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Abstract: Background: Evidence indicates that the risk of developing a secondary ovarian cancer (OC) is correlated 
with estrogen receptor (ER) status. However, the clinical significance of the relationship between ER-associated 
breast cancer (BC) and clear cell ovarian cancer (CCOC) remains elusive. Methods: Independent single nucleotide 
polymorphisms (SNPs) strongly correlated with exposure were extracted, and those associated with confounders 
and outcomes were removed using the PhenoScanner database. SNP effects were extracted from the outcome 
datasets with minor allele frequency > 0.01 as the filtration criterion. Next, valid instrumental variables (IVs) were 
obtained by harmonizing exposure and outcome effects and further filtered based on F-statistics (> 10). Mendelian 
randomization (MR) assessment of valid IVs was carried out using inverse variance weighted (IVW), MR Egger (ME), 
weighted median (WM), and multiplicative random effects-inverse variance weighted (MRE-IVW) methods. For sen-
sitivity analysis and visualization of MR findings, a heterogeneity test, a pleiotropy test, a leave-one-out test, scatter 
plots, forest plots, and funnel plots were employed. Results: MR analyses with all four methods revealed that CCOC 
was not causally associated with ER-negative BC (IVW results: odds ratio (OR) = 0.89, 95% confidence interval (CI) = 
0.66-1.20, P = 0.431) or ER-positive BC (IVW results: OR = 0.99, 95% CI = 0.88-1.12, P = 0.901). F-statistics were 
computed for each valid IV, all of which exceeded 10. The stability and reliability of the results were confirmed by 
sensitivity analysis. Conclusions: Our findings indicated that CCOC dids not have a causal association with ER-asso-
ciated BC. The absence of a definitive causal link between ER-associated BC and CCOC suggested a minimal true 
causal influence of ER-associated BC exposure factors on CCOC. These results indicated that individuals afflicted 
by ER-associated BC could alleviate concerns regarding the developing of CCOC, thereby aiding in preserving their 
mental well-being stability and optimizing the efficacy of primary disease treatment.
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tide polymorphisms, instrumental variables

Introduction

Ovarian and breast malignancies exhibit sig- 
nificant similarities, and thus prompted re- 
searchers to investigate a potential correlation 
between these two kinds of female cancers [1, 
2]. It has been demonstrated that both breast 
and ovarian tissues show positive immunohis-
tochemical staining for estrogen receptor (ER), 
and this has led to the incorporation of ovarian 

cancer (OC) with breast cancer (BC) in research 
studies [3, 4]. In fact, there is some evidence to 
suggest that elevated estrogen levels can lead 
to an increase in the prevalence of both ovarian 
and ER-positive BC [5, 6]. However, it has also 
been reported that while oral contraceptives 
act as protective factors against OC, particular-
ly their prolonged use, they may increase the 
risk of BC [7]. Thus, the causal link between 
these female cancers and the role of ER signal-
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Table 1. GWAS datasets for ER-negative BC, ER-positive BC 
and CCOC

ER-negative BC ER-positive BC CCOC
Year 2015 2015 2017
Population European European European
Ncase 3,611 4,202 1,366
Ncontrol 18,084 18,084 40,941
Total sample size 21,695 22,286 42,307
Author Michailidou K Michailidou K Phelan
GWAS ID ieu-a-1166 ieu-a-1167 ieu-a-1124
PMID 25751625 25751625 28346442
GWAS, genome-wide association studies; Ncase, number of cases; Ncontrol, 
number of controls; SNPs, single-nucleotide polymorphisms; ER, estrogen 
receptor; BC, breast cancer; CCOC, clear cell ovarian cancer.

ing is a topic that requires further in-depth 
investigation.

Annually, approximately 240,000 women world-
wide are diagnosed with OC [8-10]. With a five-
year survival rate below 45%, it is the seventh 
leading cause of mortality among women [11-
13]. OC encompasses a diverse array of sub-
types [14, 15]. One of these is clear-cell ovarian 
cancer (CCOC), which is widely acknowledged 
for its enhanced aggressiveness [16] and is a 
distinct histological type of epithelial ovarian 
cancer [17, 18]. CCOC has a median overall sur-
vival of 24 months, which is half that of patients 
who have epithelial OC with a serious and endo-
metrioid histology [19, 20]. A population-based 
study on the theory of reciprocal associations 
among breast, ovarian, and uterine corpus can-
cers revealed that the collective risk of second-
ary cancers was most pronounced during the 
initial 5 years following diagnosis of the primary 
cancer [21]. These bidirectional connections 
imply shared risk factors among these three 
types of female cancers. However, there is little 
documentation of ethnic differences in these 
risk factors. Diagnosis of BC at a young age has 
been linked to a heightened likelihood of devel-
oping subsequent malignancies [22], and these 
secondary cancers have been shown to nega-
tively impact the survival rates of individuals 
who have already overcome BC [22]. Another 
study suggested that the risk of developing a 
secondary OC was positively correlated with 
age but inversely linked to race and ER status 
[23]. Furthermore, advanced age and a lack of 
ER expression imply a increased possibility of 
subsequent OCs [23]. Unfortunately, the clini-
cal significance of the relationship between 

mental variables and gender disparities, we 
meticulously curated data from identical popu-
lation origins and gender sources available on 
the official open GWAS website. Specifically,  
we selected the GWAS dataset pertaining to 
ER-negative BC and ER-positive BC from IEU 
OPEN GWAS (https://gwas.mrcieu.ac.uk/), de- 
posited under IDs ieu-a-1166 and ieu-a-1167 
containing 21,695 and 22,286 samples, re- 
spectively [24]. Additionally, the GWAS dataset 
for CCOC, deposited under ID ieu-a-1124, con-
sisted of 42,307 samples [25]. Detailed infor-
mation regarding these three GWAS datasets is 
provided in Table 1.

Extraction of instrumental variables (IVs)

A two-step univariate two-sample MR analysis 
was conducted to explore ER-associated BC 
exposure and CCOC. A schematic diagram of 
the study is presented in Figure 1. The analysis 
was executed using the R software, following a 
structured procedure: Initially, single nucleotide 
polymorphisms (SNPs) associated with expo-
sure in the exposed dataset were extracted (P 
value < 5e-08). Subsequently, SNPs exhibiting 
negligible linkage disequilibrium effects within 
a 10,000-kb window (r2 < 0.001) were con-
firmed. These SNPs were cross-referenced in 
PhenoScanner (www.phenoscanner.medschl.
cam.ac.uk) to eliminate those linked to con-
founding variables and outcomes [26]. Con- 
founding factors for CCOC encompass well-
established risk elements such as smoking 
[27]. The effects of SNPs were extracted from 
the outcome datasets by setting minor allele 
frequency > 0.01 as the filtration criterion.

ER-associated BC and CCOC re- 
mains uncertain. The present stu- 
dy tries to address this research 
gap by using several Mendelian 
randomization (MR) methods to 
explore the potential causal asso-
ciation between these two kinds of 
female cancers.

Methods

Collection of data from the 
genome-wide association study 
(GWAS) database

To ensure analytical accuracy and 
mitigate the influence of environ-
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sure and the resultant effect [28]. The WM 
approach exhibited relative insensitivity to out-
liers and was often the preferred choice in the 
presence of heterogeneity during analysis. How- 
ever, the WM technique was inherently profi-
cient in the analysis of IVs. If this assumption 
was invalid, the WM estimations might display 
bias [29]. Consequently, in scenarios of hetero-
geneity, the outcomes of MRE-IVW for compar-
ative analysis could yield more resilient evi-
dence [30]. ME methodology offered evidence 
about the validity of IVs and the causal hypoth-
esis by assuming that there was a linear rela-
tionship between the residual of the IV and the 
outcome variable [31]. The outcomes of the MR 
analysis were visually represented through fun-
nel plots, scatter plots, and forest plots. The 
funnel plot served to ascertain the presence of 
heterogeneity in the findings by assessing the 
symmetry of IVs with IVW lines. Concurrently, 
the scatter plot could elucidate the gradient of 
the outcomes scrutinized through IVW, MRE-
IVW, WM, and ME methodologies, aiding in the 
evaluation of the relationship between expo-
sure and the resultant outcome.

F-statistics

Statistical strength was calculated using the 
equation F = R2(n - 1 - k)/(1 - R2)k. F values > 10 
meant that rare mutations had been averted 
and the results of the study were generalizable 
[32].

Sensitivity analysis

For sensitivity analysis and visualization of the 
MR findings, the heterogeneity test, pleiotropy 
test, and leave-one-out test were applied. The 
Q-test was utilized for heterogeneity assess-
ment by using the IVW and ME methods, and 
the results were considered reliable when the 
P-value was > 0.05 [33]. Subsequently, the ME 
intercept test was employed for pleiotropy eval-
uation. The presence of an intercept suggests 
the presence of additional factors that influ-
ence the outcome, and a P-value < 0.05 in the 
ME test signifies the existence of pleiotropy 
[34]. In this case, the MRE-IVW method was 
used to detect a potential causal relationship 
between exposure and outcome [35]. Sensitivity 
analysis was then further conducted by itera-
tively removing SNPs in the leave-one-out test; 
consistent results after SNP removal would in- 
dicate the reliability of the study [36].

Figure 1. Flow chart depicting the MR analysis con-
ducted in this study. MR, Mendelian randomization; 
SNPs, single-nucleotide polymorphisms.

MR analysis and visualizations

All statistical analyses for this study were per-
formed using the TwoSampleMR package. MR 
assessment of valid IVs was conducted throu- 
gh inverse variance weighted (IVW), MR Egger 
(ME), weighted median (WM), and multiplica-
tive random effects-inverse variance weighted 
(MRE-IVW) regression methods. The IVW meth-
odology assessed the magnitude of the the- 
rapeutic impact through the computation of 
inverse variance weighting for individual IVs. In 
the event of the absence of heterogeneity and 
pleiotropy, IVW could furnish compelling evi-
dence of a causal association between expo-
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Table 2. Two-sample univariable MR analysis between ER-positive/
negative BC and CCOC
Exposure Outcome Method nSNP OR 95% CI P-value
ER-negative BC CCOC IVW 6 0.89 0.66 to 1.20 0.431

ME 2.99 0.40 to 22.27 0.345
WM 1.04 0.74 to 1.46 0.813

MRE-IVW 0.89 0.66 to 1.20 0.431
ER-positive BC CCOC IVW 41 0.99 0.88 to 1.12 0.901

ME 0.69 0.53 to 0.90 0.009
WM 0.96 0.80 to 1.15 0.636

MRE-IVW 0.99 0.88 to 1.12 0.901
IVW, inverse variance weighted; ME, MR Egger; WM, weighted median; MRE-IVW, 
multiplicative random effects inverse variance weighting; ER, estrogen receptor; BC, 
breast cancer; CCOC, clear cell ovarian cancer; SNPs, single-nucleotide polymor-
phisms; OR, odds ratio; CI, confidence interval; MR, Mendelian randomization.

Table 3. Heterogeneity tests in univariable MR analysis
Exposure Outcome Method Cochran’s Q Q_df Q-P-value
ER-negative BC CCOC ME 5.397 4 0.249

IVW 7.336 5 0.197
ER-positive BC ME 33.851 39 0.703

IVW 42.954 40 0.346
ME, MR-Egger; IVW, Inverse variance weighted; ER, estrogen receptor; BC, breast 
cancer; CCOC, clear cell ovarian cancer; MR, Mendelian randomization.

Table 4. Pleiotropy tests in univariable MR analysis
Exposure Outcome ME-intercept SE P-value
ER-negative BC CCOC -0.179 0.149 0.297
ER-positive BC 0.048 0.016 0.004
ER, estrogen receptor; BC, breast cancer; CCOC, clear cell ovarian cancer; ME, MR-
Egger; MR, Mendelian randomization; SE, standard error.

Results

Causal effects of ER-associated BC exposure 
on CCOC

After SNP screening, 6 SNPs were identified for 
assessing the causal impact of ER-negative BC 
on CCOC and 41 SNPs were identified for evalu-
ating the causal effect of ER-positive BC on 
CCOC (Supplementary Tables 1 and 2). The MR 
analysis results for ER-negative BC versus 
CCOC using the IVW (odds ratio (OR): 0.89; 95% 
confidence interval (CI): 0.66-1.20), ME (OR: 
2.99; 95% CI: 0.40-22.27), WM (OR: 1.04; 95% 
CI: 0.74-1.46), and MRE-IVW (OR: 0.89; 95% CI: 
0.66-1.20) methods had P values exceeding 
0.05, which indicates the absence of a causal 
link between ER-negative BC and CCOC (Table 
2). Conversely, in the MR analysis of the causal 

impact of ER-positive BC on 
CCOC, a P value below 0.05 
was observed for ME (OR: 
0.69; 95% CI: 0.53-0.90; P = 
0.009). This is indicative of 
the presence of horizontal 
pleiotropy. In the case of such 
analyses, MRE-IVW can pro-
vide a more precise estima-
tion of the overall effect mag-
nitude. However, the MRE- 
IVW results (OR: 0.99; 95% 
CI: 0.88-1.12; P = 0.901) 
implied lack of a causal rela-
tionship between ER-positive 
BC and CCOC (Table 2).

F-statistics and sensitivity 
analysis

F-statistics were computed 
for each valid IV, all of which 
exceeded 10 (Supplemen- 
tary Tables 1 and 2). Co- 
chran’s Q statistics calculat-
ed via the ME and IVW meth-
ods to assess heterogenei- 
ty revealed that there was  
no heterogeneity (P-value > 
0.05) among the IVs em- 
ployed in the MR analysis 
(Table 3). In pleiotropy analy-
sis, horizontal pleiotropy was 
not detected in the valid IVs 
in terms of the impact of 
ER-negative BC on CCOC, 

while ME analysis demonstrated the presence 
of pleiotropy in the impact of ER-positive BC on 
CCOC (Table 4). However, the existence of plei-
otropy did not alter the causal effect, since the 
MRE-IVW outcome for the impact of ER-positive 
BC on CCOC had a P-value > 0.05. In the leave-
one-out test, the removal of valid IVs did not 
change the effect of either ER-negative BC or 
ER-positive BC on CCOC (Supplementary Tables 
3 and 4).

MR visualization

Scatter plots were drawn to illustrate the esti-
mated causal effects of valid IVs for the impact 
of ER-negative and ER-positive BC on CCOC 
(Figure 2). Each point in the scatter plot repre-
sents a genetic variation, but the points in the 
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Figure 2. Scatter plots of causal effect estimations. A. Scatter plots depicting the effect of ER-negative BC on CCOC. 
B. Scatter plots depicting the effect of ER-positive BC on CCOC. ER, estrogen receptor; BC, breast cancer; CCOC, 
clear cell ovarian cancer.

graph do not show a strong correlation overall. 
The forest plot was visualized based on estima-
tions derived from the IVW, ME, WM, MRE-IVW 
methods, and the results revealed that genetic 
variations of CCOC were not associated with 
the risk of either ER-negative BC or ER-positive 
BC (Figure 3). The results of MR leave-one-out 

sensitivity analysis are presented in Figure 4; 
The results of heterogeneity testing were visu-
alized through the funnel plot (Figure 5). With 
IVW as the axis of symmetry, the SNPs in this 
study were found to be roughly symmetrically 
distributed along this axis, without exhibiting 
heterogeneity.

Figure 3. Forest plots depicting the causal effect estimations of the association between ER-associated BC and 
CCOC in univariable MR analysis. IVW, inverse variance weighted; ME, MR Egger; WM, weighted median; MRE-IVW, 
multiplicative random effects inverse variance weighting; ER, estrogen receptor; BC, breast cancer; CCOC, clear cell 
ovarian cancer.
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Figure 4. MR leave-one-out sensitivity analysis. A. Leave-one-out estimation 
for ER-negative BC on CCOC. B. Leave-one-out estimation for ER-positive BC 
on CCOC. ER, estrogen receptor; BC, breast cancer; CCOC, clear cell ovarian 
cancer.

Discussion

OC stands as one of the top five leading causes 
of female cancer-related mortality worldwide 
and represents one of the most aggressive 
gynecological malignancies [37]. While CCOC 
typically manifests at earlier stages, individuals 
with advanced disease exhibit a poorer progno-

sis in comparison to those  
with other subtypes of epitheli-
al ovarian cancer [18]. Due to 
its resistance to standard plat-
inum-based chemotherapy re- 
gimens, CCOC typically has an 
unfavorable prognosis [38-40]. 
This resistance could poten-
tially be attributed to reduced 
cisplatin sensitivity caused by 
high expression levels of nu- 
clear 3’-phospoadenosine 5’- 
phosphosulfate synthase 1 
(PAPSS1) in patients undergo-
ing platinum-based chemo-
therapy that results from di- 
minished ERα signaling [41]. 
Studies assessing ER content 
within the context of CCOC 
have revealed that atypical 
endometr iosis -associated 
CCOC exhibits lower expres-
sion of ERα than endometrio-
sis-associated CCOC, indicat-
ing a potential role of ERα loss 
in the malignant transforma-
tion of CCOCs [42]. As men-
tioned earlier, ER signaling is 
also intricately linked to BC 
and poses a substantial threat 
to women’s well-being [43]. 
Accordingly, BC is categoriz- 
ed into the ER-positive and 
ER-negative subtypes based 
on the immunohistochemical 
profiling of ER [43]. Approxima- 
tely 80% of individuals diag-
nosed with BC exhibit ER-posi- 
tive status [44]. In addition to 
their ER content, CCOC and BC 
exhibit similar genetic altera-
tions, including mutations in 
genes such as adenine thy-
mine-rich interactive domain 
1A (ARID1A). For example, in 
endometriosis-associated CC- 

OC, there is a high frequency of ARID1A muta-
tions [45, 46]. Further, survivors of BC face an 
elevated risk of developing secondary OC, 
although the incidence of this form of cancer  
is relatively low in ER-positive BC patients due 
to targeted therapies post-diagnosis [47]. 
Unfortunately, the interconnection between 
CCOC and ER-associated BC beyond these 
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Figure 5. Funnel plot of causal effect estimations. A. Funnel plot for ER-neg-
ative BC on CCOC. B. Funnel plot for ER-positive BC on CCOC. ER, estrogen 
receptor; BC, breast cancer; CCOC, clear cell ovarian cancer.

shared characteristics remains ambiguous. 
Assessment of ER expression can guide clini- 
cal decisions in BC management and may also 
be promising in terms of targeted therapies  
for OC, which remains an active area of 
research. However, there is a scarcity of stud-
ies that delve into the causative link between 

ER-associated BC and the 
more aggressive CCOC in pa- 
tients.

This study employed MR to 
systematically evaluate the 
causal relationship between 
ER-associated BC and CCOC. 
The overarching aim was to 
establish a robust theoretical 
framework for understanding 
the association between these 
two conditions. MR analysis 
serves as a valuable tool for 
addressing confounding vari-
ables inherent in observation-
al studies by utilizing genetic 
variants as IVs for exposure 
assessment [48]. Specifically, 
two-sample MR analyses lever-
age summary statistics from 
GWAS rather than individual-
level data analysis [49]. Unlike 
observational studies, MR is a 
statistical method that effec-
tively minimizes the impact of 
confounding factors, encom-
passing exposure, confound-
ers, and outcomes [50]. Our 
results indicate no apparent 
causal association between 
ER-associated BC and CCOC - 
conclusion that is reinforced 
by sensitivity analysis. This 
deduction is credible, as SNPs 
function as IVs in MR analys- 
es to explore potential causal 
connections between expo-
sure and outcomes, thereby 
mitigating the impact of con-
founding variables [51]. The 
validity of the findings hinges 
on three key criteria: (1) strong 
correlation between IVs and 
exposure factors, (2) absence 
of correlation between IVs and 
confounders, and (3) IVs solely 

influencing outcome variables through expo-
sure factors.

The absence of a definitive causal link between 
ER-associated BC and CCOC in this study  
suggests a minimal true causal influence of 
ER-associated BC exposure factors on CCOC. 
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This implies that individuals afflicted by ER- 
associated BC can alleviate concerns regarding 
the developing of CCOC, thereby aiding in pre-
serving their mental well-being stability and 
optimizing the efficacy of primary disease treat-
ment [52]. However, this assertion may be 
somewhat clouded by insufficient statistical 
power. Additionally, it is plausible that undiscov-
ered SNPs associated with exposure factors 
exist. However, it is most likely that after 
accounting for common confounders, no caus-
al relationship exists between ER-associated 
BC and CCOC. Genetic testing may aid in identi-
fying shared SNPs between ER-associated BC 
and CCOC, thereby informing the likelihood of 
secondary CCOC development. Accordingly, 
future investigations should focus on uncover-
ing common SNPs between ER-associated BC 
and CCOC to enhance screening methodolo- 
gies.

A major limitation of the present findings is  
that the dataset predominantly represents 
European populations, potentially overlooking 
genetic disparities among diverse ethnic gr- 
oups and regions. Furthermore, critical patient 
information, such as age and cancer stage, was 
absent in the dataset, hindering a comprehen-
sive analysis.

Conclusions

In summary, this study utilized the two-sample 
univariable MR analysis to investigate whether 
there exists a causal link between ER-associat- 
ed BC and CCOC. Although our current findings 
did not support a causal association between 
CCOC and ER-associated BC, future investiga-
tions with hitherto unknown SNPs are required 
to verify these findings and to confirm the 
absence of such a link.
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