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Abstract: Acute lung injury (ALI) is defined as the acute onset of diffuse bilateral pulmonary infiltration, leading to 
PaO2/FiO2 ≤ 300 mmHg without clinical evidence of left atrial hypertension. Acute respiratory distress syndrome 
(ARDS) involves more severe hypoxemia (PaO2/FiO2 ≤ 200 mmHg). Treatment of ALI and ARDS has received re-
newed attention as the incidence of ALI caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
infection has increased. Itaconate and its derivatives have shown therapeutic potential against ALI. This review 
provides an in-depth summary of the mechanistic research of itaconate in the field of acute lung injury, including 
inducing autophagy, preventing ferroptosis and pyroptosis, shifting macrophage polarization to an anti-inflammatory 
M2 phenotype, inhibiting neutrophil activation, regulating epigenetic modifications, and repressing aerobic glycoly-
sis. These compounds merit further consideration in clinical trials. We anticipate that the clinical translation of 
itaconate-based drugs can be accelerated.
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Introduction

Acute lung injury (ALI) is a serious condition 
characterized by the progressive breakdown of 
alveolar permeability and the accumulation of 
severe alveolar edema [1, 2]. It is typically 
caused by viral or bacterial infections, such as 
sepsis, leading to inflammation and damage in 
the lungs. If left untreated, ALI can progress to 
acute respiratory distress syndrome (ARDS), a 
life-threatening condition with a high mortality 
rate [3]. The recent outbreak of severe acute 
respiratory syndrome coronavirus 2 (SARS-
CoV-2) has heightened concerns about the risk 
of mortality from ARDS [4]. Current treatment 
strategies for ALI include restrictive fluid man-
agement, respiratory support therapy, and 
pharmacological interventions [5]. While gluco-
corticoids and pulmonary vasodilators have 
been used in clinical settings, their effective-
ness is limited, prompting the need for more 
potent drugs to combat ALI. Inflammatory 
responses, immune cells, and the integrity of 

the pulmonary epithelial vascular barrier play 
crucial roles in the development and progres-
sion of ALI.

Although the exact cause of ALI remains un- 
clear, research has revealed that various signal-
ing pathways and molecules are implicated in 
its development. These include phosphoinosit-
ide 3-kinase (PI3K)/protein kinase B (AKT)/
mammalian target of rapamycin (mTOR), NLRP3 
inflammasome, nuclear factor-κB (NF-κB), JAK/
STAT, and P38 mitogen-activated protein kinase 
(MAPK). In ALI, the regulation of autophagy 
through the PI3K/AKT/mTOR signaling pathway 
plays a crucial role in reducing lung injury and 
facilitating lung tissue repair [6]. This pathway 
can also activate the antioxidant pathway to 
reduce oxidative stress. Overactivation of the 
NLR family pyrin domain 3 (NLRP3) inflamma-
some increases the permeability of alveolar 
epithelial cells, promotes the formation of pul-
monary edema, exacerbates lung tissue injury, 
and influences the infiltration and activation of 

http://www.ajtr.org
https://doi.org/10.62347/NUIN2087


Itaconate to treat acute lung injury

3481 Am J Transl Res 2024;16(8):3480-3497

neutrophils by regulating the production of 
inflammatory mediators [7]. NF-κB is activated 
by cell surface receptor signaling, leading to the 
phosphorylation and degradation of IκB (NF-κB 
inhibitory protein). This releases NF-κB into the 
nucleus where it binds to DNA and initiates the 
transcription of inflammatory genes, including 
TNF-α, IL-6, and IL-8 [8, 9]. Promotion of the 
expression of inflammatory factors exacer-
bates the lung inflammatory response. Ac- 
tivation of the JAK/STAT signaling pathway 
induces an inflammatory response in acute 
lung injury. JAK1, a key component of the JAK-
STAT signaling pathway, negatively regulates 
inflammation by controlling JAK1 [10]. The p38 
MAPK signaling pathway is activated to release 
cytokines, recruit inflammatory cells, and pro-
mote apoptosis in ALI [11]. Inhibition of the  
p38 MAPK pathway may reduce the inflamma-
tory response of ALI. It is evident that a variety 
of signaling pathways, molecules, and genes 
are activated during acute lung injury, forming  
a complex network of regulation. Targeting 
inflammation, immune cells, and the pulmo-
nary epithelial vascular barrier, along with cor-
responding pathways, molecules, and genes 
using modulatory drugs, has emerged as a 
strategy for treating ALI.

Itaconate, a metabolic intermediate produced 
in the mitochondrial matrix by the enzyme 
aconitate decarboxylase encoded by immune-
responsive gene 1 (Irg1), has recently garnered 
significant attention for its diverse applications 
and potential therapeutic prospects in clinical 
settings [12]. This immune metabolite serves 
as a signaling molecule that impacts various 
cellular metabolic and functional processes, 
including glycolysis and the tricarboxylic acid 
(TCA) cycle [13, 14]. Recent research has high-
lighted its anti-inflammatory and antioxidant 
properties, with key cells involved being macro-
phages, neutrophils, and lung epithelial endo-
thelial cells. Important physiologic processes 
influenced by itaconate include autophagy, py- 
roptosis, ferroptosis, epigenetic modifications, 
and glycolysis. The molecular mechanisms at 
play involve the nuclear factor (NF)-κB inhibitor 
Zeta (IκBζ), the cyclic adenosine monophos-
phate (AMP)-dependent transcription factor 
ATF-3 [8], the kelch-like epichloropropane 
(ECH)-associated protein 1 (KEAP1), the nucle-
ar factor erythroid 2-related factor 2 (NRF2) 
[15], interferon gene stimulating factor (STING) 

[16], and the neutralization of reactive oxygen 
species (ROS) [17]. Given the mechanism of ALI 
and the role of itaconate, compounds contain-
ing itaconate and its derivatives may represent 
a promising therapeutic approach for ALI.

Currently, various itaconate derivatives, such 
as 4-octyl itaconate, dimethyl itaconate, and 
4-ethyl itaconate, have shown promise in pre-
clinical studies for treating ALI, although they 
have not yet advanced to clinical trials. For 
instance, these derivatives have demonstrated 
effectiveness in reducing the viral load of 
SARS-CoV-2 in human airway epithelial cells 
[18]. The therapeutic potential of itaconate and 
its derivatives is uncertain, requiring further 
research efforts to facilitate their clinical appli-
cation. Therefore, a timely summary of recent 
mechanistic research on itaconate and its 
derivatives is crucial for advancing ALI treat-
ment. This review begins by outlining the inflam-
matory response mechanism in ALI progres-
sion, evaluates the therapeutic potential of 
different compounds, and provides perspec-
tives on treating ALI. Lastly, the review delves 
into the latest insights on the mechanisms of 
action and efficacy of itaconate and its deriva-
tives acting against ALI.

Inflammation plays a crucial role in the devel-
opment of ALI

The pathogenesis of ALI involves a complex 
interplay of various cells and molecules. Re- 
search has shown that lung inflammation, trig-
gered by inhibited autophagy [19], pyroptosis 
[20], and ferroptosis [21], as well as epigenetic 
modifications [9], glycolysis [22], and the acti-
vation of macrophages [20, 23] and neutrophils 
[20, 24], plays a critical role in the development 
of ALI. Inducing autophagy can help remove 
harmful substances and reduce cell damage 
and inflammation, while inhibiting pyroptosis 
and ferroptosis can decrease cytokine release 
and alleviate lung injury [25]. Additionally, pro-
moting macrophage activation and inhibiting 
neutrophil activation can help to suppress in- 
flammation and mitigate lung injury [26].

Inflammation is a key early response to lung 
infection, injury or irritation. When the lungs  
are injured or infected, innate immune cells in 
the lung, such as macrophages, neutrophils 
and lymphocytes, recognize pathogen-associ-
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ated molecular patterns (PAMPs) or microbial-
associated molecular patterns (MAMPs) throu- 
gh surface or intracellular pattern recognition 
receptors (PPP) in order to defend against for-
eign pathogens [27]. PPPs include, for example, 
Toll-like receptors (TLR) [28], NOD-like recep-
tors (NLR) [29] and the intracellular DNA sen-
sor-associated Cyclic GMP-AMP (cGAMP) syn-
thase (cGAS)-STING signaling pathway [30]. In 
this process, these immune cells kill pathogens 
or remove necrotic tissue by phagocytosis, 
release cytokines, and produce ROS, but at the 
same time, they damage the alveolar-capillary 
barrier [31], resulting in necrosis, hemorrhage 
and edema of lung tissue. Various inflammato-
ry mediators released after the activation of 
inflammatory cells (such as cytokines, chemo-
kines, proteases, free radicals) can amplify the 
inflammatory response, regulate the permea-
bility of blood vessels, attract more inflamma-
tory cells, and increase the inflammatory load 
on the lungs [4, 32].

Under normal circumstances, the inflammatory 
response is typically limited and reversible. 
When the inflammatory stimulus is removed, 
the inflammatory cells and mediators gradually 
diminish, allowing the lung tissue to return to  
its normal state, sometimes with scarring [33]. 
However, in certain cases, the inflammatory 
response becomes imbalanced, persistent, or 
recurrent, leading to the disruption of the alve-
olar-capillary barrier. This damage affects the 
structure and function of the lungs, further  
progressing to ALI and possibly even ARDS. 
Excessive lung inflammation and the release of 
inflammatory factors such as interleukin (IL)-
1β, IL-6, IL-8, tumor necrosis factor (TNF)-α, 
and ROS play crucial roles in the pathophysio-
logic changes seen in ALI, along with the disrup-
tion of the alveolar-capillary barrier (Figure 1).

Lung inflammation and immune cells

Macrophages, neutrophils, and other immune 
cells in the lung are critical for maintaining 
homeostasis. Macrophages and neutrophils 
defend against microbial invasion. Macroph- 
ages make up 90-95% of immune cells in the 
lung that maintain homeostasis [34]. Macro- 
phages are able to recognize and endocytose 
pathogens, dead cells, and foreign bodies 
through phagocytic receptors on their surface, 
thereby removing debris from the body. Neu- 

trophils are another important innate immune 
cells in the lung [24]. Activated neutrophils 
cause inflammatory responses and tissue da- 
mage by producing toxic molecules and 
cytokines.

Macrophages can be classified as either alveo-
lar or interstitial macrophages, based on their 
location in the lung. Alveolar macrophages 
serve as first-line defense cells and play a cru-
cial role in initiating the immune response. 
When receptors detect damage-associated 
molecular patterns (DAMPs) or PAMPs, alveolar 
macrophages and monocytes recruited from 
the peripheral blood are polarized into M1 mac-
rophages through the activation of specific sig-
naling pathways that regulate NF-κB, mitogen-
activated protein kinase, and NLRP3, as well as 
through the promotion of glycolysis [35]. 
Activation of the NLRP3 inflammasome can 
lead to pyroptosis. Factors secreted by M1 
macrophages, such as macrophage inflamma-
tory protein-2 (MIP-2), TNF-α, IL-1β, and IL-8, 
can recruit monocytes and neutrophils, pro-
mote lung inflammation, and ultimately contrib-
ute to the development of ALI and ARDS. In con-
trast, M2 macrophages in the later stages of 
ALI secrete anti-inflammatory and pro-angio-
genic factors, as well as phagocytic cells, to 
facilitate tissue remodeling. Therefore, inhibit-
ing the pro-inflammatory macrophage response 
may be an effective strategy for reducing pul-
monary inflammation. This can be achieved by 
inhibiting NLRP3 inflammasome activation to 
prevent pyroptosis, promoting the polarization 
of macrophages from M1 to M2, and inhibiting 
glycolysis.

In the early stage of pulmonary inflammation, 
neutrophils are the first cells recruited to the 
site of alveolar inflammation through the endo-
thelial and epithelial cell barriers. Activated 
neutrophils release cytotoxic and immune cell 
activators, such as chemokines [36], cationic 
peptides, ROS, and serine proteases; or they 
form neutrophil extracellular traps (NETs) to 
capture pathogens. NET formation induces 
lung epithelial damage, leading to severe lung 
inflammation. NET also promotes ARDS by re- 
gulating macrophage polarization. Neutrophil-
derived exosome miR-30d-5p was shown to 
promote sepsis-associated ALI by activating 
NF-κB signaling, inducing macrophage M1 
polarization and triggering macrophage pyrop-
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Figure 1. Pathophysiologic changes during acute lung injury (ALI). Changes involve oxidative stress due to reac-
tive oxygen species (ROS); leukocyte activation; excessive and uncontrolled inflammatory responses mediated by 
interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α; and injury of the pulmonary epithelium and vascular 
endothelium.

tosis [20]. NET levels in ARDS patients are po- 
sitively correlated with M1 macrophage polar-
ization. NET inhibitors can significantly down-
regulate M1 macrophage markers such as in- 
ducible nitric oxide synthase, as well as macro-
phage M2 markers like CD206 and arginase1 
(Arg1). However, at later stages after lung inju-
ry, neutrophils can promote lung tissue repair 
by phagocytizing cell debris, promoting tissue 
neovascularization, and secreting lipolysis me- 
diators that alleviate lung inflammation. There- 
fore, when considering the role of itaconate in 
the regulation of neutrophils in ALI, the timing 
of itaconate intervention must be carefully con-
sidered. It should be used at the early stage of 
inflammation.

Lung inflammation and the alveolar-capillary 
barrier

The alveolar-capillary barrier is composed of 
the alveolar epithelium, the alveolar capillary 
endothelium, and the alveolar basement mem-
brane, which is rich in collagen and laminins 
[37]. Endothelial cells play a crucial role in this 
barrier as they act as transport devices for 
immune cells and provide a mechanical barrier 
against invaders. Additionally, endothelial cells 
have a paracrine function by expressing adhe-
sion molecules and chemokines to facilitate 
the recruitment of immune cells and regulate 
the extravasation of leukocytes into inflamed 
areas [37].
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Table 1. Chemical structure and properties of itaconate and its derivatives
Name Molecular structure Chemical formular Molecularweight (g/mol) Permeability Electrophilicity
Itaconate C5H6O4 130.10 ± ±

DI C7H10O4 158.15 ++ +++

4-OI C13H22O4 242.31 +++ ++

4-EI C7H10O4 158.15 + +

DI: Dimethyl itaconate; 4-OI: 4-octylitaconate; 4-EI: 4-ethyl itaconate.

Normal resting endothelial cells inhibit neutro-
phil activation, chemotaxis, and adhesion by 
expressing and secreting anti-inflammatory 
factors, such as nitric oxide, prostaglandins, 
IL-10, and transforming growth factor-beta 
(TGF-β), which inhibit neutrophil activation, che-
motaxis, and adhesion [37]. The alveolar-capil-
lary barrier is crucial for maintaining the integ-
rity of the respiratory system. Normal resting 
endothelial cells play a key role in this barrier by 
ensuring the tight junctions and adhesive link-
ages are intact, which prevents the crossing of 
neutrophils. Additionally, endothelial cells have 
the ability to remove damaged or over-activated 
cells through autophagy, thus preventing the 
release of inflammatory mediators and cellular 
debris that could trigger an inflammatory re- 
sponse. These endothelial cells also regulate 
clotting, control blood flow, and facilitate the 
movement of proteins from the blood into tis-
sues. By maintaining these functions, normal 
resting endothelial cells help to inhibit inflam-
mation and maintain the overall health of the 
alveolar-capillary barrier [37]. The dysfunction 
of pulmonary vascular endothelial cells eventu-
ally leads to massive infiltration of monocytes 
and neutrophils, tissue damage, and organ 
dysfunction.

In the early stages of inflammation in ALI, acti-
vated monocytes and neutrophils, as well as a 
disrupted alveolar-capillary barrier, play a sig-
nificant role in pro-inflammatory responses, 
leading to lung inflammation and injury. Addi- 
tionally, intracellular inhibition of autophagy, 
excessive pyroptosis and ferroptosis, epigene-
tic modifications, glycolysis, macrophage M1 
polarization, and activated neutrophils also 
contribute to ALI and lung dysfunction. There- 

fore, targeting the function of these immune 
cells and the associated inflammatory mole-
cules may be a promising approach for the 
treatment of ALI.

Functions of itaconate and its derivatives

Introduction to itaconate

Itaconate is a five-carbon dicarboxylic acid 
(C5H6O4) with an α,β-unsaturated bond that can 
accept an electron pair to bond with a nucleo-
phile, facilitating derivatization [38]. Itaconate 
inactivates proteins by covalently bonding to 
their cysteine residues through Michael addi-
tion. Its structure and chemical formula are 
shown in Table 1.

Itaconate was first discovered as a product of 
citrate distillation through chemical method in 
1836 [12]. Until in the early 1970s, itaconate 
was found to be an anti-bacteria effect through 
inhibition bacterial enzyme isocitrate lyase 
(ICL), the key enzyme of an essential pathway 
(glyoxylate shunt) for bacterial growth, on 
Mycobacteria and Salmonella in vivo [39-42]. 
Since 1995, the role of itaconate in innate 
immunity was identified in Mycobacterium 
tuberculosis-infected murine lungs and in lipo-
polysaccharide -stimulated macrophages [43-
46]. Later, in 2013, aconitate decarboxylase 1 
(ACOD1) was confirmed as the enzyme cata-
lyzed the production of itaconate via the decar-
boxylation of cis-aconitate [43]. Its antioxidant 
and anti-inflammatory effects through activa-
tion of NRF2 were demonstrated in 2018 [15]. 
Its anti-inflammatory effects by activating ATF3 
were also confirmed in 2018 [8]. Subsequent- 
ly, itaconate induced autophagy [47], inhibit- 
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ed NLRP3 inflammasome activation-mediated 
pyroptosis [48], inhibited ferroptosis of macro-
phage by NRF2 pathways [49] and mediated 
epigenetic modifications by inhibiting TET2 [9]. 
Additionally, itaconate promoting macrophages 
M2 polarization was also confirmed in 2022 
[50]. The main findings are presented in Figure 
2.

Itaconate derivatives

The relatively strong polarity and weak electro-
philicity of the parental itaconate prevents it 
from crossing cell membranes, making its 
derivatives dimethyl itaconate, 4-octylitacon-
ate, and 4-ethyl itaconate potentially more use-
ful as drugs. Dimethyl itaconate is recognized 
as the “powered-up” version of itaconate [51, 
52] and its molecular structure is C7H10O4 
(Table 1). Dimethyl itaconate is esterified at the 
carboxyl group at position 1, which strength- 
ens electrophilicity and membrane permeabili-
ty [53]. Dimethyl itaconate can prevent lipo-
polysaccharide from inducing expression of 

IκBζ, an inhibitor of NF-κB transcription factors, 
and from depleting intracellular levels of gluta-
thione [8]. Its usefulness as a drug is reduced 
by the fact that it does not convert to itaconate 
within cells and is rapidly degraded [54, 55].

The derivative 4-ethyl itaconate is more weakly 
electrophilic than dimethyl itaconate and cross-
es cell membranes less easily, of which mo- 
lecular structure is C13H22O4 (Table 1) [56]. Be- 
cause only the 4-carboxyl group is esterified, 
the derivative does not inhibit IκBζ [8]. More 
similar to itaconate is 4-octylitaconate, whose 
long carbon chain makes it weakly electrophilic 
and able to cross cell membranes like dimethyl 
itaconate [56]. It resists degradation by ester-
ases, while its hydrolysis by other enzymes pro-
duces itaconate in the presence or absence of 
lipopolysaccharide [57].

4-ethyl itaconate is also a high membrane per-
meability itaconate derivative, of which molecu-
lar structure is C7H10O4 (Table 1) [16]. 4-ethyl 

Figure 2. A timeline of significant discoveries in itaconate. Itaconate was first found to be a citrate distillation product 
through chemical methods in 1836 [12]. Itaconate was demonstrated to be as an SDH inhibitor in 1949 [105] and 
posess antimicrobial properties by inhibiting isocitrate lyase in 1971 [40]. Then in 2011 [46], itaconate was subse-
quently discovered in some inflammatory models, and the enzyme IRG1 was finally confirmed to produce itaconate 
in 2013 [43]. Its antioxidant and anti-inflammatory effects through activation of NRF2 were demonstrated in 2018 
[15]. Its anti-inflammatory effects by activating ATF3 were also confirmed in 2018 [8]. Subsequently, itaconate 
induced autophagy [47], inhibited NLRP3 inflammasome activation-mediated pyroptosis [48], inhibited ferroptosis 
of macrophage via NRF2 pathways [49] and mediated epigenetic modifications by inhibiting TET2 [9]. Additionally, 
itaconate promoting macrophages M2 polarization was also confirmed in 2022 [50].
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itaconate has a similar structure to dimethyl 
itaconate, but with lower electrophilicity and 
higher polarity. Because only 4-carboxyl of di- 
methyl itaconate is esterified, it has no inhibi-
tory effect on IκBζ [31]. To date, there are few 
literatures mentioning 4-ethyl itaconate [29].

Itaconate and its derivatives play a significant 
role in the treatment of inflammatory and im- 
mune-related diseases. Conditions such as ALI, 
psoriasis, rheumatoid arthritis, systemic lupus 
erythematosus (SLE), multiple sclerosis (MS), 
and inflammatory bowel disease (IBD) can ben-
efit from the therapeutic properties of itacon-
ate [58, 59]. This study specifically focuses on 
the mechanisms underlying its role in ALI.

Therapeutic mechanisms of itaconate and its 
derivatives against ALI 

Activating autophagy 

Inducing autophagy can mitigate tissue injury 
associated with ALI [6]. The entire process of 
autophagy, through which damaged cellular 
components are destroyed in order to main- 
tain cellular integrity, is regulated by different 
autophagy associated proteins [19, 60]. Micro- 
tubule-associated protein 1A/1B- light chain 3 
(LC3) is a protein involved in autophagy: it cou-
ples with phosphatidylethanolamine to interact 
with the membrane and participate in the for-
mation and maturation of autophagosomes 
[19]. LC3-I is the soluble form of LC3 found in 
the cytoplasm, while LC3-II is the lipidized 
membrane-bound form of LC3 located on the 
inner and outer membranes of the autophago-
some. The transition between LC3-I and LC3-II 
is a crucial process in autophagy and serves as 
a distinct indicator of autophagic activity [60]. It 
is widely accepted that changes in the LC3-II/I 
ratio can either stimulate or suppress autopha-
gy activity. Additionally, p62 is recognized as a 
marker for the autophagy degradation process. 
In the autophagy process, misfolded proteins 
labeled with ubiquitin are linked to p62, form-
ing aggregates that are then engulfed and bro-
ken down. Consequently, the buildup of p62 
indicates a hindrance in the autophagy degra-
dation process.

Inducing autophagy can enhance the phago-
cytic function of macrophages and reduce lung 
inflammation [19]. For example, an inhibitor  

of the anti-apoptotic protein Bcl-2, ABT-263, 
enhanced bacterial phagocytosis of macro-
phages in mice by inducing beclin-1 dependent 
autophagy, thereby preventing sepsis in mice 
[61]. In addition, autophagy can promote the 
polarization of macrophages from M1 type into 
M2 type and reduce the release of inflamma-
tory factors in the acute phase [62]. Itaconate 
has been shown to induce autophagy in macro-
phages. In a study involving ALI mice, itaconate 
was found to induce autophagy in microglia 
that had been treated with lipopolysaccharide 
to mimic inflammatory processes. The com-
pound upregulated proteins that promote au- 
tophagy, such as LC3 and beclin-1, while down-
regulating the autophagy inhibitor p62 [47]. In 
an animal model of osteoarthritis, the itacon-
ate derivative 4-octylitaconate was found to 
induce autophagy through a mechanism in- 
volving the downregulation of p62. This com-
pound inhibited the PI3K/AKT/mTOR signaling 
pathway, leading to the upregulation of LC3  
and beclin-1 while simultaneously downregulat-
ing p62 in chondrocytes [6].

There is still much to clarify about how itacon-
ate and its derivatives induce autophagy. Ita- 
conate is known to activate transcription fac- 
tor EB (TFEB) by directly alkylating a cysteine  
in the protein (Cys212 in humans, Cys270 in 
mice), which prevents phosphorylation of a 
specific serine (Ser211 in humans, Ser269 in 
mice) [63, 64]. This prevents the kinase 
mTORC1 from phosphorylating the serine to 
inactivate TFEB. Consequently, the constitu-
tively active transcription factor induces the 
expression of several genes that promote the 
biogenesis and activity of lysosomes, thereby 
enhancing lysosomal autophagy [63, 64].

Inhibiting pyroptosis

Pyroptosis, another non-apoptotic form of cell 
death, also plays a role in the development  
and progression of ALI [20, 65]. One driver of 
pyroptosis is the activation of inflammatory 
responses involving the NLRP3 inflammasome. 
Itaconate and its derivative, 4-octylitaconate, 
have been shown to inhibit the NLRP3 inflam-
masome in macrophages, thereby reducing the 
production of pro-inflammatory cytokines [48]. 
In the case of 4-octylitaconate, the inhibition  
of pyroptosis appears to involve the alkylation 
of a specific cysteine in NLRP3 (Cys548 in 
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HEK293T cells), which prevents its binding to 
NIMA-related kinase 7 and subsequently reduc-
es the expression of the pro-inflammatory cyto-
kine IL-1β [66].

The derivative 4-octylitaconate has also been 
shown to inhibit pyroptosis through downregu-
lation of signaling involving NF-κB and MAP 
kinases in RAW264.7 and mouse bone marrow-
derived macrophages [67] or signaling involv-
ing STING and IRF3 in a mouse model of ARDS 
[68]. Li et al. [16] showed that 4-octylitacona- 
te could alkylate cysteine147 in STING in 
HEK293T cells, inhibiting STING phosphoryla-
tion and reducing the production of the pro-
inflammatory factors IFN-β, TNF-α, IL-1b, and 
IL-6. The derivative was also found to alkylate 
cysteine 91 in STING and limit STING activation 
by blocking its palmitoylation [69]. Other work 
showed that it inhibited the protective effects 
of caspase1/gasdermin D (GSDMD) and TNF-α-
induced caspase3/gasdermin E (GSDME)-me- 
diated pyroptosis in a mouse model of acute 
colitis [67]. GSDMD and GSDME help drive 
pyroptosis. Bambuskova et al. demonstrated 
that itaconate prevents the activation of cas-
pase-1 and the processing of GSDMD by regu-
lating the cysteine77 in GSDMD in macro-
phages, preventing pyroptosis [70].

Several additional mechanisms through which 
itaconate and its derivatives act on the NLRP3 
inflammasome have been reported. For exam-
ple, the derivative 4-octylitaconate has been 
shown to induce the transcription factor NRF2, 
which in turn activates the expression of genes 
controlled by the antioxidant response ele-
ment. These genes include those encoding  
glutathione peroxidase 4, NAD(P)H dehydroge-
nase, and heme oxygenase, effectively ne- 
utralizing mitochondrial ROS [71]. Under nor-
mal conditions, NRF2 is maintained inactive in 
the cytoplasm through binding to Kelch-like 
ECH-associated protein 1. However, 4-octylita-
conate alkylates this protein at cysteine 257, 
288, and 273 in the human protein, leading to 
the activation of NRF2 and its translocation 
into the nucleus [15]. Under normal conditions, 
NRF2 is maintained at low levels by its interac-
tion with KEAP1, resulting in its degradation 
and the liberation of NRF2. The free NRF2 then 
translocates into the nucleus, where it acti-
vates genes that express proteins responsible 
for reducing oxidative stress and inflammation. 
In a mouse model of allergic airway inflamma-

tion, itaconate was found to inhibit the activa-
tion of the NLRP3 inflammasome, decrease 
mitochondrial ROS release, and regulate mito-
chondrial fusion/fission, ultimately reducing 
the inflammatory response in the airway by 
modulating mitochondrial metabolism and 
morphology [72].

Inhibiting ferroptosis

Ferroptosis may be associated with the devel-
opment of ALI [73, 74], and inhibiting it with fer-
rostatin-1 significantly mitigates lung injury in 
the human bronchial epithelial cell line BEAS-
2B [75]. In ferroptosis, cells die as a result of 
iron-dependent lipid peroxidation and accumu-
lation of ROS [76], which damage membranes. 
Exposing a mouse model of ALI to lipopolysac-
charide exacerbated these processes in bron-
chial epithelium by increasing iron levels in lung 
tissues and reducing levels of glutathione and 
activity of glutathione peroxidase 4 [75], which 
normally neutralize ROS and repair membrane 
damage [77, 78].

Itaconate has been shown to alleviate ALI by 
inhibiting ferroptosis. This mechanism is 
believed to be related to the activation of the 
NRF2 pathway, an increase in glutathione lev-
els, inhibition of ROS production, reduction of 
lipid peroxidation, and a decrease in the release 
of inflammatory factors [79]. For example, when 
human THP-1 monocytes were treated with 
4-octylitaconate followed by lipopolysaccha-
ride, there was an upregulation of glutathione 
peroxidase 4, the transcription factor NRF2, 
and the cysteine/glutamate transporter SLC- 
7A11. This suggests a greater capacity to miti-
gate ferroptosis injury, while also decreasing 
levels of ROS and the oxidative stress marker 
malondialdehyde [49]. In a study where Nrf2 
was silenced, glutathione peroxidase 4 (GPX4) 
was downregulated, further supporting the role 
of NRF2 in this process. Additionally, research 
has shown that granulocyte-macrophage colo-
ny-stimulating factor (GM-CSF) can induce the 
expression of ACOD1 in neutrophils through the 
transcription factor C/EBPb, leading to the 
upregulation of NRF2-dependent antioxidant 
response genes such as Gpx4, Gclc, and Nqo1, 
which mediate ferroptosis resistance [80]. 
These findings collectively suggest that itacon-
ate inhibits ferroptosis by activating the NRF2 
pathway.
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Its structural similarity to succinate means that 
itaconate can competitively inhibit succinate 
dehydrogenase (SDH) and thereby reduce pro-
duction of ROS in mitochondria [81]. The de- 
rivative 4-octylitaconate can also reduce such 
production by preventing mitochondrial DNA 
from escaping into the cytosol in alveolar mac-
rophages in response to oxidative stress to 
improve macrophage pyroptosis and alleviate 
ARDS in a mouse model [68]. The ability of 
4-octylitaconate to reduce levels of ROS in 
macrophages appears to involve inhibition of 
signaling p38MAPK [82]. Itaconate may also 
inhibit ferroptosis by inducing autophagy [47, 
83]. On the other hand, elevated levels of ita-
conate may induce ferroptosis by triggering a 
particular type of autophagy called ferritinoph-
agy [79]. Future studies should clarify whether, 
and under what conditions, itaconate inhibits 
or induces ferroptosis and how these effects 
may contribute to ALI. 

Promoting polarization of macrophages to an 
anti-inflammatory M2 phenotype

Itaconate and its derivatives have been found 
to shift macrophage polarization from an M1 to 
M2 phenotype [50, 82]. In a mouse model of 
osteoarthritis, 4-octylitaconate was shown to 
downregulate the M1 macrophage marker 
CD68 while upregulating the M2 markers Arg-1 
and CD206. These changes were associated 
with less severe cartilage degeneration and 
synovial inflammation [50]. In macrophage  
cultures, 4-octylitaconate was found to down-
regulate the M1 markers CD86 and inducible 
nitric oxide synthase while upregulating the M2 
markers CD206 and Arg-1 [71]. 

However, Runtsch et al. [84] reported that 
derivative 4-octylitaconate could inhibit JAK1 
phosphorylation in M2 phenotype macropha- 
ges, thereby inhibiting its enzyme activity. The 
specific mechanism is that derivative 4-octylit-
aconate can directly modify JAK1 cysteine resi-
dues at the main sites of 715, 816, 943 and 
1130. Blanco et al. [85] reported that the de- 
rivative 4-octylitaconate has been shown to 
reduce the severity of rat lupus. This effect  
may be attributed to the increase in CD8+ T 
cells and Treg cells, as well as the decrease in 
type I IFN and pro-inflammatory cytokines. By 
influencing both M1 and M2 macrophages, it is 
possible that itaconate plays a crucial role in 
modulating the immune response in acute lung 

injury (ALI), thereby contributing to the improve-
ment of ALI. Further research is required to elu-
cidate the mechanisms through which itacon-
ate influences macrophage polarization.

Inhibiting neutrophil activation

Neutrophils play a crucial role in promoting 
acute lung injury. The interactions between ita-
conate, its derivatives, and neutrophils are cur-
rently under investigation. For instance, during 
trauma, mature circulating neutrophils exhibit 
high inflammatory activity and have the ability 
to produce itaconate. They can also transport 
endogenous itaconate to the bone marrow, 
thereby stimulating the production of granulo-
cyte/monocyte immune cells in this tissue [86]. 
Exogenous itaconate can reduce inflammation 
and heterotopic ossification at injured sites  
and promote tendon differentiation and recov-
ery [86]. In a mouse model of pulmonary infec-
tion by Staphylococcus aureus, itaconate in- 
hibited neutrophil glycolysis and accelerated 
neutrophil death, it targeted nicotinamide ade-
nine dinucleotide phosphate (NADPH) oxidase 
and inhibited oxidative phosphorylation of neu-
trophils [87], and it inhibited neutrophil gly- 
colysis and oxidative phosphorylation [87]. The 
derivative 4-octylitaconate inhibited the forma-
tion of NETs in a normal or fat mouse model by 
upregulating the expression of NRF2/Heme 
Oxygenase (HO-1) while downregulating hypox-
ia-inducible factor 1α (HIF-1α) [88].

Regulating epigenetic modifications 

Epigenetic modifications refer to heritable 
changes in gene expression despite no change 
in DNA sequence, such as DNA methylation, 
histone modification. Epigenetic modifications 
play a significant role in the pathophysiology of 
ALI/ARDS [89, 90]. The derivative 4-octylita-
conate prevents the epigenetic regulator en- 
zyme “ten-eleven translocation methylcytosine 
dioxygenase 2” (TET2) from converting 5- 
methylcytosine to 5-hydroxymethylcytosine in 
DNA [9, 91]. This modification upregulates the 
expression of genes involving inflammatory 
responses [92], so blocking it exerts anti-in- 
flammatory effects, such as downregulation of 
genes turned on by cytokines through the tran-
scription factors NF-κB [9] and STAT1 [93], 
releasing less inflammatory cytokines (IL-6, 
Cxcl9, Cxcl10 and Cxcl11). Aso et al. reported 
that itaconate plays a significant role in regulat-
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ing T cell subsets through epigenetic modifica-
tions. It inhibits Th17 cell differentiation while 
promoting Treg cell differentiation. It induces 
histone demethylation primarily by inhibiting 
the activity of methionine adenosine transfer-
ase and isocitrate dehydrogenase 1 and 2 
(IDH1/2) enzymes, ultimately altering the chro-
matin accessibility of essential transcription 
factors at Il17a and Foxp3 sites [94]. Addi- 
tionally, Domínguez-André also reported that 
itaconate influences histone 3 lysine 27 acety-
lation [95].

In addition, dysregulated histone deacetylation 
alters gene expression in ways that compro-
mise the integrity of lung epithelium in ALI, 
exacerbating injury [96]. Inhibiting histone de- 
acetylases has been shown to alleviate lipo-
polysaccharide-induced injury to lung endothe-
lial cultures [97]. Valproic acid, for example, 
inhibits histone deacetylases in ways that lead 
to Irg1 upregulation, leading in turn to greater 
production of itaconate, which protects tissue 
from inflammation and oxidative stress [98]. 
Future studies should explore whether supple-
mentation with itaconate can similarly protect 
lung endothelium in ALI.

Inhibiting glycolysis

Appropriate inhibition of glycolysis can slow 
progression of ALI [99]. For example, treating a 
mouse model of ALI with the glycolysis inhibitor 
2-deoxyglucose significantly alleviated tissue 
pathology and neutrophil accumulation in the 
lungs, while downregulating pro-inflammatory 
factors [99]. Itaconate and its derivatives can 
inhibit aerobic glycolysis by inhibiting glyceral-
dehyde-3-phosphate dehydrogenase (GAPDH), 
the rate-limiting enzyme in the entire glycolytic 
pathway, as well as inhibiting aldolase A and 
lactate dehydrogenase [13, 100, 101]. The inhi-
bition of each enzyme involves the alkylation of 
cysteine 245 in mouse GAPDH, cysteine 73, 
and cysteine 339 in mouse aldolase A, and cys-
teine 84 in mouse lactate dehydrogenase.

Molecular pathway-related genes and their 
interrelationship

Itaconate has been shown to play important 
roles in the treatment of acute lung injury 
through several genes and molecular path-
ways. One of the key genes involved is Nrf2 
(nuclear factor erythroid 2-related factor 2), 
which is activated by itaconate [102]. Activation 
of Nrf2 leads to the upregulation of antioxidant 

genes, helping to reduce oxidative stress and 
inflammation in the lungs [103]. Another gene 
is STAT3 (signal transducer and activator of 
transcription 3), which can be modulated by  
itaconate to regulate inflammatory responses 
[104].

In terms of molecular pathways, itaconate can 
affect the NLRP3 (NOD-like receptor family 
pyrin domain-containing 3) inflammasome 
pathway. By inhibiting NLRP3 activation, ita-
conate can suppress the production of pro-
inflammatory cytokines and reduce lung in- 
flammation [105, 106]. It can also interact  
with the Keap1 (Kelch-like ECH-associated pro-
tein 1)-Nrf2 pathway to enhance antioxidant 
defense mechanisms [107]. Additionally, ita-
conate may impact on mitochondrial function 
and metabolism, which are crucial in maintain-
ing cellular homeostasis and responding to 
lung injury [108]. These genes and molecular 
pathways work together to mediate the thera-
peutic effects of itaconate in acute lung injury, 
providing possible targets for therapeutic inter-
vention and a better understanding of the 
underlying mechanisms.

Conclusion and perspectives

The candidate targets and mechanisms of ita-
conate and its derivatives suggest their use as 
a treatment for ALI. Furthermore, the endoge-
nous nature of itaconate in mammalian cells 
provides an advantage as a novel drug candi-
date. Numerous studies have demonstrated 
the therapeutic effects of itaconate in relevant 
mouse disease models. In both animal and in 
vitro models, itaconate and its derivatives have 
been shown to counteract various disease 
pathways in ALI, including regulated cell au- 
tophagy, pyroptosis, ferroptosis, inflammation, 
oxidative stress, macrophage M2 polarization, 
neutrophil activation, epigenetic modifications, 
and glycolysis (as summarized in Figure 3 and 
Table 2). However, to expedite the progression 
of these compounds into clinical trials, several 
key questions must be addressed. The safety 
profile of itaconate and its derivatives for clini-
cal use requires thorough evaluation. Addi- 
tionally, the optimal concentration range, tim-
ing, and duration of administration need to be 
investigated. Given that itaconate and its deriv-
atives have the potential to target multiple pro-
teins, there is a heightened risk of toxicity and 
adverse reactions, underscoring the impor-
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Figure 3. Biosynthesis of itaconate and its therapeutic mechanisms against acute lung injury. The enzyme aconitate 
decarboxylase (AOCD1), encoded by the immune response gene 1 (Igr1), is responsible for generating itaconate 
through the decarboxylation of cis-aconitate in the mitochondrial matrix. Itaconate has been shown to induce au-
tophagy by inhibiting signaling pathways involving phosphoinositide 3-kinase (PI3K), AKT, and mTOR, as well as by 
activating the transcription factor EB (TFEB). Additionally, itaconate inhibits the STING/IRF3 pathway, leading to the 
inhibition of the NLRP3 inflammasome and ultimately suppressing pyroptosis. It also reduces pyroptosis by decreas-
ing the accumulation of reactive oxygen species (ROS) and downregulating gasdermin D (GSDMD). Itaconate further 
inhibits ferroptosis by upregulating the transcription factor NRF2, which in turn increases the expression of heme 
oxygenase (HO)-1 and glutathione peroxidase 4 (GPX4). It inhibits succinate dehydrogenase (SDH) to reduce ROS 
production in mitochondria, suppresses p38 MAP kinase signaling, and prevents mitochondrial DNA (mtDNA) from 
escaping into the cytosol through mitochondrial permeability transition pores (mPTP). Itaconate also plays a role in 
shifting macrophage polarization from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype, 
although the exact mechanisms involved are not fully understood. This polarization helps mitigate injury to the vas-
cular endothelium in the lung. Furthermore, it exerts anti-inflammatory effects by activating the transcription factor 
ATF3, which inhibits IκBζ and downregulates IL-6, by inhibiting NLRP3 inflammasome activation and subsequent 
downregulation of IL-1β, and by upregulating NRF2 and HO-1 to suppress the formation of neutrophil extracellular 
traps (NETs). Itaconate downregulates the expression of IL-6, Cxcl9, Cxcl10, and Cxcl11, as well as the glycolytic en-
zymes GAPDH, ALDOA, and LDHA, by inhibiting the “ten-eleven translocation methylcytosine dioxygenase 2” (TET2) 
and histone deacetylases. The red terminator indicates that the event is prevented. The blue dashed line indicates 
the post-termination event effect. The solid blue line shows the post-event effect.

tance of elucidating their pharmacokinetics 
and pharmacodynamics in future studies.

Given the ability of itaconate supplementation 
to mitigate ALI in preclinical models, future 
work should explore whether endogenous ita-
conate can be upregulated through manipula-
tion of the Irg1 gene. Future studies should also 
explore the therapeutic use of itaconate and its 
derivatives against other diseases. For exam-
ple, itaconate has been linked to cancer [109, 
110], yet depending on the context, the metab-

olite may promote [111] or inhibit tumor growth 
[109]. Research should continue to explore the 
full therapeutic possibilities of itaconate and its 
derivatives.

In addition, it is important to note some limita-
tions of this review. Firstly, the focus is solely on 
the effects of itaconate and its derivatives on 
ALI, without considering other applications or 
effects in different inflammatory conditions. 
The mechanisms of action discussed in this 
review are largely based on findings from other 
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Table 2. Summary of targets of action of itaconate and its derivatives

Compound 
name

Physiologic  
processes 
involved

Cells or molecules 
involved Targets or mechanisms of action Effect References

Itaconate/4-OI Autophage PI3K/AKT/mTOR Inhibited PI3K/AKT/mTOR pathway Induced autophagy [6]
TFEB Alkylated TFEB at cysteine 212 in humans, cysteine 269 in 

mice
Enhanced lysosomal autophagy [63, 64]

4-OI Pyroptosis NLRP3 inflammasome Alkylated NLRP3 inflammasome at cysteine 548 in 
HEK293T cells

Inhibited pyroptosis [66]

STING Alkylated STING at cysteine 147 in HEK293T cells [16]
Alkylated STING at cysteine 91 [69]

Caspase1/GSDMD Alkylated GSDMD at cysteine77 [70]
4-OI Inflammation,  

pyroptosis, fer-
roptosis

KEAP1/Nrf2 Alkylated KEAP1 at cysteine 257, 288, and 273 in the hu-
man protein to activate Nrf2

Released less inflammatory cytokines [15, 79]

SDH Inhibited SDH, released less ROS Inhibited pyroptosis, ferroptosis [68, 78, 81]
Itaconate/4-OI Epigenetic  

modifications
TET2 Regulated the transcription factors NF-κB and STAT1 Released less inflammatory cytokines [8, 9, 93]
Histone Induced histone demethylation by inhibiting the activity of 

methionine adenosine transferase and IDH1/2 enzyme
[94]

Histone 3 Influence the histone 3 lysine 27 acetylation [95]
Histone Inhibits histone deacetylases

Itaconate/4-OI Glycolysis GAPDH Alkylated GADPH at cysteine 245 Inhibited glycolysis [13, 100, 101]
Aldolase A Alkylated aldolase A at cysteine 73 and 339
Lactate dehydrogenase Alkylated lactate dehydrogenase at cysteine 84

4-OI M2 macrophage Modified JAK1 at cysteine 715, 816, 943 and 1130 Regulated M2 macrophages [84]
Itaconate/4-OI Neutrophils Targeted NADPH oxidase Inhibited neutrophils activation [87, 88]

Inhibited neutrophil glycolysis and oxidative phosphorylation
Inhibited the formation of NETs
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inflammatory diseases and may require further 
experimental validation specifically in the con-
text of ALI. Furthermore, recent discoveries of 
natural isomers of itaconic acid with similar 
effects as itaconate have not been adequately 
addressed in this review. Additionally, while ita-
conate is discussed as a single compound, it is 
important to recognize that itaconate and its 
derivatives are distinct compounds with com-
plex metabolic pathways. Future research sh- 
ould aim to differentiate and analyze these 
compounds individually to better explaintheir 
specific roles and mechanisms of action.
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