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Abstract: Objective: To develop a nomogram for predicting axillary lymph node metastasis (ALNM) in patients with 
invasive breast cancer. Methods: We included 307 patients with clinicopathologically confirmed invasive breast 
cancer. The cohort was divided into a training group (n=215) and a validation group (n=92). Ultrasound images 
were used to extract radiomics features. The least absolute shrinkage and selection operator (LASSO) algorithm 
helped select pertinent features, from which Radiomics Scores (Radscores) were calculated using the LASSO re-
gression equation. We developed three logistic regression models based on Radscores and 2D image features, 
and assessed the models’ performance in the validation group. A nomogram was created from the best-performing 
model. Results: In the training set, the area under the curve (AUC) for the Radscore model, 2D feature model, and 
combined model were 0.76, 0.85, and 0.88, respectively. In the validation set, the AUCs were 0.71, 0.78, and 0.83, 
respectively. The combined model demonstrated good calibration and promising clinical utility. Conclusion: Our 
ultrasound-based radiomics nomogram can accurately and non-invasively predict ALNM in breast cancer, suggest-
ing potential clinical applications to optimize surgical and medical strategies.
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Introduction

Breast cancer (BC) incidence continues to rise 
by approximately 0.5% annually, making it the 
most common cancer among American women. 
It accounts for about 31% of all new cancer 
cases in women each year and has a mortality 
rate second only to lung and bronchial cancers 
[1]. Axillary lymph node metastasis (ALNM) sig-
nificantly affects patient survival, prognosis, 
and the risk of BC recurrence. Historically, axil-
lary lymph node dissection (ALND) was the 
gold-standard method for assessing ALNM [2, 
3]; however, it frequently led to surgical compli-
cations [4]. Consequently, sentinel lymph node 
biopsy (SLNB) has become the preferred meth-
od for evaluating ALN status, particularly in 
patients with clinically negative ALNs [5, 6]. 
Despite being less invasive, SLNB is associat- 
ed with potential complications such as pain, 
numbness, sensory abnormalities, reduced 
shoulder mobility, increased arm circumfer-

ence, and decreased quality of life. Moreover, 
the intraoperative wait for SLNB results can 
extend anesthesia duration and increase costs 
[4, 7]. Additionally, a study involving 5,331 
sequentially biopsied SLNs in BC patients found 
a metastasis rate of only 34.3% [8], suggesting 
that ALND may lead to overtreatment. Thus, 
there is a critical need for developing non-inva-
sive methods to assess ALN status.

Current preoperative methods for evaluating 
ALN status include palpation and various imag-
ing techniques. However, the sensitivity of pal-
pation for detecting ALNM ranges only from 
33% to 68% [9]. Imaging methods such as  
computed tomography (CT), mammography, po- 
sitron emission tomography-computed tomog-
raphy (PET-CT), ultrasound (US), and magnetic 
resonance imaging (MRI) are available, but 
mammography often fails in ALN assessment 
due to high false-negative rates and limited 
spatial resolution [9, 11]. MRI, CT, and PET-CT 
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are not routinely utilized for assessing ALN sta-
tus due to their high costs and/or significant 
radiation exposure [12]. Consequently, US has 
become the most prevalent method for evaluat-
ing breast lesions and ALN status [10]. How- 
ever, the sensitivity and specificity of US vary 
widely, ranging from 26% to 92% and 44% to 
98%, respectively. Additionally, there are no 
standardized criteria or guidelines for the ultra-
sound diagnosis of abnormal lymph nodes [13]. 
A recent systematic review highlighted that 
US-guided core needle aspiration biopsy is 
more specific and sensitive, though it remains 
relatively invasive and may lead to complica-
tions such as nerve injury and lymphedema 
[14, 15].

The application of artificial intelligence, particu-
larly deep learning, in extracting features from 
primary tumor ultrasound images to predict 
ALN status has been explored [16]. Yet, the 
deployment of deep learning models in clinical 
settings is challenged by their substantial hard-
ware demands and the complexity of model 
design, which often require extensive resourc-
es [17, 18]. Recent research has shown that 
certain primary tumor features, including 
shape, size, and calcification, are indicative of 
ALNM [19, 20].

We reviewed data from 470 patients with 
pathologically confirmed invasive BC from 
January 2018 to December 2022. The inclu-
sion criteria were: (1) Primary invasive BC con-
firmed by puncture biopsy or surgical resection; 
(2) ALN status verified by pathology following 
ALND, SLNB, or puncture biopsy; (3) Solitary BC 
lesion; (4) Ultrasound 2D image features evalu-
ated by physicians with over five years of experi-
ence in breast ultrasound diagnosis. The exclu-
sion criteria included: (1) Diagnosis of ductal 
carcinoma in situ; (2) Prior treatments such as 
radiotherapy, chemotherapy, or biopsy before 
the ultrasound examination; (3) Unremarkable 
tumor lesions on US images, large breast 
masses, or poor US image quality; (4) In- 
complete data including missing US results or 
ALN biopsies prior to neoadjuvant chemothera-
py; (5) Multifocal lesions, defined as two or 
more. Ultimately, 307 patients met these crite-
ria and were included in the study, comprising 
148 ALN-positive (N+ (≥ 1)) and 159 ALN-
negative (N0) cases (Figure 1).

Clinical information

Clinical data including ALN status (N+ (≥ 1) vs. 
N0), age, Ki-67, estrogen receptor (ER) status, 
progesterone receptor (PR) status, and human 

Figure 1. Flowchart of the study design. ALNM, axillary lymph node metas-
tasis.

Only a minority of studies have 
combined 2D US features of 
primary BC tumors with ra- 
diomics to predict ALNM [21]. 
Our study aims to investigate 
the relationships between the 
2D US features of primary BC 
tumors, radiomics, and ALNM, 
with the goal of developing a 
straightforward, non-invasive, 
and easy-to-use model for  
predicting ALN status preope- 
ratively.

Material and methods

Patients

The Ethics Committee of the 
First Affiliated Hospital of 
Guangzhou University of Tradi- 
tional Chinese Medicine app- 
roved this retrospective stu- 
dy, and the requirement for 
informed consent was waived. 
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epidermal growth factor receptor 2 (HER-2) sta-
tus were obtained from medical records.

Ultrasonic image acquisition

Breast US examinations were conducted by 
physicians with a minimum of five years’ ex- 
perience using Hitachi HI-VISION-P, Hitachi 
HI-VISION-AVIUS (HITACHI, Japan), and Super- 
sonic Aizplorer (Supersonic Imagine, France), 
with probe frequencies ranging from 5 to 14 
MHz. Each lesion was scanned in multiple sec-
tional and angular views across both breasts, 
transversely and longitudinally, with tumor di- 
mensions measured at their largest extent.

Ultrasonic 2D image analysis

Ultrasound data were retrieved from the institu-
tion’s ultrasound reporting system. Two experi-
enced physicians independently analyzed mul-
tifaceted sections of each lesion, blind to the 
patients’ ALN status. Recorded 2D image char-
acteristics included shape, boundary, spiculat-
ed and lobulated margins, calcification, acous-
tic shadowing, angular margins, tumor size, and 
blood flow grading based on Alder criteria [22]. 
Discrepancies were resolved through discus-
sion or by consulting a third physician.

Radiomics feature extraction, repeatability 
testing, and selection

1. Radiomics feature extraction: The largest 2D 
tumor section was selected for delineating the 
region of interest (ROI) using 3D-slicer 5.1.0 
open-source software, and features were ex- 
tracted by the same physician [23].

2. Feature repeatability testing: A subset of 65 
lesions was delineated twice by the same phy-
sician after an interval of approximately three 
months to calculate the intraclass correlation 
coefficient (ICC). Features with an ICC greater 
than 0.75 were retained.

3. Radiomics feature selection: Initially, fea-
tures with p-values < 0.05 were identified using 
Student’s t-tests and Mann-Whitney U tests. 
Subsequently, optimal features were selected 
through dimensionality reduction, de-redun-
dancy analysis, and the LASSO algorithm with 
cross-validation [24].

Predictive model construction and validation

In the training set, all variables including 2D  
US features and Radscores, were subjected to 
univariate logistic regression. Initially, 2D fea-
tures significant at P < 0.05 were selected. 
These were then refined using the optimal sub-
set algorithm to construct a 2D feature logistic 
regression model. Similarly, significant 2D fea-
tures (P < 0.05) from univariate regression, 
along with Radscores, were processed through 
the optimal subset algorithm to develop a com-
bined model. A Radscore model was also con-
structed using the Radscores alone. Subse- 
quently, a nomogram was generated using the 
combined model.

Model performance was assessed using re- 
ceiver operating characteristic (ROC) curves in 
both validation and training sets. We calculated 
each model’s area under the curve (AUC), ac- 
curacy, specificity, sensitivity, negative predic-
tive value (NPV), positive predictive value (PPV), 
and Brier scores to evaluate their discrimina-
tive abilities. Differences in AUC were tested for 
statistical significance using the DeLong test. 
Decision curves were plotted to determine the 
clinical benefit of each model at various thresh-
old levels. Calibration curves for the combined 
model in both the training and validation groups 
were used to compare predicted versus actual 
probabilities of ALNM.

Statistical analysis

Statistical analyses were conducted using 
SPSS 27.0 and R 4.2.2 software. For continu-
ous variables, nonparametric Mann-Whitney  
U tests or Student’s t-tests were employed, 
depending on data distribution. Hierarchical 
data comparisons utilized Mann-Whitney U 
tests. Categorical variables were analyzed 
using Fisher’s exact tests or Chi-square tests 
as appropriate. Both single-factor and multifac-
tor logistic regression analyses were performed 
to identify variables influencing ALNM, catego-
rizing Adler blood flow grades 0 to 1 as “0” and 
grades 2 to 3 as “1”.

R software was applied for statistical analyses. 
Intragroup consistency was analyzed using the 
“psych” package. Pearson’s and Spearman’s 
correlations were applied to assess de-redun-
dancy among normally and non-normally dis-
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Table 1. Characteristics of patients in the training and validation sets
Feature Training set (n=215) Validation set (n=92) P
Age (%) 0.609
    ≥ 50 119 (55%) 48 (52%)
    < 50 96 (45%) 44 (48%)
ER 0.679
    Positive 145 (67%) 65 (71%)
    Negative 70 (33%) 27 (29%)
PR 0.734
    Positive 117 (54%) 52 (57%)
    Negative 98 (46%) 40 (43%)
HER-2 0.91
    Positive 59 (28%) 27 (29%)
    Negative 153 (71%) 64 (70%)
    Unknown 3 (1%) 1 (1%)
Ki-67 0.304
    > 14 181 (84%) 73 (79%)
    ≤ 14 34 (16%) 19 (21%)
Adler blood flow 0.358
    Grade 0 16 (7.4%) 5 (5.4%)
    Grade 1 84 (39%) 34 (37%)
    Grade 2 60 (27.9%) 25 (27.2%)
    Grade 3 55 (25.6%) 28 (30.4%)
Shape 0.392
    Regular 23 (10.7%) 13 (14.1%)
    Irregular 192 (89.3%) 79 (85.9%)
Boundary 0.551
    Obscure 92 (42.8%) 36 (39.1%)
    Indistinct 123 (57.2%) 56 (60.9%)
Spiculate margin 0.699
    No 107 (49.8%) 48 (52.2%)
    Yes 108 (50.2%) 44 (47.8%)
Calcification 0.502
    No 93 (43.3%) 36 (39.1%)
    Yes 122 (56.7%) 56 (60.9%)
Acoustic shadowing 0.548
    No 142 (66%) 64 (69.6%)
    Yes 73 (34%) 28 (30.4%)
Lobulated margin 0.636
    No 137 (63.7%) 56 (60.9%)
    Yes 78 (36.3%) 36 (39.1%)
Angular margin 0.01
    No 51 (23.7%) 35 (38%)
    Yes 164 (76.3%) 57 (62%)
Tumor size 0.885
    < 2 cm 58 (27%) 23 (25%)
    2-5 cm 146 (67.9%) 65 (70.7%)
    > 5 cm 11 (5.1%) 4 (4.3%)
Radscore -0.02 (-0.69, 0.41) -0.04 (-0.60, 0.53) 0.593
Data are the number of patients. Data in parentheses are percentages, and data in 
parentheses in the last line are interquartile ranges. Radscore, radiomics score; ER, 
estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor 
receptor 2.

tributed variables, respec-
tively. Feature selection 
was conducted using the 
LASSO method within the 
“glmnet” package, support-
ed by cross-validation func-
tions from “cv.glmnet”. ROC 
curves, accuracy, sensitivi-
ty, specificity, PPV, NPV, 
and Brier scores were es- 
timated using functions 
from the “pROC” package. 
Nomogram plotting and 
calibration curve analysis 
were performed using the 
“nomogram” and “calibra- 
te” commands in the “rms” 
package, respectively. De- 
cision curves were gene- 
rated using the “decision_
curve” command in the 
“rmda” package. The Hos- 
mer-Lemeshow test was 
applied to assess model fit 
using the “hoslem.test” 
command in the “Resour- 
ceSelection” package. No- 
mogram scores (Nomosco- 
res) were calculated with 
the “formula_rd” command 
in the “nomogramFormula” 
package, and individual-
ized nomograms were plot-
ted using “regplot”.

All tests were two-sided, 
and p-values < 0.05 were 
considered statistically sig- 
nificant.

Results

Comparison of patient 
characteristics

Basic participant charac-
teristics are displayed in 
Tables 1 and 2. Except for 
angular margin, there were 
no significant differences in 
variables between the vali-
dation and training groups 
(Table 1). The prevalence of 
ALNM was 47% (101/215) 
in the training group and 
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Table 2. Comparison of clinical information, tumor ultrasound features, and Radscore between the 
ALN-negative and the ALN-positive groups

Feature
Training set (n=215) Validation set (n=92)

ALN-negative 
(n=114)

ALN-positive 
(n=101) P ALN-negative 

(n=45)
ALN-positive 

(n=47) P

Age 0.601 0.828
    ≥ 50 65 (57%) 54 (53%) 24 (53%) 24 (51%)
    < 50 49 (43%) 47 (47%) 21 (47%) 23 (49%)
ER 0.797 0.716
    Positive 76 (67%) 69 (68%) 31 (69%) 34 (72%)
    Negative 38 (33%) 32 (32%) 14 (31%) 13 (28%)
PR 0.405 0.812
    Positive 59 (52%) 58 (57%) 19 (42%) 21 (45%)
    Negative 55 (48%) 43 (43%) 26 (58%) 26 (55%)
HER-2 0.261 0.909
    Positive 26 (23%) 33 (33%) 13 (29%) 14 (30%)
    Negative 86 (75%) 67 (66%) 31 (69%) 33 (70%)
    Unknown 2 (2%) 1 (1%) 1 (2%) 0 (0%)
Ki-67 0.266 0.716
    > 14 93 (82%) 88 (87%) 35 (78%) 38 (81%)
    ≤ 14 21 (18%) 13 (13%) 10 (22%) 9 (19%)
Adler blood flow < 0.001 0.761
    Grade 0 9 (7.9%) 7 (6.9%) 2 (4.4%) 3 (6.4%)
    Grade 1 54 (47.4%) 30 (29.7%) 18 (40%) 16 (34.0%)
    Grade 2 35 (30.7%) 25 (24.8%) 12 (26.7%) 13 (27.7%)
    Grade 3 16 (14.0%) 39 (38.6%) 13 (28.9%) 15 (31.9%)
Shape < 0.001 < 0.001
    Regular 20 (17.5%) 3 (3%) 12 (26.7%) 1 (2.1%)
    Irregular 94 (82.5%) 98 (97%) 33 (73.3%) 46 (97.9%)
Boundary < 0.001 < 0.001
    Clear 75 (65.8%) 17 (16.8%) 26 (57.8%) 10 (21.3%)
    Ambiguous 39 (34.2%) 84 (83.2%) 19 (42.2%) 37 (78.7%)
Spiculate margin < 0.001 0.021
    No 77 (67.5%) 30 (29.7%) 29 (64.4%) 19 (40.4%)
    Yes 37 (32.5%) 71 (70.3%) 16 (35.6%) 28 (59.6%)
Calcification 0.003 0.147
    No 60 (52.6%) 33 (32.7%) 21 (46.7%) 15 (31.9%)
    Yes 54 (47.4%) 68 (67.3%) 24 (53.3%) 32 (68.1%)
Acoustic shadowing 0.001 0.033
    No 87 (76.3%) 56 (54.5%) 36 (0.80%) 28 (59.6%)
    Yes 27 (23.7%) 45 (45.5%) 9 (0.20%) 19 (40.4%)
Lobulated margin 0.700 0.123
    No 74 (64.9%) 63 (62.4%) 31 (68.9%) 25 (53.2%)
    Yes 40 (35.1%) 38 (37.6%) 14 (31.1%) 22 (46.8%)
Angular margin 0.342 0.096
    No 30 (26.3%) 21 (20.8%) 21 (46.7%) 14 (29.8%)
    Yes 84 (73.7%) 80 (79.2%) 24 (53.3%) 33 (70.2%)
Tumor size < 0.001 0.047
    < 2 cm 46 (40.4%) 12 (11.9%) 16 (35.6%) 7 (14.9%)
    2-5 cm 65 (57%) 81 (80.2%) 28 (62.2%) 37 (78.7%)
    > 5 cm 3 (2.6%) 8 (7.9%) 1 (2.2%) 3 (6.4%)
Radscore -0.48 (-1.02, 0.16) 0.25 (-0.10, 0.70) < 0.001 -0.42 (-0.96, 0.19) 0.24 (-0.25, 0.72) < 0.001
Data are the number of patients. Data in parentheses are percentages, and data in parentheses in the last line are interquartile ranges. ALN, 
Axillary lymph node; Radscore, radiomics score; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor recep-
tor 2.
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Table 4. Results of univariate logistic regres-
sion analyses in the training set
Variable OR value (95% CI) P
Radscore 4.08 (2.56-6.50) < 0.001
Boundary 0.11 (0.06-0.20) < 0.001
Spiculate margin 0.20 (0.11-0.36) < 0.001
Calcification 0.44 (0.25-0.76) 0.003
Shape 0.14 (0.04-0.50) 0.002
Blood flow grading 0.47 (0.27-0.81) 0.007
Tumor size 1.07 (1.04-1.10) < 0.001
Lobulated margin 0.90 (0.51-1.56) 0.70
Angular margin 0.74 (0.39-1.39) 0.34
Acoustic shadowing 0.37 (0.21-0.67) < 0.001
ER 0.93 (0.52-1.64) 0.80
PR 0.80 (0.46-1.36) 0.41
HER-2 0.61 (0.34-1.12) 0.11
Ki-67 0.65 (0.31-1.39) 0.27
CI, Confidence interval; OR, odds ratio; ER, estrogen 
receptor; PR, progesterone Receptor; HER2, human 
epidermal growth factor receptor 2.

Table 3. Univariate logistic regression analysis of radiomics features in the training set
Radiomics feature Coefficient OR (95% CI) P
Original_glszm_ZoneEntropy 0.101538226 3.13 (1.64-5.98) 0.001
Wavelet.LLH_glrlm_RunEntropy 0.142096827 177.364 (15.97-1970.08) < 0.001
wavelet.LHL_glcm_Imc1 0.122393439 5.27E+08 (11.46-2.43E+16) 0.026
Wavelet.LHH_glcm_MaximumProbability -0.106987805 0 (0.00-1.46) 0.053
Wavelet.LHH_glrlm_RunPercentage 0.213643867 10171.51 (0.003-3.07E+10) 0.225
Wavelet.HLH_glrlm_RunVariance 0.265045960 1.89 (1.02-3.51) 0.044
Wavelet.HHL_firstorder_Kurtosis 0.169923026 1.00 (1.00-1.01) 0.05
Wavelet.HHL_firstorder_Maximum 0.096654931 1.01 (1.00-1.011) 0.119
Wavelet.HHL_glszm_GrayLevelNonUniformity 0.173314234 1.05 (1.02-1.08) < 0.001
Wavelet.LLL_gldm_DependenceEntropy 0.006709708 2.37 (1.00-5.63) 0.05
Wavelet.LLL_glrlm_RunEntropy 0.055633950 3.80 (1.35-10.74) 0.012
Wavelet.LLL_glszm_ZoneEntropy 0.024183857 5.10 (2.35-11.05) < 0.001
Wavelet.LLL_ngtdm_Coarseness -0.101365473 0 (0.00-0.00) < 0.001
Wavelet.LLL_ngtdm_Strength -0.943866817 0.13 (0.05-0.35) < 0.001
Intercept 0.361549570
CI, Confidence interval; OR, odds ratio.

an, 0.25 vs. -0.48, P < 0.001; validation: medi-
an, 0.24 vs. -0.42, P < 0.001). Patient age, PR 
status, ER status, Ki-67 levels, HER2 status, 
lobulated margin, and angular margin were not 
significantly correlated with ALNM in either 
group (P > 0.05) (Table 2).

Radiomics feature extraction

We initially extracted 837 features from the 
largest section of each lesion. From these, 491 
features were selected with an ICC > 0.75. This 
pool was narrowed down to 147 features via 
t-tests and Mann-Whitney U tests, followed by 
dimensionality reduction and de-redundancy 
analysis that further reduced the count to 29 
features. Finally, 14 features were identified 
using both the LASSO method and 10-fold 
cross-validation. A Radscore was calculated for 
each patient based on the LASSO regression 
formula. Of these 14 radiomics features, listed 
in Table 3, nine were associated with ALNM.

Construction and validation of logistic regres-
sion prediction models

Training Set Analysis: Univariate logistic regres-
sion analysis identified eight factors significant-
ly associated with ALNM (N+ (≥ 1) vs. N0, P < 
0.05): shape, boundary, spiculated margin, cal-
cification, blood flow grading, tumor size, acous-
tic shadowing, and Radscore (Table 4). Using 
an optimal subset algorithm, five of these vari-

51% (47/92) in the validation group, with no sig-
nificant between-group differences in the posi-
tive rate (P=0.509) (Table 2). Variables signifi-
cantly associated with ALNM in both groups 
included primary lesion shape, boundary, spic-
ulated margin, acoustic shadowing, and size (P 
< 0.05). Significant differences in Radscores 
were observed between patients with and with-
out metastases in both groups (training: medi-
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Table 6. Prediction performance of different models in the training and validation sets

Model AUC Accuracy Sensitivity Specificity PPV NPV Brier 
score P

Training set Radscore model 0.76 0.693 0.861 0.544 0.626 0.816 0.20 0.009*

2D feature model 0.85 0.795 0.842 0.754 0.752 0.843 0.16 0.03#

Combined model 0.88 0.828 0.871 0.789 0.786 0.874 0.14 0.00002∆

Nomogram 0.88 0.828 0.871 0.789 0.786 0.874 0.14
Validation set Radscore model 0.71 0.707 0.915 0.489 0.652 0.846 0.22 0.31*

2D feature model 0.78 0.728 0.723 0.733 0.739 0.717 0.19 0.03#

Combined model 0.83 0.815 0.809 0.822 0.826 0.804 0.17 0.03∆

Nomogram 0.83 0.815 0.809 0.822 0.826 0.804 0.17
AUC, Area under the curve; 2D, two-dimensional; NPV, negative predictive value; PPV, positive predictive value; Radscore, 
radiomics score; P, result of Delong test; ALNM, axillary lymph node metastasis. *Radscore model vs. 2D feature model; #2D 
feature model vs. combined model; ∆combined model vs. Radscore model.

Table 5. Multivariable logistic regression analysis of risk factors for ALNM

Variable
2D feature model Combined model

OR value (95% CI) P OR value (95% CI) P
Spiculate margin 0.24 (0.12-0.48) < 0.001 0.26 (0.13-0.54) < 0.001
Boundary 0.14 (0.07-0.29) < 0.001 0.14 (0.07-0.31) < 0.001
Calcification 0.46 (0.23-0.94) 0.033 0.46 (0.22-0.96) 0.039
Tumor size 1.03 (1.00-1.07) 0.038 NA NA
Radscore NA NA 3.13 (1.83-5.54) < 0.001
Shape NA NA NA NA
CI, Confidence interval; OR, odds ratio; Radscore, radiomics score; ALNM, axillary lymph node metastasis.

ables (shape, boundary, spiculated margin, cal-
cification, and Radscore) were selected to con-
struct the combined logistic regression model. 
Another set of five variables (shape, boundary, 
spiculated margin, calcification, and tumor 
size) from the seven 2D features were select- 
ed to construct the 2D feature model. A sepa-
rate model using only Radscores was also 
developed.

In the training set, independent predictors of 
ALNM in the combined model included bound-
ary, spiculated margin, calcification, and Rad- 
score. For the 2D feature model, independent 
predictors were boundary, spiculated margin, 
tumor size, and calcification (Table 5).

The Radscore model showed moderate effica-
cy, with an AUC of 0.76 (95% CI: 0.70-0.82) in 
the training group and 0.71 (95% CI: 0.60-0.82) 
in the validation group. The 2D feature model 
outperformed the Radscore model, with an 
AUC of 0.85 (95% CI: 0.80-0.90) in the training 
group and 0.78 (95% CI: 0.69-0.88) in the vali-
dation group [Training group: Radscore model 

(0.76) vs. 2D feature model (0.85), P=0.009; 
Validation group: Radscore model (0.71) vs. 2D 
feature model (0.78), P=0.31]. The combined 
model demonstrated superior predictive per-
formance, with an AUC of 0.88 (95% CI: 0.83-
0.92) in the training group and 0.83 (95% CI: 
0.75-0.92) in the validation group [Training 
group: Radscore model (0.76) vs. combined 
model (0.88), P=0.00002; 2D feature model 
(0.85) vs. combined model (0.88), P=0.03; 
Validation group: Radscore model (0.71) vs. 
combined model (0.83), P=0.03; 2D feature 
model (0.78) vs. combined model (0.83), P= 
0.03]. Statistical comparisons of AUCs con-
firmed the superior performance of the com-
bined model over the other models (Table 6). 
All models’ ROC curves and corresponding AUC 
values are illustrated in Figure 2. The combined 
model also showed better accuracy, specificity, 
PPV, and Brier scores compared to the other 
models.

Calibration curves for the combined model 
showed good agreement with real-life clinical 
outcomes, as depicted in Figure 3A and 3B. 
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Figure 2. A and B. Receiver operating characteristic curves of the Radscore model, 2D feature model, and combined 
model in the training and validation sets, respectively.

Figure 3. A and B. Calibration curves of the combined model in the training and validation sets, respectively. C and 
D. Decision curves in the training set and the validation set, respectively; the x-axis represents the threshold prob-
ability, and the y-axis represents the net benefit, the gray line indicates all patients were treated, and the black line 
indicates all patients were not treated.
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Figure 4. (A) Nomogram was constructed with shape, boundary, burr, calcification, and Radscore for predicting axil-
lary lymph node metastasis in the training set. (B and C) An ALNM(+) patient with a Nomscore of 174.31 (B), and an 
ALNM(-) patient with a Nomscore of 72.95 (C), with a risk probability of axillary lymph node metastasis of 93% and 
8%, respectively. ALNM, axillary lymph node metastasis.

Hosmer-Lemeshow tests indicated no signifi-
cant difference between predicted and ob- 
served outcomes, with P-values of 0.35 in the 
training cohort and 0.18 in the validation 
cohort, suggesting well-fitted models. Decision 
curve analysis demonstrated that the com-
bined model achieved the maximum net bene-
fit within the threshold probability range of  
0.03 to 0.80, as shown in Figure 3C and 3D.

A nomogram based on the combined model 
was created to quantify the risk of ALNM, illus-
trated in Figure 4A. The Radscore emerged  
as the most significant predictor, indicating  
that a higher Radscore is associated with an 
increased risk of ALNM. The optimal cutoff 
value for the Nomoscore, determined using the 
Youden index, was 132.46. Patients were cat-
egorized into low-risk (Nomoscore < 132.46) 
and high-risk (Nomoscore ≥ 132.46) groups  
for ALNM. The performance metrics of the 

nomogram were as follows: accuracy 81.11% 
(249/307), sensitivity 77.03% (114/148), spec-
ificity 84.91% (135/159), PPV 82.61% (114/ 
138), and NPV 79.88% (135/169). Figure 4B 
and 4C display the risk stratification based on 
different Nomoscores, illustrating the variable 
risk levels for ALNM.

Discussion

Determining ALN status is critical for tailor- 
ing surgical strategies for BC patients [24]. 
Although over 70% of patients with early-stage 
BC do not have ALNM [12], accurately predict-
ing ALN status before surgery remains para-
mount. Our study confirmed that primary tumor 
features such as size, shape, boundary, spicu-
lated margin, calcification, blood flow grade, 
and acoustic shadowing significantly correlate 
with ALNM. We developed three models to pre-
dict ALNM. The model based on Radscores 
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alone showed moderate predictive efficacy, 
with AUCs of 0.76 in the training group and 0.71 
in the validation group. A 2D feature model 
based on tumor characteristics demonstrat- 
ed better predictive efficacy (AUCs: 0.85 and 
0.78), while a combined model integrating both 
2D features and Radscores yielded optimal 
results (AUCs: 0.88 and 0.83). The combined 
model’s performance, based on patients’ No- 
moscore, resulted in accuracy, sensitivity, 
specificity, PPV, and NPV of 81.11%, 77.03%, 
84.91%, 82.61%, and 79.88%, respectively.

Our multivariate logistic regression analyses 
identified tumor boundary, spiculated margin, 
and calcification as independent factors asso-
ciated with ALNM. Previous studies have high-
lighted the link between an indistinct tumor 
boundary and vascular infiltration, suggesting a 
high invasion potential and increased metasta-
sis risk [25], although Gao et al. reported no 
association [26]. This discrepancy could stem 
from variations in sample size or case selec-
tion, warranting further investigation. Consi- 
stent with Xu et al.’s findings [20], we observed 
that spiculated margins, indicative of disrupted 
cell adhesion, correlated with ALNM [27]. Such 
margins are associated with the overexpres-
sion of VEGF and MMP-9, which promote angio-
genesis and tissue permeability, facilitating 
metastasis [28]. Our findings regarding calcifi-
cations align with previous research showing 
their association with high proliferation rates, 
lymphovascular invasion, and higher tumor 
grades [29]. Calcifications within tumors indi-
cate active metabolism and proliferation due to 
ischemic necrosis and subsequent calcium 
deposits [29]. Moreover, existing literature cor-
roborates our results linking tumor size [30, 
31], irregular shape [32], acoustic shadowing 
[29, 33], and high tumor blood flow [26] with 
ALNM.

A nomogram developed by Xiong et al. integrat-
ed US and clinicopathological features for the 
preoperative prediction of ALN status in BC 
patients, achieving AUC scores of 0.705 in the 
training set and 0.745 in the validation set [34]. 
In contrast, our combined model demonstrat- 
ed significantly higher predictive efficacy, with 
AUCs of 0.88 in the training set and 0.83 in  
the validation set. This improvement might be 
attributed to the complex nature of BC lesions. 
Xiong et al.’s model was based on gross US and 
pathological features, potentially overlooking 
subtle intra-tumoral variations [34]. Support- 

ing this, Yu et al. suggested that a fusion of 
radiomics and 2D image features could more 
accurately capture differences between groups 
with and without ALNM [21].

Radiomics, a non-invasive technique, efficient-
ly extracts quantitative features from conven-
tional images that are imperceptible to the 
human eye, providing crucial diagnostic and 
prognostic insights for tumor grading and prog-
nosis [35]. For instance, Lee et al. used 23 US 
radiomics features from primary tumors to con-
struct a model that predicted ALNM with AUCs 
of 0.812 and 0.831 in their training and valida-
tion sets, respectively [36], outperforming our 
Radscore model, likely due to the inclusion of 
additional radiomics features.

Xu et al. developed a nomogram for predicting 
ALNM in BC by combining radiomics features 
derived from digital breast tomosynthesis 
images with 2D features, achieving impressive 
AUCs of 0.93 and 0.92 in their training and vali-
dation sets, respectively [20]. However, their 
study was limited by a small sample size.

Additionally, Ozaki et al. reported an AUC of 
0.996 for a deep-learning model that used axil-
lary US images to differentiate between non-
metastatic ALN and ALNM [37]. Despite its 
high accuracy, the black-box nature of deep-
learning models makes their decision-making 
processes opaque, posing challenges for clini-
cal interpretation [16]. Efforts are currently 
directed towards developing more interpretable 
artificial intelligence systems [38]. In our study, 
nine out of the fourteen radiomics features 
were significantly correlated with ALNM, sug-
gesting these features are critical for reflecting 
differences between groups. Notably, thirteen 
of these features were wavelet-transformed, 
which helps in resolving image signals across 
various temporal, spatial, and frequency scales. 
These wavelet-transformed features are par-
ticularly valuable for identifying subtle, yet cru-
cial, textural information in low-contrast ultra-
sound images, often overlooked in standard 
analyses. Previous studies employing wavelet-
transformed texture features have demonstrat-
ed strong predictive capabilities [39, 40].

Our study’s findings should be viewed in light of 
several limitations. Firstly, all data were derived 
from a single hospital, and the sample size was 
relatively small. Future studies should include 
multiple centers to enhance the generalizability 
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of our results. Secondly, the exclusion of multi-
focal cases and the retrospective nature of our 
study introduce potential selection bias. Thirdly, 
the manual segmentation of ROIs on the maxi-
mum 2D section might introduce subjectivity 
and fails to capture comprehensive textural 
information of the tumors. Advances in semi-
automatic or automatic ROI delineation are rec-
ommended to improve the consistency and effi-
ciency of feature extraction. Lastly, to better 
capture tumor heterogeneity and obtain more 
detailed feature information, the adoption of 
three-dimensional imaging or multimodal ultra-
sound techniques is advisable.

In conclusion, our nomogram, which integrates 
2D features and radiomics from primary breast 
lesions, has demonstrated robust predictive 
efficacy for ALN status. This non-invasive tool 
offers significant potential to aid clinicians in 
crafting more personalized treatment strate-
gies. Validation through future multi-center 
studies is essential to substantiate our find- 
ings.
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