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Abstract: Objectives: This study aimed to evaluate the effectiveness of neoadjuvant immunochemotherapy (NIC) in 
patients diagnosed with locally advanced esophageal squamous cell carcinoma (LAESCC), by assessing the perfor-
mance of models that utilize enhanced computed tomography (CT) images at the pre, post, and delta/pre group 
stages. Methods: A total of 225 patients were included in our study and randomly divided into a training set (n = 
157) and test set I (n = 68). In addition, we conducted a test set II involving 60 patients from another center. We ob-
tained omics features from CT images before and after NIC. Then, the delta radiomics features were obtained by cal-
culating the differences between the post and pre group features, which was then divided by the pre group features 
to obtain the delta/pre group. Imaging and clinicopathological data were collected in the two centers according to 
the same inclusion and exclusion criteria. The tumor regression grading (TRG) system was used according to the 
Japanese Esophageal Cancer (11th edition). Three sets of models were built and their performance was assessed 
using receiver operating characteristic (ROC) curve, confusion matrix, and calibration curve. The clinical utility of 
the model was evaluated through decision curve analysis and nomogram. Results: The area under the curve value 
of the delta/pre-radiomics (Rad) score model was 0.876 in the training set and 0.827 and 0.749 in the two test 
sets, which was significantly higher than that in the pre and post Rad score models. The radiomics nomogram was 
constructed using Rad scores derived from the post model, delta/pre model, Ki67, P53, and the pathological stage 
of lymph node after neoadjuvant therapy (ypN), demonstrating robust performance. The internal correction curve 
(apparent) and the external correction curve (bias-corrected) exhibited negligible deviations from the ideal curve, 
thereby demonstrating a high level of similarity. Conclusion: Nomogram, based on delta/pre-enhanced CT features 
and clinical risk indicators, is a non-invasive tool to predict therapeutic effects in patients with LAESCC after NIC.

Keywords: Locally advanced esophageal squamous cell carcinoma, delt radiomics, neoadjuvant immunochemo-
therapy, pathological complete response, prediction model

Introduction

Approximately 90% of esophageal squamous 
cell carcinomas (ESCC) occur in East Asia, with 
approximately 50% of cases concentrated in 
China, particularly in the provinces of Henan, 
Hebei, and Jiangsu. Of these ESCCs, 50% are 
diagnosed at an advanced local stage [1]. 
According to the National Comprehensive 
Cancer Network (NCCN) guidelines, neoadju-

vant chemoradiotherapy (nCRT) followed by 
radical surgery has emerged as an alternative 
treatment for locally advanced ESCC (LAESCC) 
[2]. Although neoadjuvant therapy has demon-
strated improved overall survival rates in 
patients with LAESCC, the increased surgical 
complexity associated with neoadjuvant che-
motherapy and chemoradiotherapy remains a 
concern [3]. Since 2018, multiple clinical stud-
ies have reported improved overall survival 
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rates with the application of new adjuvant 
immunotherapies combined with chemothera-
py (NIC) in patients with ESCC, as they can 
achieve higher pathological and morphological 
tumor regression grading [4]. Currently, NIC 
combined with radical surgery is emerging as 
the first-line treatment for advanced ESCC in 
China, Japan, and South Korea [5, 6]. Accord- 
ing to previous clinical studies, the complete 
pathological response rate of patients un- 
dergoing nRCT was 29.9%, whereas that of 
patients receiving NIC was 58.3% [7]. However, 
visual assessment of NIC in LAESCC remains 
challenging. With advancements in research, 
scientists have increasingly recognized that 
tumors exhibit changes in response to treat-
ment, and evaluating the distribution of in- 
tratumoral heterogeneity can provide valuable 
insights into tumor characteristics during  
treatment [8]. Consequently, conventional im- 
aging diagnoses have become inadequate to 
meet clinical demands. Thus, more studies 
have focused on radiomics analysis. Previous 
studies have demonstrated that imaging fea-
tures can assist in quantifying microenviron-
mental changes within tumor tissues following 
NIC treatment, thereby enabling the evaluation 
of the extent of tumor regression and ultima- 
tely assessing the efficacy of NIC for LAESCC 
[9]. Delta radiomics refers to temporal changes 
in radiomic features, comprehensively reflect-
ing tumor characteristics pre- and post-treat-
ment. We compared the performance of a pre- 
and post-neoadjuvant CT-enhanced image fea-
ture model, a delta/pre-feature model, and a 
machine learning model incorporating clinical 
indicators to assess the predictive efficacy of 
NIC in patients with LAESCC. The tumor regres-
sion grading system is based on the degree of 
therapeutic fibrosis associated with the residu-
al tumors. This study focused on postoperative 
TRG in patients with LAESCC who underwent 
NIC and we aimed to identify the risk factors 
associated with the combination of NIC by ana-
lyzing clinical and hematological biochemical 
indicators.

Furthermore, imaging methods were employ- 
ed to extract pre- and post-NIC imaging fea-
tures of LAESCC. By incorporating delta/pre-
radiomic features, a predictive model based  
on enhanced CT imaging was developed to 
assess NIC efficacy [10]. This model enabled 
the preliminary evaluation of NIC efficacy and 
provided valuable insights for informed de- 
cision-making.

Materials and methods

Patients

A retrospective analysis was performed on  
225 consecutive patients in the Affiliated 
Huai’an No. 1 Hospital of Nanjing Medical 
University (A hospital). In addition, a retrospec-
tive review of 60 patients was conducted at  
the Affiliated Suzhou Hospital of Nanjing Me- 
dical University (B hospital). Ultimately, 225 
patients from hospital A were enrolled and  
randomly assigned to the training set (n = 157) 
and test set I (n = 68) with a split ratio of 7:3, 
whereas patients from hospital B constituted 
the external set (test set II, n = 60). All pa- 
tients diagnosed with cT3 or cT4 ESCC without 
distant organ metastasis, who underwent NIC 
followed by radical surgery between January 
2019 and April 2024, were included in this 
study. An experienced thoracic surgeon and 
radiologist assessed the patients with histo-
logically confirmed cT3 or cT4 ESCC based on 
gastroscopy findings and enhanced CT images. 
This analysis was conducted after obtaining 
approval from the institutional review board 
(Approval No: KY-2022-045-01). 

The patient selection criteria were as follows:  
1) confirmation of ESCC through pre-treatment 
gastroscopy; 2) pre- and post-NIC enhanced  
CT examinations of the neck, chest, and upper 
abdomen for all patients; 3) absence of distant 
organ metastasis or other tumors; 4) adminis-
tration of neoadjuvant chemotherapy combin- 
ed with immunotherapy for a duration ranging 
from one to four cycles in all patients; 5) as- 
sessment of TRG after surgery; 6) immunohis-
tochemistry analysis performed on all postop-
erative pathologies. The same patient selection 
criteria were applied to the external validation 
set. 

Although esophageal cancer may predominant-
ly manifests as adenocarcinoma in Caucasian 
patients, this may not directly apply to individu-
als of Asian descent [10, 11]. Therefore, this 
study determined the tumor regression grade 
after NIC treatment according to the Japanese 
Esophageal Cancer (11th edition) as follows 
[12]: Grade 3, no viable tumor cells remaining; 
Grade 2, active tumor cells < 1/3 of the tumor 
site, with some cancer cell degeneration or 
necrosis; Grade 1b, active tumor cells > 1/3 of 
the tumor site but < 2/3; Grade 1a, active 
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tumor cells > 2/3 of the tumor site. Patients 
with ESCC were stratified based on their res- 
ponse to NIC treatment, with grades 3 and 2 
categorized as Group 1 (good responders) and 
grades 1a and 1b divided into Group 2 (poor 
responders). A pathologist with extensive ex- 
perience established the classification and 
diagnosis.

All the patients provided written informed con-
sent for the selected treatments. We assessed 
neoadjuvant therapy toxicity based on the 
guidelines outlined in the National Cancer 
Institute Common Terminology Criteria for 
Adverse Events version 5.0. Figure 1 shows the 
study flowchart. 

Clinical characteristics

The information on clinical and immunohisto-
chemical indicators was extracted from the 
electronic medical records and compared be- 
tween good and poor responders in the train- 
ing set, test set I, and test set II. These indica-
tors included age, sex, long tumor diameter, 
number of lymph nodes after NIC, ypN, R0 
resection status (R0), keratin expression level 
(Ker), lymphatic vessel invasion (LVI), Ki67 
expression level (Ki67), and P53 mutation sta-
tus (P53). 

Ker and LVI were determined based on immu-
nohistochemical results, with positive results 
recorded as 1 and negative results as 0. Ki67 
overexpression (> 70%) was recorded as 1, 
while Ki67 non-expression and low expression 
(≤ 70%) were recorded as 0. P53 overexpres-
sion (≥ 40%) was defined as 1, and P53 nega-
tive or low expression (0%-39%) was defined as 
0 [13]. 

CT acquisition

All patients underwent CT-enhanced examina-
tion before and after NIC to ensure consistency 
in the tumor length along the sagittal plane.  
CT images of each patient were obtained pre- 
and post-NIC to confirm that the tumor main-
tained its original dimensions. The post-NIC 
target area was referenced from the pre-NIC 
target area to ensure an accurate comparis- 
on. An experienced radiologist measured the 
tumor length. The CT parameters used in 
Hospitals A and B are presented in Supple- 
mentary Material 1.

NIC regimen and esophagectomy

A total of 225 patients (Hospital A) received 
one to four cycles of immunochemotherapy 
(APC regimens): albumin-bound paclitaxel, 

Figure 1. Flow chart illustrating the pathway for recruiting patients.
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nedaplatin (APC) and camrelizumab. Sixty pa- 
tients (Hospital B) received one to four cycles  
of immunochemotherapy (NAC-DCF regimens): 
docetaxel plus cisplatin and 5-FU (NAC-DCF) 
and nivolumab. Each course of medication was 
administered for 1-4 days. Minimally invasive 
thoracoscopic radical surgery was performed 
3-4 weeks after completing the last cycle.

Radiomics feature extraction

An experienced radiologist and seasoned tho-
racic surgeon delineated the region of interest 
(ROI) of the lesion semi-manually on ITKsnap 
(version 4.0.1, http://www.itksnap.org/pmwiki/
pmwiki.php). The ROI contained all tumors, 
avoiding lesional gas. First, an outline of the 
tumor was drawn on enhanced CT images 
before NIC. The ROI after NIC was continually 
elucidated by referring to the ROI before NIC. 
Thus, the target area before and after the  
treatment remained unchanged. A chief radiol-
ogist reviewed the mapped lesions. Figure 2 
illustrates the radiomics flowchart.

Radiomics feature selection and rad-score 
development

In this study, the PyRadiomics open-source 
package (version 3.1.0) was used to extract CT 
image features from the pre-, post-, and delta/
pre-groups. Next, we preliminarily cleaned the 
data of the three groups and used the z-score 
function to non-dimensionalize the data. Then, 
a nonlinear support vector machine (SVM) was 
used to evaluate the importance of the fea-
tures, utilizing five cross-validations repeated 
five times to obtain the alpha with the root 
mean square error. We selected the top 20  
features based on their important scores. In 
addition, a recursive feature elimination (RFE) 
algorithm removed unimportant features. We 
retrained the model on the remaining features 
and repeated the step five times until reaching 
the desired number of features and returning 
the final selected optimal feature subset. This 
method was simple and easily understood  
without setting complex parameters, but it 
required a considerable amount of time for  
calculation and necessitated repeated model 
training, which increased the risk of overfit  
and lead to degraded model performance. 
Therefore, it is necessary to select the number 
of features manually to set the recursive-end 
condition. The detailed steps for Radiomics 

feature selection are provided in Supplmentary 
Matetrial 3. A RAD-score was formulated using 
a logistic regression combination of these fea-
tures in the three groups, each given its respec-
tive coefficient. 

Log it(P) = α + β1 x1 + β2 x2 + ……βnxn.

The specific derivation equation is available in 
Supplementary Material 2.

Statistical analysis

Statistical analyses were performed using 
PyCharm (Python version 3.13.1) and R soft-
ware (version 3.6.3). Continuous variables  
are described using the mean ± standard devi-
ation (SD), while categorical variables are des- 
cribed using frequencies and percentages. 
Comparisons between Group 1 (PCR) and 
Group 2 (no-PCR) were conducted using inde-
pendent-sample t-tests or Mann-Whitney U 
tests for continuous variables and the chi-
square test for binary or categorical variables. 
The Fisher’s exact test was used when the fre-
quency was < 5. ROC curves were plotted for 
each model, and the performance of the mod-
els was evaluated using AUC values, along  
with the confusion matrix. We also assessed 
the predictive performance of each model 
using tests set 1 and 2. Calibration and clini- 
cal decision curves were plotted for models 
exhibiting superior AUC performance to guide 
clinical decision-making. Additionally, we con-
structed nomograms using radar features com-
bined with clinicopathological indicators.

Results

Patient characteristics

The clinicopathological indicators of patients 
are shown in Table 1. The effectiveness of NIC 
in patients with LAESCC significantly correlated 
with Ki67, LVI, and ypN levels (P < 0.05). This 
correlation was confirmed in training and test 
sets I and II. Significant differences were 
observed in the R0 resection rates and P53 
status between the training set and test set I; 
however, these findings were not validated in 
test set II (P = 0.025 vs. P = 0.228). Moreover, 
significant differences were found in perine- 
ural invasion (PNI) and lymph node counts 
between the training set and test set II but not 
in test set I (P = 0.239 vs. P = 0.073). Other 
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clinical indicators were not significantly differ-
ent across the three datasets.

Radiomics features screening

The omics image features were derived from 
the pre- and post-group datasets obtained from 
Hospitals A and B. To calculate the delta, the 
difference between the pre- and post-groups 
was divided by the pre group, resulting in a  
new feature set called delta/pre group. 
Radiomics features with an intraclass correla-

tion coefficient (ICC) < 0.8 were excluded  
from the pre-, post-, and delta/pre-group 
datasets.

This study extended the RFE algorithm to rank 
variables based on a nonlinear (polynomial, 
radial, and sigmoid) SVM. We identified the 
most relevant predictor variables by selecting 
the best-performing kernel function for each 
RFE iteration and visually represented it, then 
we selected the top 20 ranked variables. 
Subsequently, we assessed the three methods 

Figure 2. Work flow chart of feature screening.

Table 1. Clinical features of patients in the training set, test set I and test set II

Features
Train set Test set I Test set II

Group 1 Group 2
P

Group 1 Group 2
P

Group 1 Group 2
P

n = 42 n = 115 n = 20 n = 48 n = 26 n = 34
Age, year .695 .664 .692

    Mean±SD 65.10±6.45 66.33±6.38 62.70±5.75 66.48±6.09 65.73±8.09 65.35±7.07

Sex (%) .408 .782 .896

    Male 29 (69.0%) 88 (76.5%) 13 (65.0%) 33 (68.8%) 21 (80.8%) 27 (79.4%)

    Female 13 (31.0%) 27 (23.5%) 7 (35.0%) 15 (31.2%) 5 (19.2%) 7 (20.6%)

R0-section (%) .000* .000* .025*

    Yes 42 (100%) 50 (43.5%) 20 (100.0%) 24 (50.0%) 22 (84.6%) 19 (55.9%)

    No 0 (0%) 65 (56.5%) 0 (0%) 24 (50.0%) 4 (15.4%) 15 (44.1%)

Ker (%) .000 .079* 0.076*

    Yes 34 (81.0%) 55 (47.8%) 18 (90.0%) 34 (70.8%) 21 (80.8%) 33 (97.1%)

    No 8 (19.0%) 60 (52.2%) 2 (10.0%) 14 (29.2%) 5 (19.2%) 1 (2.9%)

Lvi (%) .001* .050* .0126*

    Yes 42 (100.0%) 95 (82.6%) 20 (100.0%) 40 (83.3%) 26 (100%) 30 (88.2%)

    No 0 (0%) 20 (17.4%) 0 (0%) 8 (16.7%) 0 (0%) 4 (11.8%)

PNI (%) .000* .239* .016*

    Yes 42 (100.0%) 98 (85.2%) 20 (100.0%) 44 (91.7%) 25 (96.2%) 24 (70.6%)

    No 0 (0%) 17 (14.8%) 0 (0%) 4 (8.3%) 1 (3.8%) 10 (29.4%)

Ki67 (%) .000* .000* .003*

    Yes 39 (92.9%) 64 (55.7%) 19 (95.0%) 24 (50.0%) 16 (61.5%) 32 (94.1%)

    No 3 (7.1%) 51 (44.3%) 1 (5.0%) 24 (50.0%) 10 (38.5%) 2 (5.9%)

P53 (%) .000* .001* .028*

    Yes 38 (90.5%) 51 (44.3%) 16 (80.0%) 18 (37.5%) 22 (84.6%) 23 (67.6%)

    No 4 (9.5%) 64 (55.7%) 4 (20.0%) 30 (62.5%) 4 (15.4%) 11 (32.4%)

ypN (%) .000 0.028 .007*

    N-0 34 (81.0%) 56 (48.7%) 14 (70.0%) 26 (54.2%) 22 (84.6%) 17 (50.0%)

    N-I-II 8 (19.0%) 59 (51.3%) 6 (30.0%) 22 (45.8%) 4 (15.4%) 17 (50.0%)

N-counts .002 .073 .000

    Mean±SD 0.36±0.85 1.31±0.226 0.45±0.826 1.02±1.604 0.15±0.368 1.60±2.271

Pre_Rad

    Mean±SD 21.64±7.21 25.6±13.25 0.064 18.83±4.58 24.32±8.63 0.009 53.66±9.08 61.8±17.69 0.035

Post_Rad

    Mean±SD 188.5±0.71 190.7±2.71 0.000 188.60±1.10 190.4±2.58 0.001 87.0±10.03 99.8±17.21 0.001

Delt/Pre_Rad

    Mean±SD 75.17±5.70 83.3±13.46 0.000 75.34±5.01 82.21±7.77 0.001 87.1±10.18 99.98±17.6 0.001
R0: resection status; Ker: Keratin expression level; LVI: lymphatic vessel invasion; Ki67: Ki67 expression level; P53: P53 mutation status; ypN: lymph node after neoadju-
vant therapy; Rad: radiomics; PNI: perineural invasion. *: it means the P value is less than 0.05. 
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by employing pseudo-samples and kernel prin-
cipal component analysis and compared their 
performance with that of the original SVM-RFE 
algorithm. 

Finally, the model was retrained using the top 
20 features, and a 5-fold cross-validation tech-
nique was employed to identify the optimal fea-
ture subset to ensure superior performance. 
Specifically, we retained 2, 11, and 10 features 
for the pre-, post-, and delta/pre-groups, res- 
pectively. The results are summarized in Table 
2.

Rad-score building based on radiomic features

All coefficients in the equation were determin- 
ed using lasso-logistic regression analysis con-
ducted using R software. The ranges of the  
pre-group Rad scores were as follows: train- 
ing set: pre-group (4.912-89.680); post-group 
(187.344-204.396); delta/pre-group (59.522-
176.876); test set I: pre-group (8.131-49.678); 
post-group (186.045-203.970); delta/pre-gro- 
up (65.920-101.021); test set II: pre-gro- 
up (43.540-137.181), post-group (68.564-
148.363), delta/pre-group (68.310-148.682). 
Tumor aggressiveness was evaluated further 
using Rad scores to establish a predictive 
model. ROC curve analysis demonstrated that 
the Rad score exhibited moderate predictive 
efficacy for the PCR and no-PCR groups.

The respective AUCs of the three models were 
0.577, 0.762, and 0.876 in the training set 
(Figure 3A), 0.707, 0.762, and 0.827 in test  
set I (Figure 3B), and 0.729, 0.748, and 0.749 
in test set II (Figure 3C). Table 3 presents the 
accuracy rates along with the sensitivity and 
specificity values for each radiomic model at a 

confidence interval of 95%. The experimental 
findings indicate that the delta/pre-Rad model 
outperforms the other two Rad score models in 
terms of predictive performance.

Clinical model and clinical-rad score model

We conducted univariate logistic regression 
analysis on clinical and Rad indicators and 
selected those indicators with P < 0.05 for  
multivariate logistic regression analysis. The 
significant indicators (P < 0.05) identified  
were P53, ypN, Ki67, Post_Rad, and Delta/
Pre_Rad. We then calculated the standardized 
weight for each variable by dividing the abso-
lute value of the regression coefficients by the 
sum of the absolute values of the coefficients. 
The results are listed in Table 4.

Ki67 = 0.135/(0.135 + 0.201 + 0158 + 1.161 
+ 4.148) = 0.023

P53 = 0.201/(0.135 + 0.201 + 0158 + 1.161 + 
4.148) = 0.034

ypN = 0.158/(0.135 + 0.201 + 0158 + 1.161 + 
4.148) = 0.027

Post_Rad = 1.161/(0.135 + 0.201 + 0158 + 
1.161 + 4.148) = 0.200

Delta/Pre_Rad = 4.148/(0.135 + 0.201 + 
0158 + 1.161 + 4.148) = 0.714

According to the results, the weights of post_
Rad and delta/pre_Rad are significantly great-
er than those of clinical indicators. Among clini-
cal variables, P53 had the greatest weight.

The clinicopathological model developed using 
the three independent risk indicators demon-

Table 2. Extracted radiomic features
PreGroup PostGroup Delta/PreGroup
original_shape_Flatness original_shape_SurfaceVolumeRatio original_glszm_gray_level_variance

original_firstorder_Maximum original_firstorder_TotalEnergy original_firstorder_range

original_firstorder_Energy original_glrlm_long_run_low_gray_level_emphasis

original_firstorder_Median original_gldm_large_dependence_low_gray_level_emphasis

original_shape_MeshVolume original_shape_sphericity

original_shape_VoxelVolume original_gldm_small_dependence_low_gray_level_emphasis

original_firstorder_Mean original_gldm_small_dependence_low_gray_level_emphasis

diagnostics_Mask_original_VoxelNum original_glszm_high_gray_level_zone_emphasis

original_shape_Sphericity original_glrlm_short_run_high_gray_level_emphasis

original_glszm_LargeAreaEmphasis original_glrlm_short_run_high_gray_level_emphasis

original_glcm_imc1
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strated AUC of 0.870, 0.876, and 0.844 for  
the training, test set I, and test set II, respec-
tively (Figure 4). Three clinical Rad models were 
constructed by incorporating features from the 
clinical model, as well as the pre-Rad, post-
Rad, and delta/pre-Rad models. In the training 
set, these three clinical read models achieved 
AUC of 0.878, 0.946, and 0.997, respectively 
(Figure 4A). In test set I, the AUC were 0.923, 
0.946, and 0.955 (Figure 4B). Similarly, in test 
set II, AUC were 0.865, 0.877, and 0.878, 
respectively (Figure 4C). Table 3 presents the 
accuracy, sensitivity, specificity, and corre-
sponding 95% confidence intervals of the  
clinical Rad models. The experimental results 
indicated that the clinical Rad model, devel-
oped using features from a clinical model, 

exhibited superior performance. Comparisons 
between the predicted probabilities from this 
model and the actual observations are shown 
in the calibration plots (Figure 4D-I).

Finally, a comprehensive Rad score nomogram 
was developed by incorporating the Rad score, 
Ki67, ypN, and P53 into the pre-, post-, and 
delta/pre-groups, respectively (Figure 6A-C). 
Figure 5 demonstrates that decision curve 
analysis (DCA) revealed a superior net benefit 
of clinical intervention across all threshold 
probabilities compared to treating all or none of 
the patients within the training set, test set I, 
and test set II. Figure 5A and 5B show that in 
test set I and test set II, both the delta/pre-Rad 
model and the delta/pre-Rad-clinic model pro-

Figure 3. Predictive performance of three ra-
diomics score models. A. Receiver Operating 
Characteristic (ROC) curve of the radiomics 
model for the training set (pre, post, delta/
pre). B. Receiver Operating Characteristic (ROC) 
curve of the radiomics model for the test set I 
(pre, post, delta/pre). C. Receiver Operating 
Characteristic (ROC) curve of the radiomics 
model for the test set II (pre, post, delta/pre).
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Table 3. The performance of different models was evaluated in training set, test set I and test set II

Models
Train set Test set I Test set II

AUC Accuracy Sensitivity Specificity 95% CI AUC Accuracy Sensitivity Specificity 95% CI AUC Accuracy Sensitivity Specificity 95% CI
Pre-Rad 0.577 0.732 0.452 0.690 0.477-0.677 0.707 0.705 0.895 0.45 0.575-0.839 0.729 0.602 0.460 1 0.729-0.855

Post-Rad 0.762 0.732 0.686 0.809 0.683-0.842 0.762 0.705 0.479 1 0.65-0.875 0.748 0.621 0.852 0.576 0.748-0.874

Delta/Pre-Rad 0.876 0.802 0.800 0.833 0.818-0.933 0.827 0.779 0.895 0.7 0.716-0.938 0.749 0.622 0.853 0.577 0.749-0.875

Clinic 0.870 0.860 0.895 0.690 0.812-0.927 0.876 0.823 0.854 0.75 0.791-0.961 0.796 0.716 0.558 0.885 0.796-0.899

Pre-Rad + Clinic 0.878 0.840 0.826 0.809 0.819-0.937 0.923 0.852 0.833 0.9 0.861-0.984 0.865 0.733 0.960 0.692 0.865-0.960

Post-Rad + clinic 0.949 0.732 0.895 0.952 0.913-0.986 0.946 0.882 0.895 0.9 0.886-0.999 0.877 0.816 0.852 0.769 0.877-0.967

Delta/preRad + clinic 0.997 0.987 0.980 0.952 1 0.955 0.867 0.895 0.9 0.911-0.999 0.878 0.816 0.853 0.770 0.878-0.968
Rad: radiomics; AUC: Area Under Curve; CI: Confidence Interval.
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vide a greater net benefit compared to the 
other models at the same probability value. 
Figure 5C and 5D compare the delta/pre-Rad, 
delta/pre-Rad-clinic, and fusion models, show-
ing these three models offer the similar net 
benefit. The delta/pre-Rad model is slightly 
higher than the other two. The DCA curve for 
set II is similar to that of set I, indicating the 
model’s strong generalization ability.

Discussion

As neoadjuvant therapy for ESCC has entered 
the era of immunotherapy, the combination of 
NIC has increasingly become a focal point for 
LAESCC. The interaction between immune 
checkpoint inhibitors and PD-L1 on tumor cells 
promotes extensive infiltration of antitumor 
immune cells, particularly CD8+ T cells. Al- 
though immune cells can phagocytize tumor 
cells, the extent of the lesion volume varies. 
Therefore, changes in histological type may be 
more informative than changes in morphologi-
cal anatomy for assessing the efficacy of 
immunotherapy.

Several studies have shown that lesions may 
not shrink and may even enlarge during immu-
notherapy. However, subsequent postopera- 
tive pathology revealed regression of tumor 
cells accompanied by infiltration of inflamma-

tory, immune, or fibroblast cells. Therefore, con-
ventional imaging techniques based solely on 
volume alterations are inadequate for accu-
rately assessing changes in lesional tissue 
composition, which may lead to misdiagnoses. 
The delta/pre-Rad model developed in our 
study exhibited high AUC values in the training 
set (AUC = 0.876) and two independent test 
sets (AUC = 0.827 and AUC = 0.749), indicating 
its reliability for predicting NIC response in 
patients with LAESCC.

In a previous study conducted on 95 patients 
with LAESCC, eight radiomics features were  
utilized to develop a machine learning model 
for predicting the PCR of NIC. The AUC values 
obtained were 0.77 and 0.85 for the training 
set (66 patients) and test set (29 patients), 
respectively [14]. Another study focused on pre-
dicting NIC-induced PCR in 64 patients with 
LAESCC, in which a model incorporating five 
selected radiomics features demonstrated an 
accuracy of 0.796 in distinguishing different 
degrees of tumor regression within the test 
cohort [15].

Compared to two previous studies, both of 
which utilized a considerable number of fea-
tures for constructing the learning model, our 
delta/pre-model reduced overfitting and en- 
hanced the generalization ability of the mo- 

Table 4. Significant clinical features were applied in univariate and multivariate analyses

Variable
Univariate Multivariate

OR (95% CI) P OR (95% CI) P
Ki67
0
1 10.359 (3.026-35.462) 0.000 0.135 (0.027-0.678) 0.015
Ker
0
1 4.636 0.000
P53
0
1 11.922 0.000 0.201 (0.051-0.79) 0.022
ypN
0
1 4.478 0.001 0.158 (0.045-0.552) 0.004
Pre_Rad 1.038 0.069
Post_Rad 5.941 0.000 1.161 (1.053-1.279) 0.003
Delta/Pre 1.131 0.000 4.148 (1.848-9.308) 0.001
Ker: Keratin expression level; Ki67: Ki67 expression level; P53: P53 mutation status; ypN: lymph node after neoadjuvant 
therapy; Rad: radiomics; OR: Odds ratio; CI: Confidence Interval.
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Figure 4. Predictive performance of three Rad-clinical models. A-C. Receiver operating characteristic (ROC) curves 
of Rad-clinical score models in the training set, test set I, and test II. D-F. The calibration curve uses test set I data 
to validate the performance of three models (Pre, post, delta/pre). G-I. The calibration curve uses test set II data to 
validate the performance of the three models compared with trained models in the training set.



Delta radiomics for predicting PCR in ESCC post-neoadjuvant immunochemotherapy

174	 Am J Transl Res 2025;17(1):162-177

del. Additionally, our study had a significantly 
larger sample size (225 + 60) than previous 
studies (95 vs. 64) [15, 16]. In addition to inter-
nal validation, our model demonstrated exter-
nal validation results, further enhancing its 
generalizability. Neoadjuvant therapy for eso- 
phageal cancer encompasses various meth-
ods, and the commonly used approaches in 
clinical practice include neoadjuvant radio- 
therapy and nRCT. Immunotherapy has tradi-
tionally been employed as the second-line 
treatment for advanced esophageal cancer; 
however, NIC has gradually emerged as an 
adjunctive therapy in recent years. The suc-
cessfully published Keynote-590, CheckMate- 
648, and ESCORT-1st studies demonstrat- 
ed that pembrolizumab significantly improves 
overall survival in the first-line treatment of 
advanced esophageal cancer, regardless of  
the histological type [17-19]. These findings 
reaffirm the importance of immunotherapy  
as a first-line treatment for patients with 
advanced esophageal cancer. Consequently, 
research on the radiomic evaluation of the effi-
cacy of neoadjuvant chemotherapy combined 
with immunotherapy is limited.

In addition, a retrospective study of 54 patien- 
ts with LAESCC treated with PD-1 inhibitors 
combined with chemotherapy who successfully 
achieved PCR demonstrated significantly high-
er body mass index levels than those without 
PCR [20]. Furthermore, a previous study uti-
lized microscopic venous invasion as a prog-
nostic predictor in 143 patients who received 
neoadjuvant chemotherapy followed by surgery 
for ESCC without neoadjuvant immunotherapy 
[21]. However, in our study involving 225 
patients, we identified several clinical factors, 
including R0 section status, Ker, LVI, PNI, Ki67 
expression level, P53 mutation status, ypN 
stage, and N-counts that showed statistical  
significance in predicting PCR after neoadju-
vant induction chemotherapy for LAESCC. Ad- 
ditionally, the predictive values of R0 section 
status, LVI, Ki67, ypN, and P53 were validated 
in independent test set I (n = 68), while LVI,  
PNI, Ki67, P53, and N-counts were statistically 

significant in an external validation set (n =  
60). After univariate and multivariate analyses, 
we obtained the clinical variables ypN, P53, 
and Ki67 with P < 0.05. These significant clini-
cal factors were incorporated into a clinical 
model that achieved AUC values of 0.870, 
0.876, and 0.844 for the training and two inde-
pendent test sets, respectively.

We developed seven machine learning models 
to predict the efficacy of neoadjuvant chemo-
therapy combined with immunotherapy for 
LAESCC: pre-Rad, post-Rad, delta/pre-Rad, 
pre-Rad-clinic, post-Rad-clinic, delta/pre-Rad-
clinic, and Fusion models. Among these mod-
els, the delta/pre-Rad fusion clinical model 
demonstrated superior performance, with AUC 
values of 0.997, 0.955, and 0.878, emerging 
as the most effective model.

Our study revealed that the original shape flat-
ness (representing the shape of the original 
feature) and original first-order maximum  
(indicating the first-order wavelet features) 
were significantly associated with LAESCC. 
Flatness, a characteristic of tumor morphology, 
reflects variations in different tumor regions, 
suggesting irregular and lobulated edges in  
the lesion. Fine and short spicules, prickly pro-
jections, and serrated changes were observed 
at the periphery of the lesions. The original first-
order maximum represents the highest gray 
scale value within the ROIs, implying a poten- 
tial link between tumor regression and areas of 
necrosis [22]. Previous studies have demon-
strated that radiomic features can serve as 
phenotypes for esophageal cancer; however, 
these studies have primarily focused on T stag-
ing, treatment response evaluation, and prog-
nosis [23]. Furthermore, a considerable explo-
ration of the biological mechanisms underlying 
TRG and its radiomic features is required.

In this study, DCA was performed using the  
pre-Rad, post-Rad, delta/pre-Rad, pre-Rad- 
clinic, post-Rad-clinic, delta/pre-Rad-clinic, and 
fusion models. The delta/pre-Rad, delta/pre-
Rad-clinic and Fusion model all demonstrated 

Figure 5. A. DCA of delta/pre_Rad,delta/pre_Rad_clinic,Fusion Rad(pre_Rad,post_Rad,delta/pre_Rad),pre_
Rad,pre_Rad_clinic,post_Rad,post_Rad_clinic model in the test set I. B. DCA of delta/pre_Rad,delta/pre_Rad_
clinic,FusionRad(pre_Rad,post_Rad,delta/pre_Rad),pre_Rad,pre_Rad_clinic,post_Rad,post_Rad_clinic model in 
the test set II. C. DCA of delta/pre_Rad,delta/pre_Rad_clinic,Fusion Rad in the test set I. D. DCA of delta/pre_
Rad,delta/pre_Rad_clinic,Fusion Radin the test II.
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a potential clinical utility, with the delta/pre-
Rad model being the most powerful. Decision-
makers can choose the most appropriate 
model based on the clinical situation or 
threshold.

For patients with LAESCC, this model has the 
potential to identify nonresponders to NIC 
before surgery, thereby improving therapeutic 
accuracy and reducing unnecessary treatment 
costs. Radiotherapy or alternative methods 
should be promptly considered in these 
patients. Additionally, radiomic features serve 
as noninvasive markers that comprehensively 
capture the heterogeneity of lesions. Traditional 
gastroscopic pathological biopsy and even 
postoperative general pathology offer limited 
tumor tissue samples for examination, poten-
tially compromising the diversity of the patho-
logical results. In conclusion, we recommend 
delta-/pre-enhanced CT-based radiomics com-
bined with clinical models to display the total 
score of each patient, offering guidance to  
clinicians before surgery, and guiding the con-
secutive treatment of patients.
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Supplementary Material 1

The SOMATOM Force system (Siemens) was employed for CT scanning in hospital A. The tube voltage 
was configured within the range of 80-140 kV, while the tube current ranged from 50-300 mA. The 
detector collimation was set at a dimension of 64 × 1.2 mm, and both the slice thickness and spacing 
were standardized at 5 mm.

The Revolution APEX system (GE) was employed for CT scanning in hospital B. The tube voltage was set 
between 80-140 kV, with the tube current between 50 and 300 mA. The detector collimation was set at 
a dimension of 64 × 1.2 mm, and both the slice thickness and spacing were standardized at 5 mm.

Supplementary Material 2

There were two features for the pre group, 10 for the post group, and 11 for delta/pre group. Their coef-
ficients were determined by Binary Logistic Regression.

The results of pre group: 

feature Apre ‘original_shape_Flatness’_0.0392,

feature Bpre ‘original_firstorder_Maximum’-0.6046.

The results of post group: 

feature Apost ‘original_shape_SurfaceVolumeRatio’-1.0750, 

feature Bpost ‘original_firstorder_TotalEnergy’_14.4622, 

feature Cpost ‘original_firstorder_Energy’_17.5317, 

feature Dpost ‘original_firstorder_Median’_2.2928, 

feature Epost ‘original_shape_MeshVolume’_-9.4188, 

feature Fpost ‘original_shape_VoxelVolume’_21.3544, 

feature Gpost ‘original_firstorder_Mean’_-1.7655, 

feature Hpost ‘diagnostics_Mask_original_VoxelNum’_-11.5045, 

feature Ipost ‘original_shape_Sphericity’_1.6210, 

feature Jpost ‘original_glszm_LargeAreaEmphasis’_0.2738.

The results of the delta/pre group:

feature Adelta/pre ‘original_glszm_gray_level_variance’_0.2391, 

feature Bdelta/pre ‘original_firstorder_range’_-0.1353, 

feature Cdelta/pre ‘original_glrlm_long_run_low_gray_level_emphasis’_0.6571, 

feature Ddelta/pre ‘original_gldm_large_dependence_low_gray_level_emphasis’_0.0016, 

feature Edelta/pre ‘original_shape_sphericity’_-0.6673, 
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feature Fdelta/pre ‘original_gldm_small_dependence_low_gray_level_emphasis’_-0.4740, 

feature Gdelta/pre ‘original_glcm_correlation’_0.0286, 

feature Hdelta/pre ‘original_glszm_high_gray_level_zone_emphasis’_1.1023, 

feature Idelta/pre ‘original_glrlm_short_run_high_gray_level_emphasis’_0.2865 3.5625, 

feature Jdelta/pre ‘original_glcm_mcc’_-0.1367, 

feature Kdelta/pre ‘original_glcm_imc1’_-0.4842.

Supplementary Material 3

The simplified image presented in Figure 2, along with the original image that is not included in this 
article.
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