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Abstract: Single-cell sequencing technology has emerged as a pivotal tool for unraveling the complexities of the 
ovarian tumor microenvironment (TME), which is characterized by its cellular heterogeneity and intricate cell-to-cell 
interactions. Ovarian cancer (OC), known for its high lethality among gynecologic malignancies, presents signifi-
cant challenges in treatment and diagnosis, partly due to the complexity of its TME. The application of single-cell 
sequencing in ovarian cancer research has enabled the detailed characterization of gene expression profiles at the 
single-cell level, shedding light on the diverse cell populations within the TME, including cancer cells, stromal cells, 
and immune cells. This high-resolution mapping has been instrumental in understanding the roles of these cells in 
tumor progression, invasion, metastasis, and drug resistance. By providing insight into the signaling pathways and 
cell-to-cell communication mechanisms, single-cell sequencing facilitates the identification of novel therapeutic 
targets and the development of personalized medicine approaches. This review summarizes the advancement and 
application of single-cell sequencing in studying the stromal components and the broader TME in OC, highlighting its 
implications for improving diagnosis, treatment strategies, and understanding of the disease’s underlying biology.
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Introduction

Ovarian cancer (OC) is an example of a tumor 
that may be amenable to personalized medi-
cine [1]. The overall survival rate of OC patients 
has gradually increased from 37% to 50% due 
to advancements in diagnosis and treatment 
technology [2]. The pathogenesis of ovarian 
cancer is complex and involves the interaction 
of genetic, environmental, and lifestyle factors 
[3-5]. As tumor research progresses, it has 
become apparent that unique phenotypic char-
acteristics of tumor cells, as well as the tumor 
microenvironment (TME) in which they reside, 
may serve as targets for developing more ef- 
fective treatment strategies for individual pa- 
tients [6, 7].

The TME is a highly variable and heterogeneous 
environment that surrounds tumor cells and 
contains numerous cellular and non-cellular 
components [8]. Currently, the components of 
the TME are generally divided into immune infil-

trating cells (IIC), stromal components, endo-
thelial cells (EC), and non-cellular components 
which mainly including extracellular matrix and 
cell signaling molecules [9]. The presence of 
these intricate elements collectively impacts 
the development, invasion, dissemination, and 
other malignant processes of tumors by facili-
tating tumor growth, aiding tumor immune eva-
sion, promoting angiogenesis, and enhancing 
tumor drug resistance, and it influences tumor 
response to various treatments (such as che-
motherapy, radiotherapy, and immunotherapy) 
[9-11]. Given this complexity, research has 
shifted its focus from solely on tumor cells and 
tissues, towards studying tumor cells and the 
TME as a functional unit. It is worth noting that 
many immune cells are also present in the stro-
mal component of the TME [12]. Strictly speak-
ing, the concept of IIC examines how immune 
cells enter and play a role in tumor tissue, while 
that of immune cells in the cell matrix empha-
sizes the presence and distribution of immune 
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cells in the tumor cell matrix. However, in spe-
cific tumor research, the boundary between the 
two is not always clear, and researchers are 
more concerned about the interaction between 
these immune cells after entering the TME. 
Therefore, in this article, we treat immune cells 
in the TME uniformly as part of the stromal 
component. Immune cells and non-immune 
cells in stromal components (mainly fibro- 
blasts, endothelial cells, and mesenchymal 
cells) are an important research sub-direction 
and the main target of tumor immunotherapy. 
Previous studies have shown that the pheno-
type and function of matrix components in  
the TME are jointly affected by multiple fac- 
tors [13-15]. High levels of diversity and hetero-
geneity still pose challenges to traditional 
research methods. Therefore, new technolo-
gies are urgently needed.

The development of genomics technology has 
led to the emergence of various technologies 
such as batch RNA sequencing, single-cell DNA 
sequencing, single-cell RNA sequencing, sin-
gle-cell proteome, and metabolomic sequenc-
ing. These technologies offer a great oppor- 
tunity to study complex diseases, including 
tumors, from a more refined perspective [16, 
17]. This, in turn, presents more possibilities 
for developing effective tumor treatment strate-
gies [18, 19]. This article reviews the current 
application of single-cell technology in the 
research of stromal features of the TME in OC. 
It also summarizes the latest applications of 
this emerging technology in research regarding 
the stromal features in OC.

Comparison of several common sequencing 
methods

The TME is a highly dynamic and heteroge-
neous entity, where each species or even indi-
vidual cell possesses distinct genomic, metab-
olomic, and proteomic profiles [20-22]. Such 
heterogeneity, a noted characteristic of OC, is 
further complicated by varying gene expression 
outcomes among cells with similar expression 
patterns, influenced by internal drives and cel-
lular regulations.

Historically, bulk RNA sequencing was a domi-
nant method for investigating the molecular 
intricacies of the TME [23]. This approach aver-
ages RNA expression across thousands of  
cells within a tumor, allowing comparisons with 

known tumor cell types and estimation of cell 
infiltration types and inter-cellular interactions 
within the TME. Tools like CIBERSORT [24], 
TIMER [25], and xCell [26] all emerged from  
this methodology. However, these algorithms 
provide only approximations, reliant on the 
quality and depth of gene expression data and 
the accuracy of reference cell types and ex- 
pression profiles. Such bulk analysis also 
obscures the unique biologic characteristics 
and interaction modes of specific cell types  
and individual cells, masking the cellular-level 
heterogeneity [27, 28].

Single-cell sequencing technology was devel-
oped to address these limitations. Single-cell 
DNA sequencing represents another techni- 
que capable of providing genomic analysis at 
the individual cell level. This method discerns 
whole-genome variations in tumors at the sin-
gle-cell level, aiding in understanding tumor 
clonal evolution [29]. However, it falls short in 
detecting expression differences among sup-
pressor cells in the TME and is more complex 
and costly than single-cell RNA sequencing 
(scRNA-Seq), hindering widespread applica-
tion. In contrast, scRNA-Seq effectively cap-
tures single nucleotide-level cellular heteroge-
neity and functional state changes at the 
single-cell level [16]. This technology enables 
the construction of high-resolution cellular 
expression spectra, uncovering new cell sub-
types and functional states. This is crucial for 
elucidating complex cell interactions within the 
TME and identifying novel therapeutic targets 
for tumor treatment [30, 31].

scRNA-Seq technology overview

Overall, ScRNA-Seq, a significant advancement 
in molecular biology, offers detailed insight into 
transcriptional patterns at the single-cell level. 
This discussion primarily focuses on transcrip-
tomics and spatial transcriptomics technolo-
gies. Single-cell research can be traced back to 
the early 20th century, but it was the introduc-
tion of polymerase chain reaction (PCR), single-
cell DNA cloning, and microarray technologies 
in the 1980s that first enabled the analysis of 
gene expression patterns in individual cells 
[32, 33]. The advent of scRNA-Seq in the 21st 
century marked a new era in single-cell re- 
search, providing an unparalleled resolution for 
investigating intracellular gene expression. This 
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technology has revolutionized our understand-
ing of cellular processes by allowing in-depth 
exploration of transcriptional activity within 
individual cells [34, 35].

Over the years, through numerous technical 
refinements, the experimental procedure of 
scRNA-Seq has matured, leading to a relatively 
standardized processing and analysis pathway. 
The key steps in the current scRNA-Seq proto-
col typically include sample collection, cell dis-
sociation, single-cell isolation, reverse tran-
scription, cDNA amplification, library construc- 
tion, and sequencing analysis [36]. ScRNA-Seq 
technologies are diverse, each with its own set 
of strengths and limitations, largely influenced 
by the development companies and underly- 
ing technology platforms. Broadly, scRNA-Seq 
technologies can be categorized into three 
main types: 1. Microfluidic-based technologies, 
which primarily include the chip-based Fluidigm 
C1 and droplet microfluidic-based methods like 
Drop-seq and inDrops [37]. 2. Microwell-based 
technologies, such as the 10x Genomics Ch- 
romium system [38]. 3. Cell sorting-based tech-
nologies that combine fluorescence-activated 
cell sorting (FACS) with single-cell RNA sequenc-
ing [39].

Of these, the Drop-seq-based platform from 
10X Genomics and the CytoSeq-based plat-
form from BD Rhapsody have emerged as the 
most prominent and widely used commercial 
platforms. These advancements have signifi-
cantly enhanced the precision and applicability 
of scRNA-Seq, making it a vital tool in contem-
porary molecular biology research.

A study in 2017 by Dagogo-Jack et al. highlights 
a crucial aspect of tumor progression: both the 
temporal dynamics and the spatial hetero- 
geneity of cell distribution influence tumor out-
comes [40]. While scRNA-Seq offers high-reso-
lution genetic data at the individual cell level, 
its methodology often involves isolating cells 
from their native tissue environment, thereby 
losing critical spatial information. Consequen- 
tly, cell communication analysis in scRNA-Seq 
largely relies on the expression of signaling 
molecules (like growth factors, cytokines, che-
mokines) and corresponding receptors across 
different cell types to infer and construct cell 
communication networks [41]. However, this 
approach is somewhat limited by data quality 
and sequencing depth, leading to analyses 

based on correlation models rather than on 
direct causal evidence. Furthermore, when 
multiple signals and receptors are involved in 
target cell populations, the existing Cell-Talk 
analysis methods may not adequately unravel 
these complex interactions [42].

Spatial transcriptome sequencing technology 
addresses this limitation by integrating tradi-
tional transcriptomics with spatial positioning 
information. This technique allows researchers 
to obtain gene expression data and their spe-
cific spatial distribution in tissues, organs, or 
cells [43]. It typically involves fixing tissue sec-
tions onto specialized microarrays equipped 
with molecular probes, which capture mRNA 
from adjacent cells. These probes contain uni- 
que spatial barcodes that record the original 
location of each mRNA molecule. Sequencing 
and analyzing these spatially barcoded mRNAs 
enable the creation of detailed expression pro-
files, illuminating gene activity in various tissue 
locations [44, 45]. This approach partially re- 
stores the functional dynamics and real inter-
actions of different cells within tumors, offer- 
ing a more comprehensive understanding of 
cell-to-cell communication. Increasingly, stud-
ies are combining scRNA-Seq and spatial tran-
scriptome sequencing to unravel the complex 
changes in the TME during tumor progression, 
providing a more holistic view of tumor biology 
[46-48]. The characteristics of common pro-
cesses of bulk RNA sequencing, scRNA-Seq, 
and spatial transcriptome sequencing technol-
ogy, are summarized in Figure 1.

Future work will delve deeper into OC research 
using these sophisticated sequencing technol-
ogies, offering insight, predictions, and guid-
ance on emerging trends and developments in 
this field. This comprehensive approach prom-
ises to revolutionize our understanding and 
management of ovarian cancer, leading to 
more effective treatment and improved patient 
outcomes.

Special cells in the TME of OC under scRNA-
Seq

IICs are crucial players in TME of OC. On the 
one hand, they are instrumental in tumor 
immune surveillance and response, exempli-
fied by the cytolytic activities of natural killer 
(NK) cells and cytotoxic T lymphocytes (CTLs) 
against tumor cells [49, 50]. On the other hand, 
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IICs contribute to malignancy through tumor 
growth, spread, and invasion. Notably, tumor-
associated macrophages (TAMs) and tumor-
associated neutrophils (TANs), which have gar-
nered increasing attention, release various 
pro-inflammatory and pro-angiogenic cytokines 
includingTNF, ILs, and VEGF, thereby promoting 
tumor progression [51, 52].

Additionally, emerging studies highlight the sig-
nificance of IICs in the efficacy of tumor immu-
notherapy, marking them as key targets [53, 
54]. Classic immune checkpoint inhibitors and 
the more recent CAR-T cell therapies, which 
enhance cancer cell targeting and destruction, 
exemplify this [55]. IICs in the TME also demon-
strate considerable heterogeneity and differen-
tiation, driven by intercellular communication 
with tumor and other cells in the TME, account-
ing for their functional diversity.

In a 2017 study on OC TME, Cai et al. identified 
key IIC types including TAMs, T cell subsets, 
and tumor cell-associated dendritic cells (tDCs) 
[56]. This review will delve into the single-cell 
characteristics, phenotypic heterogeneity, and 
transcriptomic alterations among these im- 
mune cells. It is also important to note that, in 
addition to IIC, tumor-associated fibroblasts 
(CAF), as part of the TME matrix, also play an 
important role in the immune regulation of the 

TME, and current single-cell sequencing re- 
search also studies this type of cell intensively 
[57-59]. In this review, we also introduce and 
summarize this type of cells. Understanding 
these aspects is critical for optimizing immuno-
therapy strategies and identifying novel targets 
for tumor treatment. A comprehensive display 
of infiltrating cell types in the TME of OC, dis-
cussed below is shown in Figure 2.

TIMs and TAMs

In TME, tumor-infiltrating macrophages (TIMs) 
and tumor-associated macrophages (TAMs) are 
two pivotal types of immune cells. Numerous 
studies have highlighted their significant roles 
in tumor growth, invasion, and response to 
treatment [60, 61]. It is important to note that 
while there is an overlap in the types and func-
tions of these cells, distinct differences also 
exist. Both TIMs and TAMs originate from mono-
cytes. However, TIMs generally refer to macro-
phages that migrate from peripheral blood and 
infiltrate tumor tissue, with their functions often 
influenced by cytokines, metabolic status, and 
other factors within the TME [62]. This leads to 
varying polarization states that can either pro-
mote or inhibit tumor progression. TAMs, a pri-
mary immune cell type in the TME, tend to 
exhibit a more M2 polarization phenotype [63]. 
They interact with tumor cells and other cells in 

Figure 1. General process and characteristics of Bulk RNA sequencing, scRNA-Seq, and spatial transcriptome se-
quencing.



Single-cell sequencing in ovarian cancer research

3342 Am J Transl Res 2024;16(7):3338-3354

the microenvironment, secreting an array of 
cytokines, enzymes, and growth factors that 
collectively support tumor development [64]. 
Understanding the characteristics and roles of 
these cells in tumor progression is essential  
for research and therapeutic strategies, espe-
cially for those aimed at modulating immune 
responses within the tumor microenvironment.

Recent research on macrophage phenotypic 
diversity primarily categorizes them into two 
polarized groups: M1 and M2. M1 macro-
phages, known as classically activated macro-
phages, are considered protective factors 
against OC, whereas M2 macrophages, also 
referred to as alternatively activated macro-
phages, are seen as risk factors for OC [65, 
66]. Wang et al. developed a scoring mecha-
nism based on the M1/M2 ratio using scRNA 
data from OC tumor nests [67]. This mecha-
nism helps identify immune subtypes in OC 
patients and has prognostic value. Further 
advancing this research, Chang Liu et al. found 
that most macrophages in OC tumor nests are 
M2-type TAMs [68]. They identified SLAMF7 
and GNAS as key genes in these cells that  
contribute to OC’s resistance to cisplatin, pro-
viding a deeper understanding of Wang’s find-
ings. Additionally, Jinye Ding’s research indicat-

ed that, apart from phenotypic heterogeneity, 
M2 macrophages exhibit higher autophagic 
states [69]. These highly autophagic M2 macro-
phages show a positive correlation with cispla-
tin resistance in OC.

When discussing OC, of note, peritoneal metas-
tasis to the omentum is a common clinical 
manifestation, particularly in advanced stages 
of OC [70]. The omentum, characterized by its 
milky spots, serves as a congregation of im- 
mune cells, functioning analogously to lymph 
nodes. Research has shown that OC cells pref-
erentially colonize these spots, creating a dis-
tinct TME compared to that of the ovary [71, 
72]. Susan Olalekan et al. utilized Drop-seq 
technology to analyze peritoneally metasta-
sized OC, identifying T cells, B cells, and macro-
phages as the predominant immune cell types 
[73]. Their study revealed variations in macro-
phage phenotypes within different TMEs, par-
ticularly in their anti-tumor capabilities. Notably, 
macrophages in TMEs with robust immune 
responses were predominantly M1-type, exhib-
iting anti-tumor activity. However, these cells 
also express CD274, deviating from the tradi-
tional M1 macrophage profile [74]. Further- 
more, gene expression patterns akin to my- 
eloid-derived suppressor cells (MDSCs) were 

Figure 2. Some key cell subtypes in the TME of OC.
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observed in these immune-reactive clusters, 
indicating a potential transitional state of these 
cells.

These findings underscore the significant role 
of macrophages in the progression of ovarian 
cancer and the intricacies involved in M1 and 
M2 macrophage functions within tumor biology. 
They also challenge the conventional binary 
classification of macrophages into M1 and M2 
types as overly reductive. The discovery of 
intermediate states between M1 and M2 mac-
rophages demands a more detailed and com-
prehensive approach to understand the diver-
sity and complexity of macrophages in the TME.

Building upon these insights, Junfen Xu et al. 
provided a more detailed characterization of 
macrophages in ovarian cancer using scRNA-
Seq technology [75]. Analyzing high-grade 
serous ovarian cancer (HGSOC) samples, they 
meticulously categorized OC macrophages into 
10 distinct subpopulations. Their findings re- 
vealed a dynamic progression in macrophage 
behavior: initially, macrophages display anti-
tumor activity, but as the tumor advances, their 
ability to recruit other immune effector cells 
diminishes. Concurrently, there is upregulation 
in the expression of growth factor genes that 
facilitate tumor growth. Importantly, the study 
highlighted that the proportions of these vari-
ous macrophage clusters significantly influence 
patient prognosis, underscoring the complex 
role of macrophages in the tumor microenviron-
ment and their impact on the course of ovarian 
cancer.

In addition to phenotypic heterogeneity, anoth-
er important property of macrophages is their 
plasticity. Previous studies have shown that 
Chemokine (C-C motif) Ligand 2 (CCL2) [76], 
Colony Stimulating Factor 1 (CSF-1) [77], 
Chemokine (C-C motif) Ligand 18 (CCL18) [78], 
Tumor Necrosis Factor alpha (TNF-α) [79] and 
even some non-coding RNAs [80] may induce 
macrophage phenotypic shifts, in addition to 
the overall metabolic state of the space in 
which the macrophage resides, which also in- 
fluences its phenotype [81, 82]. More specific 
macrophage morphologies are now being iden-
tified by scRNA technology. For example, a 
study by Chen Zhang et al. pointed out that 
C5aR1 can be specifically expressed on macro-
phages in OC and inhibit the killing function of  
T cells, promoting processes such as tumor 

angiogenesis [83]. A study by Anjali Geethadevi 
et al. pointed out an even more unique phe-
nomenon of macrophage phenotypic remodel-
ing, whereby macrophages release oncostatin 
M (OSM) under the influence of IL-6, the binding 
of which to OSMR leads to OSMR-IL6ST dimer-
ization, a dimer that further initiates STAT3 sig-
naling in tumor cells and promotes OC progres-
sion and invasive processes [84]. Several 
previous studies have also pointed out the criti-
cal role of IL-6 for the phenotype formation of 
TAMs [85, 86], and scRNA technology has 
enriched this pathway.

T cells

The role of T-cell populations within TME is criti-
cal yet intricate [87, 88]. Although previous 
research has established that not all T cells d 
exhibit active anti-tumor roles, T-cell-centered 
approaches remain central to immunotherapy 
in oncology [89-91]. In OC, T cells within the 
TME are broadly categorized into tumor-infiltrat-
ing lymphocytes (TILs), predominantly compris-
ing CD8+ T cells and CD4+ helper T cells, and 
regulatory T cells (Tregs). Earlier studies indi-
cate that a high infiltration of TILs combined 
with a lower proportion of Tregs generally cor-
relates with a favorable prognosis in OC [92]. 
However, this classification appears inade-
quate to explain resistance to immunotherapy 
[93].

One hypothesis suggests that TILs may be hin-
dered by inhibitory macrophages, which pre-
vent their effective tumor cell killing [94]. 
Moreover, a significant proportion of CD8+ TILs 
in HGSC are unresponsive to autologous tumor 
cells or known tumor antigens, suggesting  
that not all TILs are actively anti-tumoral [95]. 
Identifying the specific subpopulations of TILs 
that are functionally capable of targeting and 
destroying OC cells is crucial for advancing T 
cell-based immunotherapeutic strategies. This 
nuanced understanding of T-cell subtypes and 
their functional roles is essential for the devel-
opment of more effective, targeted immuno-
therapies in ovarian cancer.

The research conducted by Céline Laumont et 
al. made significant strides in the understand-
ing of TILs in HGSOC by identifying three spe-
cific surface markers: CD39, CD103, and PD-1. 
By examining the expression patterns of these 
markers, they were able to categorize TILs into 
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more distinct subgroups. Notably, they discov-
ered that CD8+ T cells expressing all three 
markers demonstrated enhanced cell-killing 
capabilities and more precise target specificity. 
Patients with a higher proportion of these par-
ticular T cells generally had a better prognosis 
[96].

Complementing this, the study by Susan Ola- 
lekan et al. added depth to the macrophage 
profile in OC, highlighting that the degree of 
T-cell infiltration markedly defines the immune 
subtype of OC. In TMEs with high T-cell infiltra-
tion, TILs exhibited a unique cellular phenotype 
characterized by TOX+ CD8+ and GNLY+ CD4+ 
T cells. Conversely, in low T-cell infiltration sce-
narios, GNLY expression was predominantly 
observed in CD8+ T cells. Additionally, the 
study identified the presence of plasma cells 
with high PRDMI and SDC1 expression, and 
plasmoblasts expressing IFNG in patients with 
significant T-cell infiltration. These nuanced dis-
tinctions open avenues for more personalized 
therapeutic approaches in treating ovarian can-
cer, tailoring treatments based on specific 
T-cell and macrophage profiles [73].

In a detailed study by Junfen Xu et al., a com-
prehensive temporal profile of CD8+ T cells in 
HGSOC was constructed. This study identified  
a total of nine distinct CD8+ T cell subtypes, 
each characterized by unique expression traits, 
with spatial specificity in their distribution [75]. 
Notably, tissue-resident memory CD8+ T cells 
(CD8+ TRM cells), marked by the CD8-C1-IFIT3 
signature, were predominantly found in tumor 
tissues. Moreover, a substantial proportion of T 
cells exhibiting high expression of exhaustion 
markers such as CTLA4, HAVCR2, LAG3, 
PDCD1, SIRPA, and TIGIT (CD8+ TEX cells) were 
observed in the tumor milieu. Temporal analy-
sis suggested a decline in the percentage of 
CD8+ TEX cells as the tumor progressed. 
Intriguingly, the study posited that CD8+ TEX 
cells in early-stage tumors represent a differen-
tiation endpoint for both CD8+ TRM and cen- 
tral memory CD8+ T cells (CD8+ TCM cells). 
Further investigations into CD8+ TRM cells 
revealed their high expression of IL15, IL17, 
and NOTCH ligands, which contribute to local 
immune protection in early HGSOC tumors. The 
study emphasized the role of IL15 as a key  
driver in the induction of T cell exhaustion [97]. 
Of course, studies of the same type have also 

utilized scRNA technology to point out that 
CD47 has a similar effect [98]. Additionally, a 
critical insight from Junfen Xu’s study was the 
interaction between macrophages and T cells 
in the TME. The research indicated that macro-
phages could recruit CD8+ TRM cells by che-
mokine secretion, possibly leading to HGSOC’s 
evasion of immune clearance. This finding 
underscores the complexity of cellular interac-
tions within the TME and highlights the poten-
tial for targeting these dynamics in therapeutic 
strategies for HGSOC. In summary, these stud-
ies targeting T cells using scRNAs in greater 
detail point us to the optimizable space for OC 
immunotherapy, which is significant for improv-
ing a highly effective technology like CAR-T.

CAFs

Cancer-associated fibroblasts (CAFs) are the 
most prevalent cell type within the TME matrix. 
Current understanding suggests that CAFs pri-
marily originate from mesenchymal cells, th- 
ough they can also transdifferentiate from 
other cell types including endothelial and epi-
thelial cells [99]. Previous research has estab-
lished that CAFs contribute to the suppression 
of anti-tumor immune responses by various 
mechanisms [100, 101]. These include induc-
ing angiogenesis and metastasis, expressing 
specific molecules and receptors, and recruit-
ing immunosuppressive cells into the TME, all 
facilitating tumor cell growth. Moreover, studies 
have highlighted that changes in the metabolic 
status of CAFs can influence the overall meta-
bolic milieu of the TME. This alteration in meta-
bolic conditions can “reshape” the intercellular 
communication within the TME, further affect-
ing tumor progression [102]. Consequently, the 
presence and frequency of CAFs are increas-
ingly recognized as biomarkers indicative of 
poor prognosis in OC patients [103]. Advan- 
cements in single-cell sequencing technology 
have revealed increasingly refined phenotypic 
states of CAFs. This detailed characterization is 
of significant importance for the development 
of precise treatment strategies in OC, offering 
insight into targeted therapies that could dis-
rupt the supportive role of CAFs in cancer 
progression.

In a comprehensive study, Siel Olbrecht et al. 
conducted a systematic analysis of stromal cell 
subtypes in high-grade serous fallopian tube 
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and ovarian cancers [104]. They identified spe-
cific subtypes of stromal cells, including me- 
sothelial cells (FB_CALB2), myofibroblasts (FB_
MYH11), and cancer-associated fibroblasts 
driven by transforming growth factor ß (FB_
COMP), and established a clear association 
between these cell types and the prognosis of 
OC patients. The study found that mesotheli-
um-derived fibroblasts contribute significantly 
to the OC microenvironment subtype and are 
characterized by the high expression of pro-
fibrotic genes. On the other hand, the other two 
subtypes of CAFs, namely myofibroblasts and 
TGF-ß-driven CAFs, were shown to release 
interleukin-6 (IL-6). This release of IL-6 is instru-
mental in promoting cell growth, migration, 
neovascularization, and chemotherapy resis-
tance in ovarian cancer, thereby negatively 
impacting patient prognosis [105].

Similarly, the study by Tongtong Kan et al. 
focused on the recurrence of OC [106]. Their 
study pointed out that a group of CAFs that 
highly express RGS5 are closely related to the 
distant metastasis and recurrence of OC. The 
research of Songwei Feng et al. pointed out the 
disease-specific gene expression characteris-
tics in CAF. These genes are mainly related to 
nuclear factor kappa B (NF-κB), hypoxia and 
TNFA signaling of the Wnt β-catenin signaling 
pathway and can be induced under certain  
conditions [107]. To some extent, it affects the 
sensitivity of OC cells to anti-tumor drugs.

Recognizing the critical role of CAFs as a key 
matrix component and mediator between 
tumors and immune cells, spatial transcrip-
tomics has emerged as a valuable tool to eluci-
date their characteristics in OC. Elaine Stur et 
al. [108] pioneered the application of this tech-
nology in OC research. Their study identified 
that Cluster 8, predominantly comprising cells 
indicative of epithelial-mesenchymal transition 
(EMT)-like cells, mesenchymal cells, endotheli-
al cells, and myofibroblasts, was more preva-
lent in tissue samples from the poor treatment 
response (PR) group than those from the good 
treatment response (ER) group. The physical 
proximity and interaction of these cells suggest 
their role as a functional group worsening OC 
progression. However, this study did not pro-
vide detailed annotations of these cell types  
or protein-level validation of marker gene 
expression.

Building on this, Sammy Ferri-Borgogno et al. 
conducted a more in-depth study using spatial 
transcriptomics [109]. They discovered that the 
absence of specific CAF subtypes in advanced 
HGSC correlated with longer patient survival. In 
simpler terms, the CAF clusters in OC patients 
associated with longer survival were character-
ized by the expression of αSMA and VIM but 
lacked traditional CAF markers such as FAP, 
PDGFRα, and PDGFRβ. Crucially, their research 
indicated that in short-survival OC patients, 
CAFs are more likely to form a physical barrier, 
impeding the infiltration of individual immune 
cells into the tumor, thereby reducing the effec-
tiveness of immune cell-mediated tumor cell 
killing. This observation helps explain why a 
higher density of IIC near the tumor mass cor-
relates with a better prognosis in OC patients.

DCs

DCs are pivotal antigen-presenting cells within 
the immune system, playing a vital role in mod-
ulating immune responses and sustaining im- 
mune tolerance. In the TME of OC, DCs exhibit 
multifaceted functions. They can elicit anti-
tumor immune responses; however, they can 
also be co-opted by tumors to facilitate tumor 
progression and immune escape. In a typical 
immune setting, mature DCs initiate and sus-
tain T cell-mediated anti-tumor immunity [110, 
111]. It is important to note the presence of 
diverse DC subpopulations within the OC TME. 
Studies have identified an abundance of cyto-
kines such as TGF-β, IL-10, and CXCL-12 secret-
ed by tumor cells in this environment. These 
cytokines, particularly under the influence of 
CXCL-12, attract plasmacytoid DC precursors 
[112-114]. Upon entering the TME, these DCs 
secrete IL-10, inhibiting T cell-mediated tumor 
destruction. Furthermore, research indicates 
that certain bone marrow-derived DCs in the 
TME express high levels of immune checkpoint-
related genes, notably PD-L1, and Fgl2 [115] 
(as identified using single-cell RNA sequenc-
ing). These DCs contribute to the TME’s sup-
pressive nature by increasing Treg cell propor-
tions and hindering T cell proliferation. Similar 
DC phenotypes have been observed in the asci-
tes of OC patients with peritoneal metastasis. 
These predominantly plasmacytoid DCs, often 
immature, are implicated in promoting meta-
static OC progression through angiogenesis 
and are termed tumor-associated dendritic 
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cells (tDCs). However, recent studies by Tsing-
Lee Tang-Huau et al. using single-cell RNA 
sequencing have identified a subset of mono-
cyte-derived DCs (mo-DCs) in the ascites of OC 
patients [116]. These mo-DCs can induce cyto-
toxic CD8+ T cell differentiation, highlighting 
their potential use in anti-tumor strategies, par-
ticularly those aimed at enhancing the cross-
presenting capabilities of DCs.

Future clinical directions

For current immunotherapy therapies, the im- 
munosuppressive properties of the TME are a 
major challenge to achieving therapeutic appli-
cations [117]. This property is mainly manifest-
ed by the presence of Tregs, TAMs, CAFs, and 
the exhaustion or functional decline of killer T 
cells [118, 119]. This problem applies to OC. 
Therefore, the therapeutic strategy of enhanc-
ing the function of immune killer cells by inhibit-
ing immunosuppressive cells is the current 
focus of tumor immunotherapy.

Single-cell sequencing technologies provide 
unparalleled insight into the heterogeneity of 
stromal cells within the TME, a crucial aspect in 
cancer therapeutics. This advanced technology 
highlights the therapeutic potential of various 
immune cell subsets and CAFs in the stroma, 
paving the way for targeted therapeutic strate-
gies [120]. For example, research has used this 
approach to explore therapeutic avenues such 
as reversing immunosuppression in the TME by 
targeting TAMs. Strategies include blocking 
TAM recruitment, inducing their apoptosis, or 
altering their immune functions to favor anti-
tumor responses [121, 122]. Additionally, the 
development of DC-based vaccines has been 
enhanced by single-cell insights, which facili-
tate the reprogramming of patients’ own DCs to 
elicit specific immune responses against can-
cer antigens [123, 124].

Moreover, single-cell technologies have also 
shifted the landscape of tumor prognosis eval-
uation. Traditionally, bulk RNA sequencing was 
used to identify genomic signatures predictive 
of outcomes [125]; however, single-cell analy-
ses have revealed that the proportion and 
diversity of specific cell types within the TME 
can provide more precise prognostic indicators 
[126, 127]. This includes evaluating the tumor 
ecosystem diversity index (EDI), the Shannon 
diversity index for cell types, and the overall cel-

lular diversity through unsupervised clustering 
techniques. Such detailed assessments have 
been applied to breast cancer and are begin-
ning to inform OC prognosis as well. The initial 
OC classification based on immune molecular 
subtypes is being supplemented by deeper in- 
sight into the TME [128]. Advanced single-cell 
and microdissection techniques are critical in 
identifying key cellular populations that influ-
ence OC patient outcome [129], further under-
scored by research linking the EMT process 
[130] and specific prognostic genes within the 
NOTCH1 signaling pathway to progression and 
survival rates [131].

The future of single-cell sequencing in onco- 
logy holds transformative potential, especially 
when it integrates with technologies like artifi-
cial intelligence (AI) and machine learning (ML) 
to enhance the precision and predictive power 
of cancer treatment. These advancements are 
expected to allow for more personalized thera-
peutic approaches by providing deeper insight 
into the tumor microenvironment and its com-
plex cellular interactions. Such progress prom-
ises to not only refine existing therapies but 
also facilitate the development of novel, cell-
based interventions that could lead to more 
effective treatments and possibly cures for 
challenging conditions such as OC. As these 
technologies evolve, they are likely to play a 
crucial role in both advancing treatment effica-
cy and exploring preventative strategies to 
combat cancer at its onset.

Conclusion

Perceptions of cancer research have signifi-
cantly evolved in recent decades, particularly  
in understanding the immune microenviron-
ment’s role [132]. Initially, tumors were primar-
ily viewed as cellular-level genetic alterations. 
Research predominantly focused on the uncon-
trolled cell cycle and aberrant proliferation 
capabilities of tumor cells [133]. The introduc-
tion of the immune surveillance hypothesis 
marked a pivotal shift in tumor studies. In the 
21st century, advancements in molecular biol-
ogy and immunology have highlighted the TME 
concept [134]. Traditional biological research 
strategies, when applied to the complex and 
heterogeneous TME, have revealed certain  
limitations. However, the advent of single-cell 
technology has enabled high-precision and 
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high-resolution studies of the TME, significantly 
enhancing our understanding and offering new 
insights for treatment strategies. This review 
described the current understanding of the OC 
TME as revealed by single-cell technology stud-
ies up to January 2024, with a focus on stromal 
cells. The TME matrix comprises various cell 
types, predominantly T cells, macrophages, B 
cells, NK cells, fibroblasts, and DCs [132, 135]. 
Therefore, this article specifically discussed 
these cell types, summarizing and examining 
their phenotypes, expression profiles, function-
al heterogeneity, and roles in immunosupp- 
ression.

Despite the groundbreaking insights offered by 
single-cell sequencing technology in mapping 
the OC landscape, its application remains un- 
derutilized within this context. A critical obser-
vation is that the technology’s coverage of stro-
mal cells in the tumor TME does not encom-
pass the full spectrum of cellular diversity, 
notably omitting significant cell types such as 
neutrophils, whose role in OC merits special 
attention [136]. Although neutrophils have be- 
en a focal point in single-cell research across 
other diseases [137], their mention in OC stud-
ies hs been sparse. This oversight may stem 
from intrinsic limitations of single-cell techno- 
logies. According to the official instructions of 
the 10x platform (https://www.10xgenomics.
com/support/software/cell-ranger/latest/tuto-
rials/cr-tutorial-neutrophils), scRNA-Seq faces 
challenges that include cell viability loss and 
RNA degradation during sample preparation, 
which restrict sequencing depth and lead to the 
omission of certain cell types. Moreover, the 
cost implications of single-cell methodologies, 
especially when compared to spatial transcrip-
tomics, pose significant barriers to their wide-
spread adoption in OC research. Financial and 
technical constraints have thus far hindered 
the large-scale deployment of these technolo-
gies in the study of OC.

Furthermore, the analytical processes currently 
available for single-cell data are somewhat  
limited, necessitating future advancements in 
multi-omics data integration and algorithm 
development. Presently, the most prevalent 
approach involves a synergistic combination  
of batch sequencing, scRNA-Seq, and spatial 
transcriptomics, each compensating for the 
other’s limitations to better capture tumor het-

erogeneity. Emerging techniques such as sin-
gle-cell assay for transposase-accessible chro-
matin sequencing (scATAC-Seq) [138], cellular 
indexing of transcriptomes and epitopes by 
sequencing (CITE-Seq) [139], and antigen-spe-
cific analysis by sequencing (ASAP-Seq) [140] 
promise further analytical depth. In terms of 
computational advancements, preliminary ef- 
forts to amalgamate single-cell sequencing 
with AI, particularly ML and deep learning (DL) 
models, have demonstrated substantial poten-
tial [141]. These AI-driven methodologies are 
adept at navigating the complex multidimen-
sional data characteristic of single-cell analy-
ses, offering a promising avenue for future 
research.

Taken together, single-cell technology has 
emerged as a pivotal tool in elucidating the 
intricacies and therapeutic challenges of the 
TME in OC, offering unparalleled cellular and 
spatial resolution. This innovative approach 
unveils the TME’s cellular heterogeneity, un- 
covers novel therapeutic targets, and enhanc-
es the precision of disease prognosis assess-
ments. As these technologies advance, we 
anticipate gaining profound insight into the 
TME’s complex mechanisms in OC, leading to 
the development of effective treatment for OC. 
Consequently, the incorporation of single-cell 
technology in OC research facilitates progress 
toward achieving more accurate and individual-
ized cancer treatment.
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