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Abstract: Objectives: The study aims to establish a reliable chronic kidney disease (CKD) mouse model by examin-
ing the effects of an adenine-containing diet on renal function and pathology. It also explores the impact of CKD on 
motor function and infarct volume following cerebral infarction and investigates the role of calcium in modulating 
the AMPK/SIRT1/HIF1-α signaling pathways. Method: The CKD mouse model was induced through an adenine-
enriched diet. Renal function impairment was assessed by analyzing blood samples for creatinine and blood urea 
nitrogen levels at 0 and 6 weeks. Pathologic changes in renal tissue were examined. The study also evaluated 
motor function, infarct volume, survival rates, body weight changes, and functional assessments. Additionally, ce-
rebral cortex angiogenesis was assessed in the context of ischemic stroke. Result: The CKD mouse model showed 
significant renal tissue alterations, including luminal dilation, glomerular hypertrophy, fibrosis, and inflammatory 
infiltration. There was a notable reduction in angiogenic markers in the CKD group compared to controls. The study 
also found increased cerebral calcium levels and altered expression of AMPK, SIRT1, HIF1-α, and VEGF in the CKD 
group. Conclusions: The research successfully created the CKD mouse model and emphasized the disease’s many 
effects, including its influence on neurological disorders. The results provide an understanding of the molecular 
processes behind changes brought on by CKD and may have consequences for angiogenesis and signaling pathway-
focused therapeutic approaches.
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Introduction

CKD is a prevalent condition characterized by 
the progressive deterioration of renal function 
[1], often leading to systemic complications [2]. 
In recent years, a growing body of data has indi-
cated a correlation between CKD and stroke as 
well as cerebrovascular disease [3]. Specifically, 
CKD has been found to elevate the risk and 
severity of ischemic stroke [4].

Ischemic stroke is the primary factor contribut-
ing to adult disability on a global scale [5]. An- 
giogenesis that occurs without external inter-
vention following the acute phase of stroke may 
enhance neurological function improvement 
[6-8]. Angiogenesis, also known as neovascu-
larization, is particularly noticeable in the area 

around the ischemic region and is associated 
with decreased brain injury [8]. Vascular endo-
thelial growth factor (VEGF) is an angiogenic 
factor [9] that promotes the formation of new 
cerebral blood vessels [10]. Therefore, VEGF 
also plays a crucial role in determining the  
size of ischemic cerebral infarction and the 
extent of neurological damage. Some resear- 
chers have shown that individuals with CKD 
often have abnormal VEGF expression, which 
may impact the effectiveness of blood vessel 
formation after a stroke [11]. This imbalance 
may result in a compromised capacity to gener-
ate new blood vessels in response to ischemic 
events.

In this study, we created a transient middle 
cerebral artery occlusion (tMCAO) in a CKD 
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mouse model. The study emphasizes the intri-
cate relationship between CKD and angiogen-
esis. This impairment in blood vessel function 
would not only contribute to the advancement 
of chronic renal disease but also greatly en- 
hance the vulnerability to cerebrovascular inci-
dents, such as ischemic stroke [12]. Explora- 
tion of the complicated relationship among 
CKD, ischemic stroke, and angiogenesis, espe-
cially VEGF-mediated mechanisms, will allow 
for tailored treatments. VEGF modulation or 
angiogenic responses may reduce stroke con-
sequences in CKD patients, providing new 
paths for neurologic outcomes in this high-risk 
group. Understanding these interrelationships 
will help create improved preventative and 
treatment methods for CKD and ischemic 

stroke patients as research in this field 
advances.

Materials and methods

Establishment of the CKD mouse model

Adult male C57BL/6J mice, 8 weeks old and 
weighing 22-30 g, were kept in separate cages 
in a facility with regulated temperature (22-
25°C), humidity (45-50%), and lighting condi-
tions (12 hours of light followed by 12 hours of 
darkness). Before developing CKD (Figure 1A), 
all mice were given a conventional diet and had 
free access to food and water for 1 week. CKD 
was induced by administering a meal enri- 
ched in adenine, whereas the control animals 
received a standard diet. Before providing the 

Figure 1. (A) The control and CKD groups were included in the experimental groupings. During weeks 1 through 6, 
meals containing the known hazard adenine were provided to the mice in the CKD group. During week 7, the mice 
were transitioned to a diet devoid of adenine. Then, behavioral evaluations were carried out. To compare BUN and 
creatinine levels prior to and after the adenine-containing diet was administered, serum samples were obtained at 
weeks 0 and 6. (B) Measurements of serum BUN and (C) creatinine levels were obtained at weeks 0 and 6. **P 
< 0.01, vs the CKD group. The experiment was independently repeated three times. CKD, chronic kidney disease; 
BUN, blood urea nitrogen; tMCAO, transient middle cerebral artery occlusion.
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adenine-containing food, a small amount of 
blood was collected from the cheek by micro-
tube puncture. The serum was then separated 
by centrifugation at a force of 1,500×g for 10 
minutes at 4°C. Afterward, the mice were ran-
domly allocated into two groups. The control 
group (n = 10) received a standard diet. In the 
CKD group (n = 10), mice were administered  
an adenine diet containing 0.2% w/w adenine 
(A2786, Sigma-Aldrich, St. Louis, MO, USA). 
After 6 weeks (Figure 1A), blood samples were 
collected and then centrifuged to obtain serum. 
The serum samples were examined to evaluate 
the concentrations of blood urea nitrogen 
(BUN) and creatinine before and after the 
ingestion of a meal containing adenine.

Detection of serum biochemical indexes

At 0 and 6 weeks, blood samples were collect-
ed from the mice after an 8-12-hour period of 
fasting and then analyzed by biochemical test-
ing. The blood samples underwent centrifuga-
tion at 1,500×g to separate the serum. The 
purified serum was then kept at a temperature 
of -80°C for preservation. The levels of BUN 
(EIABUN, Invitrogen) and creatinine (ab65340, 
Abcam, Cambridge, UK) were measured using 
the appropriate methods. Renal function test 
results were used to assess the efficacy of CKD 
model construction.

Establishment of tMCAO

All mice chosen for the control and CKD groups 
received tMCAO surgery (Figure 1A). A mixture 
of nitrous oxide, oxygen, and isoflurane 
(69%:30%:1%) was delivered via an inhalation 
mask to anesthetize the mice. When the mice 
were anesthetized, the oxygen supply was dis-
continued, and only isoflurane was adminis-
tered to suppress mouse respiration until 
death. The mice were given an anesthetic to 
relieve pain. The right carotid bifurcation was 
revealed, and the external carotid artery was 
ligated proximal to the bifurcation. Next, a 7-0 
nylon filament thread, coated with silicon, was 
inserted into the right common carotid artery to 
block the right middle cerebral artery (MCA). 
Following 60 minutes of tMCAO, the nylon 
thread was gradually removed to restore blood 
flow in the MCA. All animals were euthanized 7 
days after the procedure. The sample size was 

determined using preliminary study findings. To 
achieve a statistical power of 80% and a signifi-
cance level of 5%, a sample size of eight mice 
in each group was required to detect a reduc-
tion in stroke volume between the control and 
CKD groups. This calculation considered an 
anticipated dropout rate of 10%. A total of 20 
mice were utilized for this study. However, six 
mice from all groups were excluded due to spe-
cific exclusion criteria. These mice died after 
surgery and before the sacrifice time (n = 2). 
Immunostaining was performed on a control 
group consisting of five mice and a CKD group 
consisting of four mice. Western blotting was 
conducted on a control group of four mice and 
a CKD group of four mice.

Neurobehavioral analysis

The body weight of mice in each group was 
measured 7 days after tMCAO and before they 
were sacrificed. The neurological tests includ- 
ed Bederson’s score, as well as corner and 
rotarod tests, which were performed in a dou-
ble-blinded manner. The mice were assessed 
both before and 7 days after tMCAO. Beder- 
son’s score [13], with minor modifications [14], 
was evaluated in the following manner: 0 indi-
cated the absence of any noticeable neurologi-
cal impairments; 1 signified the inability to 
extend the left forepaw fully; 2 referred to the 
tendency to move in a circular motion toward 
the opposite side; 3 denoted a tendency to 
tumble toward the left side; 4 indicated an 
inability to walk without external assistance. 
The rotarod test (MK610A; Muromachi Kikai 
Co., Tokyo, Japan), conducted according to our 
previous publications, assessed motor coordi-
nation integrity [15].

Tissue preparation

A mixture of nitrous oxide, oxygen, and isoflu-
rane (69%:30%:1%) was delivered via an inha-
lation mask to anesthetize the mice. When the 
mice were anesthetized, we injected pentobar-
bital (40 mg/kg) intraperitoneally to the mice. 
Then, the 20 ml of ice-cold phosphate-buffered 
saline (PBS) was perfused by heart. Next, mice 
that were used for immunostaining were per-
fused with 20 ml of ice-cold 4% paraformalde-
hyde (PFA) in 0.1 mol/L phosphate buffer. The 
brains and kidneys were removed and post-
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fixed in 4% PFA overnight. After washing with 
PBS, the tissues were immersed in sucrose 
solutions with concentrations of 10%, 20%, 
and 30% (w/v). Subsequently, the tissues were 
encased in dry ice and frozen at -80°C. The  
tissues were sectioned using a cryostat at 
-24°C, placed onto glass slides coated with sili-
con, and stored at -80°C.

Protein samples were obtained from remaining 
mouse cerebral tissues using radioimmunopre-
cipitation assay (RIPA) lysis buffer, which con-
tained protease inhibitors. The RIPA lysis solu-
tion was obtained from Beyotime. The protein 
concentration was determined using a bicin-
choninic acid kit (20201ES76, Yeasen Com- 
pany, Shanghai, China), and the samples were 
stored at -80°C.

Histopathological staining

To measure the volume of the infarct, coronal 
brain slices were treated with cresyl violet for 
Nissl staining and visualized using a light mi- 
croscope (SZX-12; Olympus Optical Co., Tokyo, 
Japan). The sections were dissected at dis- 
tances of 1.0, 0.5, 0, -0.5, and -1.0 mm from 
the bregma. The infarct area was quantified in 
five distinct sections by pixel counting using 
image processing software (ImageJ; National 
Institutes of Health, Bethesda, MD, USA). The 
infarct volume was then determined by sum-
ming the infarct volumes into five consecutive 
brain sections spaced 0.5 mm apart.

The kidney sections were stained using hema-
toxylin and eosin (H&E), a Masson trichrome 
stain kit (1004850001, Sigma), and a periodic 
acid-Schiff (PAS) reagent (ab150680, Abcam) 
according to the manufacturer’s instructions. 
After applying neutral gum as a sealer, the sec-
tions were inspected and recorded using an 
inverted microscope (SZX-12; Olympus Opti- 
cal, Tokyo, Japan). The morphological assess-
ments were carried out autonomously by two 
proficient pathologists using a double-blind 
methodology.

Immunofluorescence

To evaluate angiogenesis in the mouse brain 
after cerebral infarction, we employed an im- 
munofluorescence double-labeling technique 
to detect the expression of CD31 and Ki67.  

The double-immunofluorescence analysis uti-
lized a goat anti-CD31 antibody (1:500; R&D 
Systems, AF3628) and a rabbit anti-Ki67 anti-
body (1:500; Abcam, ab15880) as the primary 
antibodies.

To observe the immune response, the appro- 
priate fluorescent secondary antibodies, an 
Alexa 488-coupled rabbit anti-goat IgG anti-
body (Thermo Fisher Scientific) and an Alexa 
555-coupled goat anti-rabbit antibody were 
employed. The sections were examined at 
200× magnification using a confocal micro-
scope (LSM-510; Zeiss, Jena, Germany).

Western blot analysis

Various protein concentrations were assessed. 
The proteins underwent separation using sodi-
um dodecyl sulfate-polyacrylamide gel electro-
phoresis and were subsequently transferred by 
electrophoresis onto a polyvinylidene fluoride 
membrane (IPVH85R, Millipore, Germany). The 
membrane was blocked for 1 hour using a  
5% solution of bovine serum albumin. Sub- 
sequently, it was subjected to incubation with 
the following primary antibodies: rabbit anti-
phospho-AMPKα (2535, 1:1000, Cell Signal- 
ing Technology), rabbit anti-SIRT1 (sc15404, 
1:1000, Santa Cruz Biotechnology), rabbit anti-
HIF1-α (20960-1-AP, 1:1000, Proteintech), rab-
bit anti-VEGF (ab46154, 1:2000, Abcam), and 
anti-β tubulin (ab6046, 1:1000, Abcam) at 4°C 
overnight. Afterward, the membrane under-
went three washes with Tris-buffered saline 
with Tween-20 (TBST), each lasting 5 minutes. 
This was followed by a 1-hour incubation with 
horseradish peroxidase (HRP)-conjugated sec-
ondary antibody, specifically rabbit anti-mouse 
IgG (AS029, ABclonal), which was diluted at a 
ratio of 1:2000. Following the TBST rinses, the 
membrane was treated with luminous liquid for 
development. The data were examined using 
ImageJ software. Protein expression was quan-
tified by calculating the ratio of the gray value of 
the protein being tested to that of the internal 
reference (β-tubulin).

Enzyme-linked immunosorbent assay (ELISA)

Mouse brain protein samples were obtained by 
centrifugation at 1,000×g for 10 minutes at 
4°C and directly collected. Calcium (Ca2+) le- 
vels were determined using an ELISA kit 
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Figure 2. Representative Masson, PAS, and H&E images of kidney sections from mice (scale bar = 50 μm). Signifi-
cant enlargement of the tubular lumen and glomeruli was observed in the mice assigned to the CKD group com-
pared with that in animals of the control group. HE, hematoxylin and eosin; PAS, periodic acid-Schiff.

(Calcium Assay Kit; Catalog No. ab102505; 
Abcam). Then, 50 µl of the standard sample, at 
the specified concentration, was dispensed 
into the designated wells as per the manufac-
turer’s guidelines. Additionally, 10 µl of the 
brain protein sample was added to the samp- 
le wells, followed by 40 µl of the dilution solu-
tion. The detection antibody tagged with HRP 
(100 µl) was added to the standard and samp- 
le wells. The plate was securely covered and 
incubated for 1 hour. Following five washes, 
Substrate A and B (50 µl each) were added to 
the wells, and the plate was incubated at 37°C 
for 15 minutes. Then, 50 µl of termination solu-
tion was dispensed into each well, and the opti-
cal density was measured at 450 nm after 15 
minutes.

Statistical analysis

All data were analyzed using GraphPad Prism. 
Measurement data are expressed as the mean 
± standard deviation. An unpaired t-test was 
used to compare data between the two groups. 
A value of P < 0.05 was considered statistically 
significant.

Results

Renal function impairment caused by an ad-
enine diet

Because creatinine and serum BUN are indica-
tors of renal dysfunction [4], we assessed 

whether renal function was compromised after 
administering an adenine diet. In this experi-
ment, we obtained blood samples at two dis-
tinct time periods, namely 0 and 6 weeks, to 
conduct a comparison. Within the CKD group, 
the levels of BUN exhibited a notable escala-
tion from the 0-week to the 6-week time points 
(Figure 1B), and there was a considerable  
elevation in the creatinine level between the 
0-week and 6-week time points (Figure 1C). 
The control group showed no change in the lev-
els of BUN and creatinine from 0 to 6 weeks.

Pathologic changes in renal tissue of CKD 
mice

Mice in the normal diet group had normal renal 
histology with intact tubular epithelial cells and 
no obvious pathological changes in the glom-
eruli and renal interstitium. However, mice fed 
an adenine-containing diet demonstrated dilat-
ed renal lumens and glomerular hypertrophy, 
as well as marked fibrosis, tubular epithelial 
cell edema, and interstitial inflammatory infil-
tration (Figure 2). These results suggest that 
the CKD mouse model was successfully 
constructed.

Motor function and infarct volume

The survival rates at 7 days following reperfu-
sion were 90% (n = 9) and 80% (n = 8) for ani-
mals in the control and CKD groups, respec-
tively (Figure 3A). There was no notable dispar-
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Figure 4. Infarct volume of mice after tMCAO. A. Nissl staining of mouse 
brain sections from the control and CKD groups after tMCAO. Scale bar = 2 
mm. B. Quantitative analysis of infarct volume in the two groups. Note the 
significant increase in infarct volume in the CKD group compared with that 
in the control group (*P = 0.0384, vs the CKD group).

ity in body weight between the two groups over 
7 days (Figure 3B). However, there was a note-
worthy difference in Bederson’s score and the 
rotarod test results between the two groups 
starting from day 7 (Figure 3C, 3D).

An assessment of infarct vol-
ume was performed using 
Nissl staining (Figure 4A). 
There was a significant differ-
ence in the infarct volume 
between the control and CKD 
groups (*P = 0.0384 vs the 
CKD group, Friedman test, 
Figure 4B).

Ca2+ controls the production 
of VEGF by facilitating com-
munication among the AMPK/
SIRT1/HIF1-α signaling path-
ways

By analyzing the Ca2+ levels in 
the brains of mice after cere-

bral infarction, we observed a significant 
increase in the brains of mice in the CKD group 
(Figure 5A, **P = 0.0025, vs the CKD group). 
This outcome is identical to the finding of a pre-
vious study [16]. In the Figure 5B, the CKD 

Figure 3. Neurobehavioral analysis of mice after tMCAO. A. The survival rates for 7 days after tMCAO (until sacri-
fice) in the control and CKD groups were 90% and 80%, respectively (not significantly different). B. There was no 
significant difference in body weight between the control and CKD groups. C. The Bederson score of the CKD group 
was significantly lower than that of the control group at the 3-day, 5-day, and 7-day time points. D. The CKD group 
exhibited notably lower rotarod test scores than those of the control group at the 3-day, 5-day, and 7-day time points. 
*P < 0.05, vs the CKD group.



Angiogenesis in a CKD mouse model after an ischemic stroke

534 Am J Transl Res 2025;17(1):528-537

Figure 5. A. The concentration of Ca2+ in mouse brain tissue was quantified using the ELISA technique. B. Expres-
sion of AMPK, SIRT1, HIF1-α, and VEGF in the brain tissue of both the control and CKD groups was detected using 
western blotting, and β-tubulin was used as a control. C-F. Quantitative analysis of the expression of AMPK, SIRT1, 
HIF1-α, and VEGF in the two groups *P < 0.05, vs the CKD group. The experiment was independently repeated 
three times. p-AMPK, phosphorylated AMP-activated protein kinase; SIRT1, Silent Information Regulator 2 Related 
Enzyme 1; HIF1-α, Hypoxia-Inducible Factor 1-Alpha; VEGF, vascular endothelial growth factor. 

group showed significant increases in the 
expression of AMPK (Figure 5C, *P = 0.0097, 
vs the CKD group) and SIRT1 (Figure 5D, *P = 
0.0361, vs the CKD group), whereas the expres-
sion of HIF1-α (Figure 5E, *P = 0.0487, vs the 
CKD group) and VEGF (Figure 5F, *P = 0.0286, 
vs the CKD group) was significantly reduced 
compared with that in the control group.

Detection of mouse cerebral cortex angiogen-
esis using CD31/Ki67

After an ischemic stroke, the growth of new 
blood vessels (angiogenesis) takes place in the 
areas around the damaged tissue (peri-infarct 
regions). This process has been shown to have 
a beneficial relationship with the survival and 
recovery of experimental animals [17]. There- 
fore, in this investigation, we used CD31 and 
Ki67 immunofluorescence to examine angio-
genesis in the vicinity of the central region of 
cerebral infarction in mice (Figure 6A). The CKD 
group had significantly reduced expression of 

CD31 and Ki67 compared with that in the con-
trol group (Figure 6B, *P = 0.0202, vs the CKD 
group).

Discussion

Disruption of Ca2+ ions is a characteristic fea-
ture of CKD and a significant risk factor for the 
occurrence of severe cardiovascular conse-
quences [18]. The present study elucidates the 
impact of CKD on the control of Ca2+. Our find-
ings indicate that an experimental model of 
renal failure produced comparable classical 
characteristics of CKD. The CKD model led to 
elevated Ca2+ expression in the brains of mice, 
thereby causing enlargement of cerebral infa- 
rcts and a decline in the motor performance of 
mice. These results have significance for better 
understanding the relationship between kidney 
disease and cerebrovascular accidents.

The CKD group had elevated levels of BUN and 
creatinine after 6 weeks of an adenine diet, 
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suggesting a decline in renal function. The find-
ings align with prior research and validate the 
dependability of the CKD mouse model [19]. 
The increase in cerebral Ca2+ levels after cere-
bral infarction in the CKD group indicates the 
possible involvement of Ca2+ in regulating sig-
naling pathways. Ca2+ that is released from 
spaces outside of cells or compartments insi- 
de cells and enters the cytosol triggers calmod-
ulin activation. Calmodulin then attaches to 
calmodulin-dependent protein kinase kinase 
(CaMKK) and calmodulin-dependent protein 
kinase (CaMK), stimulating their production 
[20]. Activation of CaMKK enhances the ac- 
tivity of AMPK via modulation of the CaMK pro-
tein located downstream [21]. AMPK activa- 
tion enhances the NAD+:NADH ratio, thereby 
increasing SIRT1 activity [22], resulting in 
reduced HIF1-α expression [23]. Nevertheless, 
the heightened expression of HIF1 stimulates 
upregulation of VEGF [24], a crucial protein 
implicated in the angiogenesis process [25]. 
The decreased CD31/Ki67 positivity in the 
CKD group, compared with that in the control 
group, indicates a compromised ability to form 
new blood vessels in response to cerebral 
infarction. The weakening of the angiogenic 
process in the CKD group may lead to hindered 
recovery after a stroke. Diminished formation 
of new blood vessels in the area around the 
damaged tissue after a stroke may play a cru-
cial role in the survival and recuperation of ani-
mals with impaired kidney function.

Collectively, our findings underscore the intri-
cate connection among renal impairment cau- 
sed by an adenine diet, cerebrovascular events, 

and the associated molecular pathways. Addi- 
tional research is required to comprehensively 
determine the underlying pathophysiological 
mechanisms connecting renal damage and 
neurological outcomes. This research will also 
provide novel insights into the management of 
renal dysfunction that occurs as a complication 
of ischemic stroke.
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