.746 0.726 0.776 0.750 0.790

SE-Resnet152 CC 0.705 0.802 0.570 0.667 0.782
MLO 0.699 0.727 0.661 0.693 0.782
CC-and-MLO 0.695 0.667 0.759 0.719 0.784

CC, cranio caudal; MLO, mediolateral oblique.
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between ER status and the most common X- 
ray features, such as masses and calcifica-
tions. However, they did observe a positive cor-
relation between ER expression and the pres-
ence or absence of axillary lymph node enlarge-
ment and nipple depression [34]. Other studies 
showed that ER-negative breast cancer pati-
ents had a higher risk of mammographic den-
sity in comparison to ER-positive breast cancer 
patients [35, 36]. In our study, there is no sta-
tistical difference in mammographic density 
and pathological axillary lymph node between 
ER-negative and -positive patients. Unlike the 
findings of Tailaiti, et al.’s [34], it is possible  
that this is due to racial or geographic differ-
ences. Yan Li et al. reported that the ER-posi- 
tive cancer patients showed higher propensity 
for association with mammography image clas-
sification in comparison to HER2-positive can-
cer patients [37]. Another study indicated that 
the ER positiveness was associated with  
architectural distortion [38]. However, despite 
these findings indicating a specific correlation 
between ER status and mammogram features, 
the results were notably limited in sample size 
and lacked accuracy [39].

Radiomics methods analyze tumor information 
at the macroscopic level by mining quantitative 
image features that are associated with ER  
status from mammograph images. While the 
radiomics methods have their advantages, as 
the extracted features were considered distinc-
tive, their reliance on expert-defined features 
means they may not represent the optimal  
feature quantification method for the imminent 
differentiated tasks [40]. Meanwhile, the 
robustness of the prediction process affects 
the effectiveness of the training process and 
the reliability of the prediction results. In our 
study, compared with the radiomics model  
that only obtained an AUC/accuracy of 
0.613/0.571 in the testing datasets for deter-
mining ER status, the proposed IP-SE-DResNet 
model acquired only user-defined and easy-to-
crop rectangular ROIs, accompanied by reduc-
tion in dependence on manual selection of  
the optimizer and classifier. ER-related tumor 
features were automatically acquired from  
the large-scale datasets with the use of DL 
approaches. In the proposed IP-SE-DResNet 
model, the determination of ER status achiev- 
ed high accuracy, with the model trained by 
images from the CC-and-MLO views showing 

optimal performance with an AUC/accuracy of 
0.886/0.831 in the testing dataset (P<0.001). 
This finding is consistent with the results of 
Zhou et al. [41]. In their study on the prediction 
of HER2 expression using imaging histology, in 
which a model combining the imaging histolog-
ic features of 2 photographic positions predict-
ed ER expression better than a model with sin-
gle position imaging histologic features. 

Unlike Ueda’s hybrid DL model [17], which inte-
grated four DL models, our model opted for 
simplicity by selecting merely two ResNets 
models with straightforward structures for inte-
gration. This decision was made to avoid the 
heavy computational burden and overfitting 
associated with a large number of network 
parameters and excessive calculations, which 
could potentially compromise classification 
performance. Furthermore, we proposed the 
application of an attention mechanism, specifi-
cally the SE modile, to the channel level of  
the ResNet. This approach allowed for the 
assignment of varying weights to different 
channels of the feature map. The SE module’s 
non-linearity enabled an enhanced fitting of the 
complex correlation between channels, result-
ing in improved performance. In our study, the 
proposed IP-SE-DResNet model fed with 
mammograms to predict ER expression status 
in patients with primary invasive breast cancer 
showed promising results. Our study revealed a 
significant association between mammogram 
features and ER status in breast cancer pati- 
ents. In addition, the IP-SE-DResNet model 
offers the advantage of requiring unprocessed 
tumor mammograms. Its non-invasive nature, 
coupled with its straightforward operation, 
allows for direct prediction of ER status. The 
model’s results serve as a supplementary tool 
to biopsy examination findings for patients 
undergoing their first operation. Additionally, 
the IP-SE-DResNet model can predict the tu- 
mor region most strongly associated with ER 
status. This analysis helps clinicians intuiti- 
vely understand the predicted results in 
mammograms. 

Despite the encouraging results from the  
IP-SE-DResNet model, the study still has  
some limitations. Firstly, it’s worth noting that 
all data in our study were collected from a sin-
gle center. To ensure the reproducibility and 
generalizability of the model, future research 
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should incorporate data from multiple sources 
or consider a prospective study design. Sec- 
ondly, our study focused only on ER status. In 
future research, it is imperative to explore the 
relationship between the radiomics features of 
breast cancer and other prognostic factors 
such as PR, Her-2, and Ki-67. Lastly, given the 
small dataset size in our study, larger and high-
quality datasets are necessary to enhance the 
robustness of findings in future investigations. 
In addition, an automatic ROI segmentation is 
expected in future work.
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