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Abstract: Since the 1970s, artificial intelligence (AI) has played an increasingly pivotal role in the medical field, 
enhancing the efficiency of disease diagnosis and treatment. Amidst an aging population and the proliferation of 
chronic disease, the prevalence of complex surgeries for high-risk multimorbid patients and hard-to-heal wounds 
has escalated. Healthcare professionals face the challenge of delivering safe and effective care to all patients 
concurrently. Inadequate management of skin wounds exacerbates the risk of infection and complications, which 
can obstruct the healing process and diminish patients’ quality of life. AI shows substantial promise in revolution-
izing wound care and management, thus enhancing the treatment of hospitalized patients and enabling healthcare 
workers to allocate their time more effectively. This review details the advancements in applying AI for skin wound 
assessment and the prediction of healing timelines. It emphasizes the use of diverse algorithms to automate and 
streamline the measurement, classification, and identification of chronic wound healing stages, and to predict 
wound healing times. Moreover, the review addresses existing limitations and explores future directions.

Keywords: Skin wound healing, artificial intelligence, skin wound measurement, skin wound classification, burn 
degree assessment, chronic wound prediction

Introduction

Artificial intelligence (AI) encompasses comput-
er algorithms designed to mimic human cogni-
tive function [1, 2]. Since the 1970s, AI tech-
nologies such as machine learning (ML), neural 
networks, semantic recognition, and image 
analysis have become integral to the medical 
field, substantially enhancing the diagnosis and 
treatment of diseases [3]. In the 21st century, 
fueled by advancements in deep learning (DL), 
ML algorithms, hardware, and data storage 
capabilities, AI has undergone a significant evo-
lution, offering profound support in clinical set-
tings [4].

In clinical practice, skin wounds are frequently 
encountered [5], necessitating that clinicians 
base their treatment decisions and assess-
ments of wound healing progress on various 
factors, including wound size, classification, 
and tissue composition [6]. These assess-
ments largely depend on the subjective visual 

evaluations of physicians and clinical staff [7, 
8], highlighting an opportunity to integrate 
emerging technologies [9]. Inaccurate evalua-
tion can result in serious consequences such 
as improper dressing selection, overlooked 
non-healing wounds, and delayed specialist 
referrals [10]. With the increasing number of 
surgeries involving high-risk and multimorbid 
patients, effective perioperative wound man-
agement becomes critical [11]. AI is not only 
valuable for surgical wounds but also offers sig-
nificant benefits for assessing healing times in 
chronic and burn wounds [9, 12]. Inadequate 
skin wound management heightens the risk of 
surgical site infections and other complications 
[11]. Additionally, patients with chronic wounds 
often require intricate care due to comorbidities 
that complicate the healing process [13].

Numerous articles have explored the use of 
imaging techniques for skin wounds, yet there 
remains a notable gap in the systematic sum-
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marization of innovative AI methodologies and 
their applications in this domain [14]. The fore-
front of recent advancements in AI - particularly 
over the last three years - has been dominated 
by machine learning (ML) and deep learning 
(DL) [15]. AI facilitates the rapid analysis of vast 
arrays of wound images, working in tandem 
with intelligent algorithms and extensive data-
bases to accurately identify, classify, and pre-
dict wound tissue characteristics. Importantly, 
AI has the ability to improve accuracy through 
ongoing learning. Despite the availability of 
seemingly ample medical data sets and sophis-
ticated algorithms for many years, there is still 
a significant lack of algorithms that meaning-
fully affect clinical care [16]. This review aims to 
provide a comprehensive overview of the cur-
rent applications of AI in skin wound assess-
ment and the prediction of healing times, set-
ting the stage for future developments.

Skin wound assessment

Monitoring changes in wound surface area over 
several weeks is a critical metric for evaluating 
the effectiveness of therapeutic interventions 
[17]. Traditional methods of measuring wounds 
using a scalpel to gauge width and length are 
often imprecise, potentially resulting in less 
than optimal treatments and outcomes [18]. 
Artificial intelligence significantly enhances the 
precision of measuring wound dimensions, to- 
pology, edge positioning, and the percentage of 
different tissue types. This advancement mark-
edly improves the accuracy of wound closure 
assessments in clinical settings. For instance, 
the Automatic Skin Ulcer Region Assessment 
framework developed by Daniel et al. efficiently 
segmented wounds and measured their sizes 
with a low error rate of 14% through a semi-
automatic method [19]. Additionally, Zhao et al. 
created a vision-laser scanner, utilizing an arti-
ficial neural network, to reconstruct wounds’ 
three-dimensional edges and topologies [20]. 
Jones et al. employed a Convolutional Neural 
Network (CNN) to determine epidermal and  
dermal thickness and the percentage of re-epi-
thelialization [21], while Ramachandram et al. 
introduced a deep learning approach for ob- 
jective tissue identification and measurement 
[22].

Traditionally, collecting and manually observing 
regular wound images to determine study met-

rics has been a time-consuming and laborious 
process. Furthermore, defining wound margins 
is often subjective and can vary among experts 
[23]. To overcome these challenges, Carrión et 
al. developed a deep learning (DL)-based image 
analysis pipeline capable of processing non-
uniform wound images. This system extracts 
critical data such as key wound locations, per-
forms image cropping, and calculates metrics 
related to the size of the wound periphery over 
time [23]. This pipeline facilitated a high-th- 
roughput assessment and accurate tracking of 
wound size. In their research, it provided essen-
tial details like wound closure percentages and 
dimensions for further analysis. The system 
proved effective with minimal human interven-
tion and could accurately estimate wound sizes 
even when up to 50% of the reference images 
were absent.

To optimize the area selected for automated 
analysis, Wang et al. deployed support vector 
machines (SVM) to define wound boundaries 
precisely [24]. These boundaries were further 
refined through the application of the condition-
al random field method. Estimations of wound 
extent rely on optical theory, comparing images 
across color channels, and using a fuzzy spec-
tral clustering segmentation algorithm to delin-
eate the wound area [25]. These methods, how-
ever, are confined to two-dimensional imagery. 
To capture the three-dimensional architecture 
of wounds, Edward et al. used a vision-laser 
scanner to generate a 3D point cloud of the 
wound’s edges and topology [20]. Integrating 
this scanner with gantry robots, as depicted in 
Figure 1, enhances accuracy and improves 
patient outcomesby reducing human error, low-
ering infection rates, and accelerating healing. 
Additionally, a custom-designed supplementa-
ry laser LED was employed to provide an extra 
measurement point, leveraging an artificial ne- 
ural network to decrease scanning time [20]. In 
collaboration with RSI, Andreas Körber and his 
team connected digital photography with opti-
cal raster through a digital scanner and pic- 
ture processing software (DigiSkin), achieving 
precise three-dimensional imaging of chronic 
wounds [26]. Moreover, Wang et al. developed 
an integrated system that combines visual fea-
tures with deep learning algorithms for wound 
segmentation and area estimation, using a 
newly developed convolutional encoder-decod-
er network - a variant of ConvNet [18]. This sys-
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Figure 1. Gantry robotic wound closure system. A. Set configuration; B. Visionary sketch of setting in operating room. 
1: gantry robot, 2: laser range sensor, 3: 2D camera, 4: fixture placement device, 5: patient body, 6: surgeon bed. 
Source: Zhao YM, Currie EH, Kavoussi L, Rabbany SY. Laser scanner for 3D reconstruction of a wound’s edge and 
topology. International Journal of Computer Assisted Radiology and Surgery 2021; 16: 1761-1773 [20].

tem is not only computationally efficient and 
reliable but also includes capabilities for detect-
ing wound infections and predicting healing 
outcome. The specific applications and bene-
fits of these methods are detailed in Table 1.

The use of AI technology varies across different 
types of wounds. Commonly treated clinical 
skin wounds include lower extremity venous 
ulcers, diabetic foot ulcers, pressure ulcers, 
burn wounds, and surgically infected wounds. 
Integrating AI with computer vision and imag- 
ing technologies enables non-contact measu- 
rements, enhancing the regular monitoring of 
ulcer wounds [27]. This allows patients to send 
images of their wounds from their homes, 
reducing the need for frequent hospital visits. 
Moreover, leveraging data from electronic med-
ical records combined with machine learning 
(ML) algorithms has proven highly effective in 
predicting the development of pressure ulcers 
[28]. AI systems can customize predictions 
based on unique patient data from medical 
records. In the context of burn wounds, AI- 
driven systems for assessing burn depth have 
demonstrated significant clinical value [29]. 
Additionally, Egberts et al. employed a neural 
network to predict the healing trajectory of burn 
wounds, successfully simulating skin contrac-
tion over periods longer than one year [30]. For 

surgical site infections (SSIs), ML algorithms 
trained with comprehensive health data, includ-
ing detailed wound status descriptors, have 
effectively predicted SSI risks [31].

The integration of various optical wound as- 
sessment tools and multi-modal imaging devic-
es has significantly improved the stability and 
precision of wound evaluations. These techno-
logical advancements provide detailed mea-
surements of wound area and volume, and also 
yield insights into the tissue composition within 
the wound bed [32]. The ongoing development 
of intelligent information evaluation systems 
has greatly improved the ease and systematic 
management of digital imagery and wound-
related data. This progress has paved the way 
for sophisticated intelligent monitoring sys-
tems, which play a crucial role in enhancing 
healing rates and expediting patient recovery 
[33].

Skin wound classification

Histologic classification of skin wounds

The variety of tissue types within a wound 
serves as a crucial indicator of its healing prog-
ress [22]. Precise analysis of wound tissue 
characteristics, such as the area and the per-
centage of granulation tissue (PGT), is essen-
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Table 1. Comparison of AI methods regarding wound measurement
Wound Measurement 
Method Principle Application Merits Limitations

Automatic image  
analysis pipeline [23]

Computer vision, object  
detection algorithms 
(YOLO)

Automated measurement of wound 
size and automatic assessment of 
average wound closure percentage. 
High fidelity results on unseen data 
with minimal human intervention

Automated and enables 
high fidelity results

Not good at dealing with some of the chal-
lenges like occlusion and blur.
Quantitative measurements are not exactly 
aligned

Fuzzy spectral  
clustering [25]

Gray scale based fuzzy 
similarity measure,  
spectral clustering  
segmentation algorithm

Accurate depiction of the wound 
area and automatic calculation of 
the contrast between wound and 
non-wound areas

Effective depiction of 
wound areas in non-uni-
formly illuminated images

The wounds that are near to heal or the 
images having very low (i.e. nearly zero) 
contrast between healed wound area and 
healthy skin are not accurately segmented.
The method is not completely automatic.

Vision laser scanner 
[20]

Use laser ranging scanning 
to generate 3D point cloud, 
artificial neural network 
estimation method

Accurate 3D reconstruction of 
wound margins and topology

Simultaneous genera-
tion of 3D point clouds of 
wound skin and its edges

The scanner can only deal with small size 
wound (~3-inch length)

Integrated system 
[18]

Convolutional encoder-
decoder networks (a 
variant of ConvNet), Hough 
transformation, computer 
vision tasks

Wound segmentation in an end-to-
end different manner and estima-
tion of wound surface area by 
transformation of pixel length to 
actual length

High computational 
efficiency, validity and reli-
ability as a multifunction-
al, integrated and unified 
framework system
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tial for enhancing wound care and recovery 
[34]. Traditional histologic analysis, commonly 
used for disease diagnosis, requires extensive 
and time-consuming tissue preparation [35].  
To address this, Howell et al. developed an 
AI-based tool for both qualitative and quantita-
tive wound assessment. They benchmarked 
this tool against human expert evaluations, 
establishing a reliable AI framework to measure 
wound area and PGT [36]. Further exploring tis-
sue pathology, Maknuna et al. introduced a 
rapid method for characterizing scar lesions in 
H&E-stained tissues [23]. They utilized both 
supervised and unsupervised learning approa- 
ches to teach the computer to identify patterns 
and extract insights from unclassified data  
[37, 38]. Their use of the K-means algorithm 
enabled detailed analysis of features like colla-
gen density and its directional variance, con-
firming a substantial 50% difference between 
normal and scar tissue. This method proves 
effective for delineating scar tissue’s patholog-
ic attributes and aiding in the formulation of 
targeted treatment strategies [37]. Additionally, 
AI medical devices have enhanced the preci-
sion of remote wound assessment and classifi-
cation [39].

Beyond the measurement tools previously 
mentioned, several researchers have explored 
the application of Convolutional Neural Net- 
works (CNN) in wound assessment. Utilizing 
deep learning techniques, they have effectively 
identified and segmented unique features with-
in image regions. Since its adoption in 2012, 
CNNs have been extensively applied across 
various biomedical fields, showcasing its profi-
ciency in classifying and segmenting large vol-
umes of image data swiftly and accurately [40, 
41]. Specifically for skin wounds, segmentation 
involves precisely outlining the wound area in 
the image and isolating the necessary compo-
nents for analysis. To enhance the quantitative 
analysis of skin wound histology, Jones et al. 
developed a CNN capable of automatically cal-
culating parameters such as wound depth, 
wound width, as well as the thicknesses of epi-
dermal and dermal layers, and the percentage 
of re-epithelialization [21]. This CNN proved its 
efficacy by accurately segmenting entire sec-
tions of H&E-stained wounds on a pixel-wise 
level in under 30 seconds using a standard 
desktop computer. These technological ad- 
vances set the stage for more detailed quantifi-
cation of histologic features in wound imagery.

Burn degree assessment

Precise assessment of burn severity is critical 
for effective wound care and treatment [42].  
An erroneous evaluation can result in delayed 
wound management, adversely affecting fu- 
ture treatment outcomes [43]. In contemporary 
medical practices, artificial intelligence (AI) is 
utilized to assess burn severity by estimating 
the total body surface area affected, depth of 
burns, and extent of scarring [44]. Additionally, 
Spatial Frequency-Domain Imaging (SFDI) tech-
nology, which leverages the relationship bet- 
ween histologic observations and tissue prop-
erty changes, has proven to be an invaluable 
tool. This technology can predict the severity  
of burns within a 24-hour period by analyzing 
images captured at various wavelengths and 
frequencies [45-47]. The use of Support Vector 
Machine (SVM) classifiers further enhances the 
precision of these predictions [48].

Concurrently, Cirillo et al. showcased the effec-
tiveness of AI in determining burn depth [49]. 
Using semantic segmentation of images from 
polarized high-performance light cameras, 
their AI model proficiently identified four dis-
tinct levels of burn severity [50]: superficial (I), 
superficial to intermediate (II), medium to deep 
(III), and deep to full thickness (IV), achieving 
remarkable accuracy rates of up to 92% [49]. 
Constructing such a model requires extensive 
learning and training, supported by a substan-
tial training dataset. Nevertheless, the pros-
pects for further refining the algorithm through 
the acquisition of more images are both viable 
and promising for future advancements [49, 
51].

Skin wound prediction

Chronic wound prediction

Chronic wounds pose a significant global chal-
lenge, defined by localized skin and tissue inju-
ries with a compromised physiologic healing 
response [25, 52]. The Wound Healing Asso- 
ciation describes chronic wounds as a failure  
to restore the normal structure and function of 
damaged tissue in a regular and timely manner 
[53]. Typically, the healing process for chronic 
wounds extends beyond four weeks, signifi-
cantly impairing affected individuals’ quality of 
life and well-being, and contributing to elevated 
mortality rates [54]. Therefore, precise assess-
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ment, prediction, and management of chronic 
wounds are crucial for reducing the healthcare 
system’s lburden and enhancing the speed and 
quality of patient recovery [55].

In clinical practice, common lower extremity 
wounds such as arterial, diabetic, pressure, 
and venous ulcers [56] pose a high risk to older 
adults, who are more susceptible due to vari-
ous age-related changes [57]. These changes 
include an increased prevalence of chronic con-
ditions like cardiovascular disease and diabe-
tes, along with impaired mobility, incontinence, 
low weight, poor nutritional status, and cogni-
tive impairment [58].

Age-related intrinsic alterations in skin wound 
healing - such as modified inflammatory 
responses, reduced levels of supportive extra-
cellular matrix (ECM) and growth factors, 
delayed epithelialization, and diminished angio-
genic activity - contribute to slower wound clo-
sure rates in older adults [59]. With the aging 
population, the incidence of such wounds has 
significantly increased, intensifying the de- 
mand on limited healthcare resources [60]. To 
address this, researchers have developed an 
AI-powered wearable sensor linked with ad- 
vanced wound dressing bandages. This system 
uses a deep artificial neural network (ANN) 
algorithm for monitoring chronic wounds and 
identifying their healing stages [61]. This near-
field sensing technology provides critical data 
for treatment decisions and assesses the 
effectiveness of wound care medications. Wi- 
thin the realm of telemedicine, Chakraborty et 
al. have introduced a model that uses Linear 
Discriminant Analysis to classify tissue types, 
achieving a tissue prediction accuracy of 
91.45% [62]. This approach enables remote 
diagnosis of chronic wound healing statuses, 
aiding clinicians in making more informed deci-
sions based on quantitative tissue composi- 
tion data. Moreover, advancements in statisti-
cal computing have propelled the development 
of several promising machine learning tech-
niques [63]. Jung et al. utilized modern ML 
methods to create a predictive model for de- 
layed wound healing, training it with collected 
wound data to enable early and precise predic-
tions of delayed healing outcomes [64].

Chronic wounds represent a significant global 
health challenge, where accurate diagnosis 
and effective treatment are crucial for facilitat-

ing healing and averting further complications 
[65]. In the healthcare sector, AI is increasingly 
utilized to analyze medical data predictively, 
adapting seamlessly to new information [66]. 
Although electronic medical records are exten-
sively used for documenting wounds, managing 
and tracking every aspect of patient care for 
those with chronic wounds is still a complex 
task [67]. Nonetheless, leveraging big data 
analytics and machine learning offers substan-
tial promise in reducing treatment costs, 
decreasing the time needed for simulations, 
and enhancing the overall quality of care [68].

Wound healing time prediction

The ability to predict wound healing time holds 
significant clinical value, enabling physicians  
to swiftly tailor treatment plans to individual 
needs [69]. Through accurate predictions, doc-
tors can decide whether a patient requires mul-
tiple debridements or if early closure is feasi-
ble, as well as determine the best timing for 
closing traumatic wounds. This predictive capa-
bility not only reduces the duration to wound 
closure but also minimizes the risk of wound 
complications and failures [70].

Assessing the thickness of the epidermis and 
scabs is critical for understanding the skin 
wound healing process, as it provides key 
insights into the normalcy of the re-epitheliali-
zation process [71-73]. Optical Coherence 
Tomography (OCT), a real-time, non-invasive 
imaging technique, enables the cross-sectional 
evaluation of tissue microstructures. Integrat- 
ing OCT with AI algorithms allows for the auto-
mated measurement of the thickness of epi-
thelial tissues and scabs, thereby facilitating 
predictions about wound healing times [74]. 
Predicting the healing of amputation wounds, 
however, remains a complex challenge due to 
factors such as severe ischemia and the 
absence of reliable assessment tools. To 
address this, Squiers et al. implemented a 
novel imaging system to capture multispectral 
images of the lower extremities [75]. Analyzing 
these images in conjunction with patient clini-
cal risk factors through machine learning algo-
rithms has enhanced the accuracy of predic-
tions regarding amputation wound healing. 
Additionally, this approach potentially reduces 
the necessity for reoperations and the occur-
rence of delayed healing.
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Figure 2. AI+ Medical application scenarios in skin wounds. Scenarios for the use of AI in skin wounds, including a 
variety of novel imaging techniques, risk prediction systems incorporating algorithms, intelligent robotics, and the 
accompanying promise of telemedicine and personalized medicine.

In 2020, Chinese researchers developed a 
CNN-based artificial model to recognize burn 
depth, which was effectively used to predict the 
healing time of burn wounds. This model accu-
rately estimated the wound healing timeline by 
analyzing the depth of the burn [76].

Wound healing is a complex and dynamic pro-
cess, making the accurate prediction of heal- 
ing times a persistent challenge for clinicians. 
However, with the growing accessibility of vast 
data sets and enhanced computing capabili-
ties, AI-based models are poised to play a cru-
cial role in the prediction and assessment of 
wound healing timelines [77].

Summary and outlook

Currently, AI is evolving at an unprecedented 
pace, particularly in the medical sector where  
it significantly enhances rapid image interpre- 
tation, diagnosis, risk prediction, and adjuvant 
treatment [78, 79]. Specific examples of AI 
applications in skin wound management are 
illustrated in Figure 2. Over the last decade,  
the swift advancement of computer processing 
technology has facilitated the deeper integra-

tion of AI systems across various medical imag-
ing technologies such as X-ray, ultrasound, 
computed tomography, and magnetic reso-
nance imaging [77]. Machine learning (ML) and 
deep learning (DL) have been instrumental in 
analyzing medical images from these technolo-
gies, demonstrating high accuracy and reliabil-
ity [80]. AI’s capabilities extend across a broad 
spectrum of functions, including assisting in 
diagnosis, selecting therapies, predicting risks, 
stratifying diseases, reducing medical errors, 
and enhancing productivity [81]. In a notable 
study, Aaron Jones et al. implemented a quasi-
experimental design across four settings within 
the Australian Health Service. They gathered 
data from standard and intervention groups, 
revealing that 101 out of 132 wounds showed 
improvement during the intervention, with a 
mean wound size reduction of 53.99%. This 
research underscores the practicality and ef- 
fectiveness of AI in wound management [82].

Despite the advancements, challenges remain 
from the tedious and time-consuming process-
es involved in wound image collection, classifi-
cation, and interpretation, compounded by the 
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lack of robust and efficient data analysis sys-
tems [83]. A primary barrier is data availability; 
hospitals often hesitate to share data due to 
privacy concerns [84], while machine learning 
(ML) requires extensive datasets for effective 
training, often difficult to secure [85]. Advance- 
ments in algorithms and the broader adoption 
of cloud computing may mitigate these issues 
[86], and stricter data privacy regulations could 
also provide support [87]. Another significant 
challenge is the clinical implementation of AI, 
with limited empirical evidence on its impact on 
patient outcome [88]. Moreover, AI interven-
tions should expedite, not hinder, medical pro-
cesses, including the necessary training for 
healthcare providers [89]. Ethical concerns 
also persist, as poor decisions in healthcare 
can lead to severe repercussions, and account-
ability remains a critical issue [90]. The legal 
complexities associated with applying tradition-
al tort liability to AI technologies due to their 
opaque and unpredictable nature call for inno-
vative legal standards and models, such as AI 
personhood or joint liability, to establish a fair 
and predictable framework for AI-related medi-
cal malpractice [91].

The future of AI in skin wound management 
looks promising, particularly with the advent of 
Explainable Artificial Intelligence (XAI) based on 
deep learning (DL) in medical image analysis. 
XAI is evolving as a vital tool that enhances AI’s 
ability to offer novel insight into data, thereby 
enriching the resource base with new discovery 
elements [92]. As DL-based methods become 
more widespread, the demand for explainability 
increases, especially in critical areas such as 
medical image analysis, which plays a crucial 
role in skin wound assessment [93]. Beyond 
diverse imaging techniques and AI-integrated 
systems, AI-powered remote consultation sys-
tems using smartphones and tablets for data 
gathering and connectivity are gaining traction 
[94]. For instance, recent advancements in AI 
technologies have improved the remote moni-
toring of diabetic foot ulcers by mobile applica-
tions [95]. Digital solutions for the remote diag-
nosis and monitoring of wounds in community 
settings have rapidly evolved. The COVID-19 
pandemic has further spurred the research and 
development of these innovative technologies. 
Applying ML algorithms in diagnosing and man-
aging chronic wounds presents a viable strate-
gy to enhance the care of hospitalized patients 

while optimizing the efficiency of healthcare 
professionals [12]. With extensive and diverse 
predictors and data sets, ML becomes an 
invaluable tool for stratifying risk among pa- 
tients with a predisposition to chronic wounds 
[63]. The move towards personalized telemedi-
cine is shaping up to deliver optimal patient 
outcomes, and with the development of intelli-
gent robotic systems, the dawn of AI-driven per-
sonalized telemedicine appears imminent [1].

AI has dramatically transformed the field of 
wound care, revolutionizing the assessment, 
measurement, classification, and prediction of 
wounds. At present, AI applications in skin 
wounds mainly concentrate on two areas: 
wound image analysis and data integration 
[96]. However, the development of AI-based 
systems to a level suitable for clinical use, 
ensuring the delivery of high-quality wound 
care, is still underway [79]. By setting stringent 
standards for wound data collection and creat-
ing more user-friendly and efficient recording 
systems, AI is poised to significantly enhance 
wound care practice [97-102]. This will provide 
patients with a more comprehensive and high-
er-quality care experience.
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