# Review Article Artificial intelligence use for precision medicine in inflammatory bowel disease: a systematic review

Hugo Dugolin Ceccato<sup>1</sup>, Thiago Antunes de Oliveira e Silva<sup>1</sup>, Livia Moreira Genaro<sup>1</sup>, Julian Furtado Silva<sup>1</sup>, William Moraes de Souza<sup>1</sup>, Priscilla de Sene Portel Oliveira<sup>1</sup>, Anibal Tavares de Azevedo<sup>2</sup>, Maria de Lourdes Setsuko Ayrizono<sup>1</sup>, Raquel Franco Leal<sup>1</sup>

<sup>1</sup>Inflammatory Bowel Disease Research Laboratory, Gastrocenter, Colorectal Surgery Unit, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil; <sup>2</sup>Simulation Laboratory (SimuLab), School of Applied Sciences, University of Campinas (Unicamp), Limeira, São Paulo, Brazil

Received July 3, 2024; Accepted October 10, 2024; Epub January 15, 2025; Published January 30, 2025

Abstract: Introduction: Inflammatory Bowel Disease (IBD), encompassing Crohn's disease and ulcerative colitis, presents significant clinical challenges due to its heterogeneous nature and complex etiology. Recent advancements in biomedical research have enhanced our understanding of IBD's genetic, microbial, and biochemical aspects. However, persistent issues in clinical management, including treatment non-response, surgical interventions, and diagnostic uncertainties, underscore the need for more targeted approaches. This review examines the convergence of artificial intelligence (AI) and precision medicine (PM) in IBD management. By leveraging AI's capacity to analyze complex, multi-dimensional datasets, this emerging field offers promising applications in improving diagnostic accuracy, predicting treatment responses, and forecasting disease progression, potentially transforming IBD patient care. Method: The systematic review (SR) was conducted by searching the following databases: PubMed, PubMed PMC, BVS, Scopus, Web of Science, Embase, Cochrane, and ProQuest up to February 2024. Studies that employed AI in IBD applied to precision medicine were included. Results: 139 studies on applying AI in precision medicine for IBD were identified. Most studies (>70%) were published after 2020, indicating a recent surge in interest. The AI applications primarily focused on diagnosis, treatment response prediction, and prognosis. Machine learning algorithms were predominantly used, particularly random forest, logistic regression, and support vector machines. Omics data were frequently employed as predictors, especially transcriptomics and microbiome analyses. Studies demonstrated good predictive performance across all three areas, with median AUC values ranging from 0.85 to 0.90. Conclusion: AI applications in IBD show promising potential to enhance clinical practice, particularly in disease prognosis and predicting treatment response. However, clinical implementation requires further validation through prospective studies. Future research should focus on standardizing protocols, defining clinically significant outcomes, and evaluating the efficacy of these tools.

Keywords: Crohn's disease, ulcerative colitis, precision medicine, machine learning

#### Introduction

Inflammatory Bowel Disease (IBD) encompasses two primary subtypes: Crohn's disease (CD) and ulcerative colitis (UC). The etiology, diagnosis, and management of IBD present significant clinical challenges due to its heterogeneous nature and the complex interplay of genetic factors, environmental triggers, and immunological dysregulation.

Over the past few decades, biomedical and bioinformatic research breakthroughs have enhanced our understanding of IBD complexity.

High-throughput genomic sequencing has facilitated the identification of numerous genetic susceptibility loci [1]. Gut microbiome studies have shown the role of microbial dysbiosis in disease pathogenesis [2]. Metabolomic and proteomic analyses have uncovered IBD-specific biochemical signatures [3].

Despite these advancements, several challenges persist in clinical management. Approximately one-third of patients treated with anti-tumor necrosis factor-alpha (TNF- $\alpha$ ) agents fail to respond during induction therapy, and among initial responders, about 50% experience a loss



**Figure 1.** Workflow of Al-assisted precision medicine in IBD: This figure illustrates the integration of clinical data, omics (microbiome, genomics, metabolomics), and behavioral factors related to inflammatory bowel disease (IBD) into artificial intelligence (AI) processing aimed at achieving precision medicine goals such as treatment response, disease course prediction, diagnosis, and biomarker identification.

of response within a few years [4]. Around 80% of patients with CD will require surgical intervention over their lifetime [5]. Although the risk of post-surgical recurrence remains high [6], effective predictors for this outcome are still lacking [7]. Furthermore, in up to 15% of all IBD cases, a definitive distinction between UC and CD cannot be made during the initial diagnosis [8]. This difficulty in diagnosis occurs more frequently in pediatric populations compared to adults [9]. Diagnostic reclassification occurs in some patients, primarily involving a shift from UC to CD diagnosis [10].

Precision medicine (PM) has emerged as a promising approach in healthcare, aiming to tailor medical interventions to each patient's characteristics [11]. Given the disease's heterogeneity, this approach is particularly relevant for IBD. It can identify common factors that define subgroups likely to benefit from specific therapeutic strategies [12].

Artificial Intelligence (AI), especially machine learning (ML) algorithms, provides robust tools for big data analysis and pattern recognition. AI's capacity to integrate and analyze complex, multidimensional datasets, including genomic, metabolomic, microbial, and clinical information, holds the promise of uncovering intricate patterns [13]. In IBD, AI applications may improve diagnostic accuracy, predict individual patient treatment response, and forecast disease progression. **Figure 1** shows the workflow of AI-assisted precision medicine in IBD.

The synergy between PM and AI presents a transformative opportunity to improve patient outcome in IBD. This approach addresses the current challenges in IBD management and

paves the way for more targeted and effective interventions.

This systematic review (SR) explores the intersection of AI and precision medicine in IBD. By analyzing the current literature, this study investigates the potential applications of AIdriven PM in enhancing IBD management.

#### Materials and methods

We conducted a SR following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations [14]. A protocol was registered in PROSPERO (CRD42023373601). We performed a comprehensive search across PubMed, PubMed PMC, BVS, Scopus, Web of Science, Embase, Cochrane, and ProQuest databases, using the following search string: ("Inflammatory Bowel Diseases" OR "Colitis, Ulcerative" OR "Crohn Disease" OR Colitis) AND ("Artificial Intelligence" OR "Machine Learning" OR "Supervised Machine Learning" OR "Unsupervised Machine Learning" OR "Big Data" OR "Deep Learning" OR "Precision Medicine").

#### Inclusion criteria

The articles were included in this review based on the following criteria: (1) Human studies on IBD (UC and/or CD) patients; (2) Al application in PM; (3) Comparative, randomized, crosssectional, retrospective, prospective, or cohort studies were included.

#### Exclusion criteria

Articles that met any of the following criteria were excluded from the review: (1) reviews, letters, editorials, and conference presentations; (2) studies on non-IBD subjects; (3) studies not distinguishing between CD and UC; (4) incomplete data; (5) AI applied solely to imaging data; and (6) IBD data used only for method validation.

#### Study selection

Study selection was conducted in two stages. First, two independent reviewers (HDC, TAOS) assessed titles and abstracts based on the inclusion or exclusion criteria, with a third reviewer (LMG) resolving any conflicts. Subsequently, the same two independent reviewers assessed the full text of the previously selected articles, with a third reviewer resolving conflicts. We utilized Rayyan software for organization and data storage [15].

#### Results

A total of 10,293 studies were initially identified, yielding 5,633 unique records after deduplication. Following title and abstract screening, 453 studies were selected for full-text review. Upon application of the eligibility criteria, 139 studies were included in the SR. **Figure 2** illustrates the PRISMA flow diagram detailing the study selection process.

We observed a significant upward trend in publication frequency among the included studies over recent years, with more than 70% of the studies published from 2020 onwards (**Figure 3A**).

Regarding the geographical distribution of study populations, excluding post hoc analyses of publicly available databases due to lack of information, we noted a concentration of studies in Asian countries (primarily China and South Korea), North America (the United States and Canada), and European nations. No studies were conducted in African countries; only one was done in Latin America (**Figure 3B**).

Our analysis of AI application objectives in PM allowed us to classify the studies into three main categories: (i) diagnosis, (ii) prognosis, and (iii) treatment response. Eleven publications [16-26] were concurrently classified into two categories.

Critical factors in the application of Al include the data used, algorithms employed, distribution of the study population (balanced or unbalanced data), training process, and performance metrics.

The median sample size was 237 patients (10 to 95,878). Of note, most studies presented unbalanced data in their analyses. Machine learning algorithms were predominantly used across all three categories, with random forest, logistic regression, support vector machines, artificial neural networks, and boosting algorithms being the most utilized (**Figure 4A**). Ensemble methods combining multiple algorithms were used in three studies [34, 89, 105].



The analyses used various types of data. We observed a clear distinction between diagnosis, prognosis, and treatment response studies (Figure 4B).

Omics data, including transcriptomics (gene expression profiles from various tissues, noncoding RNA (Ribonucleic Acid) analysis, and single nucleotide polymorphisms), microbiome (primarily through bacterial and fungal sequencing), and metabolomics (from blood, feces, and other tissues), were often employed for diagnosis (**Figure 4B**). In contrast, clinical, laboratory, and demographic (non-omics) data were more frequently employed for predicting treatment response and disease prognosis (**Figure 3B**). Several studies integrated these nonomics data with omics information [19, 20, 27-33].

For model development, researchers employed various training and testing techniques (<u>Supplementary Table 1</u>). The most used technique was the random split of the dataset into training and test sets. Cross-validation was also frequently used, either in combination with the train-test split or alone. For post hoc analyses, it was common to combine databases for training while holding out one or more databases for subsequent model validation.

The area under the receiver operating characteristic curve (AUC) was the most commonly used performance evaluation metric, although some analyses reported only accuracy values as their primary evaluation metric. Excellent performance could be seen regardless of the PM category (**Table 1**). Comprehensive information is detailed in <u>Supplementary Table 1</u>.

#### Artificial intelligence for diagnosis

Diagnostic evaluation in IBD was the most frequently studied category, with 64 publications. As previously presented, most studies implemented ML algorithms; however, six studies used them to identify diagnostic predictors [82-87].

The majority of studies focused on predicting CD or UC versus control groups. Only 18 [16, 17, 19, 34-36, 38, 40, 45, 52, 54, 61-65, 73,



Figure 3. Distribution of the studies included in the systematic review. A. Number of publications per year up to February 2024 (N=139). No papers were selected in 2014 and 2016. B. Geographic distribution of studied populations, after excluding post hoc studies (N=82).

В

Distribution of data type used in analysis



### A Distribution of artificial inteligence algorithms in precision medicine

**Figure 4.** Circular bar plots illustrate AI algorithms and data types used across Diagnosis (D), Prognosis (P), and Treatment (T) in precision medicine applications. A. Random Forest and logistic regression demonstrate predominance across categories. Other methodologies, such as artificial neural networks, boosting techniques, and support vector machines, exhibit variable utilization, highlighting diverse applications of AI algorithms. B. Transcriptomics (gene expression, non-coding RNA, and single nucleotide polymorphisms) and non-omics data (clinical, laboratory, and demographic) predominate, particularly in diagnosis and prognosis/treatment response, respectively. ANN, artificial neural networks; SVM, support vector machines; PLS-DA, Partial least squares-discriminant analysis.

| Reference                       | Precision medicine category | Metrics           | Minimum | Median  | Maximum |
|---------------------------------|-----------------------------|-------------------|---------|---------|---------|
| [16-25, 34-87]                  | Diagnosis                   | AUC (N=45)        | 0.55    | 0.90131 | 1       |
|                                 |                             | Accuracy % (N=17) | 73      | 84.2    | 100     |
| [16-19, 23, 24, 26-28, 122-154] | Prognosis                   | AUC (N=33)        | 0.575   | 0.857   | 0.9864  |
|                                 |                             | Accuracy % (N=6)  | 77      | 92.76   | 100     |
| [20-22, 25, 26, 29-33, 88-121]  | Treatment response          | AUC (N=38)        | 0.56    | 0.854   | 1       |
|                                 |                             | Accuracy % (N=4)  | 73      | 81.05   | 98.1    |

Table 1. Model performance across precision medicine applications

N, number of studies; AUC, area under the ROC curve.

81] evaluated CD vs. UC or UC vs. CD, obtaining a median area under the Receiver Operating Characteristic curve (AUC) of 0.8395 and accuracy of 80.92%. Four studies were unable to distinguish between IBD phenotypes [16, 17, 61, 73].

One study [59] developed a multi-class model based on fecal microbiome data to differentiate several diseases. This model achieved an AUC of 0.93 for both UC and CD in multi-class prediction. However, external validation using data from different geographic locations showed lower performance, with AUCs of 0.693 and 0.798 for UC and CD, respectively.

Eleven studies focused on the pediatric population [23, 38, 39, 46, 47, 55, 61, 68, 69, 71, 80], most comparing disease states to control groups.

# Artificial intelligence for treatment adherence and response

A total of 44 studies implemented AI for predicting treatment response and one for adherence to azathioprine [92]. The predictive analysis used diverse data types, including clinical information, laboratory data, and gene expression analysis, with a predominance of non-omic data (**Figure 4B**).

A key element with clinical implications is the definition of treatment response outcomes. Researchers evaluated several metrics for this purpose, including clinical and endoscopic condition-specific scores, such as the Crohn's Disease Activity Index, Pediatric Ulcerative Colitis Activity Index (PUCAI), Mayo score and sub-score, and Simple Endoscopy Score for Crohn's Disease (SES-CD).

Three studies evaluated treatment responses in the pediatric population: one analyzed the response to corticosteroids (AUC 0.77) [29], another examined exclusive enteral nutrition (AUC 0.90) [95], and a third assessed the response to various treatments, including corticosteroids, exclusive enteral nutrition, and mesalazine (accuracy of 77.8%) [22].

Acute severe ulcerative colitis (ASUC), a lifethreatening manifestation of UC characterized by the rapid onset of severe inflammation and often requiring hospitalization, was evaluated in terms of general response to various treatments [30], response to corticosteroids, infliximab, and cyclosporine separately [33], and response to corticosteroids alone [93]. Overall, the prediction for treatment response AUCs ranged from 0.703 to 0.97.

Biologics and small molecules are pivotal in treating inflammatory bowel disease, offering targeted therapeutic options that modulate the immune response. More than half of the studies evaluated the response to these classes: anti-TNF agents -including infliximab, adalimumab, and golimumab [20, 21, 25, 26, 31, 32, 89, 90, 99-106] demonstrated average AUC values of 0.903 for CD and 0.882 for UC. Studies on the anti-integrin agent vedolizumab [116-118, 120, 121] yielded average AUCs of 0.75 for CD and 0.708 for UC. Ustekinumab. targeting the interleukins IL-12 and IL-23, exhibited average AUCs of 0.808 for CD and 0.839 for UC. Tofacitinib, a Janus kinase inhibitor [109, 110], showed an average AUC of 0.83 for UC.

In one of the studies, Telesco et al. [99] conducted a phase 2a clinical trial with UC patients to validate a predictive model of Golimumab response based on gene expression data from the intestinal mucosa. The model achieved an AUC of 0.688 for endoscopic response at week six and an AUC of 0.671 for response at week thirty, lower than the initial performance. Some hypotheses for the model's poorer performance were raised, such as differences between training and validation populations.

#### Artificial intelligence for prognosis in inflammatory bowel disease

Forty-two studies focused on applying AI to the prognostic evaluation of IBDs. While supervised algorithms predominated, the authors employed unsupervised techniques in three articles [141, 145, 147], focusing on finding molecular markers of disease subtypes.

Assessing disease activity in IBD is essential for making effective treatment decisions, monitoring patient progress, and improving overall clinical outcome. Twenty-two studies [16-19, 23, 26, 122, 126-140] predicted disease activity based on various data with overall good performance.

Nine studies examined the clinical course of IBD [24, 141, 142, 145, 147, 148], with three focusing on the stricturing phenotype in CD [122, 143, 144]. In one of the studies, Lee et al. [141] identified, from the gene expression of CD8+ T cells, a panel capable of segregating CD and UC carriers into two groups, called IBD1 and IBD2, with the first group being related to worse outcome (measured through the need for treatment escalation, need for immunomodulator). Biasci and Lee et al. [142] used whole blood gene expression to predict IBD1 (IBDhi) and IBD2 (IBDIo) groups in both CD and UC, making it more feasible from a clinical perspective and constructing a prognostic assay (PredictSURE IBD).

While medical management aims to control inflammation, maintain remission, and improve quality of life, surgery becomes necessary in cases of refractory disease, intestinal obstruction, and severe complications, which are common challenges in IBD. Five studies evaluated the need for surgical intervention [27, 28, 122-124], while post-surgical recurrence was the subject of analysis in four investigations [88, 151-153].

Additionally, three studies addressed specific aspects of IBD prognosis: postoperative complications [125], diagnosis of intra-abdominal abscess [146], and sarcopenia [154].

#### Discussion

This SR revealed a growing interest in applying AI, particularly ML, for PM in IBDs. There has been a significant increase in publications in recent years, reflecting a broader trend observed across disciplines where AI is gaining prominence.

As mentioned earlier, the assessment of the geographical distribution of studies indicates a predominance of research from the United States of America, European countries, and Asian nations. Considering the multifactorial etiology of IBDs, which involves complex interactions between genetic and environmental factors, this geographic concentration limits the generalizability of results to populations from underrepresented regions, especially if stool microbiome or metabolomics are involved [155].

Almost no studies shared how the analysis was done in-depth, like a code or a GitHub project with analysis. This could be an essential step in facilitating validation studies in the future.

Regarding the strategies for model development, many studies employed only train-test splits, which, in theory, requires an extensive sample size to ensure adequate generalization. However, given that several studies presented limited sample sizes, a more restrictive interpretation of the results is advised. Applying techniques such as cross-validation and its variants, in conjunction or not with the training split, can significantly increase the robustness and reliability of the obtained results and should be used.

To enable practical application by clinicians, machine learning algorithms must provide insights into the reasoning behind their decisions. Although simpler models like logistic regression offer greater interpretability, their predictive performance often falls short of more advanced algorithms, such as random forest or gradient boosting algorithms. Currently, techniques that assist us in interpreting complex models, such as Shapley values [156], are available, facilitating the use of more complex models, especially for medical practice.

While the practical application of AI in clinical settings remains challenging, many studies in our review employed advanced omics data (such as gene expression, microbiome sequencing, and metabolomics) for various clinical purposes, likely due to reduced processing costs and the development of analytical techniques [157]. Given that the integration of such data in routine clinical practice is still emerging, we believe these studies may represent the first steps toward translational research in the field.

The identified PM categories in this SR are highly relevant to clinical practice and represent significant gaps in current knowledge in managing IBD.

Accurate and early diagnosis offers the possibility of altering the natural history of the disease, since a delayed diagnosis is associated with complications in CD and the need for surgery in both UC and CD [158]. Among the studies that used AI for IBD diagnosis, the majority evaluated UC or CD versus a control group, which has less clinical relevance, and in only one study were other clinical conditions incorporated into the predictive model [59]. From a practical standpoint, studies that evaluate IBD diagnosis against the primary differential diagnoses have significant clinical relevance and may be the focus of future studies.

Analysis of treatment response primarily evaluated the use of biologics and small molecule classes, which represent the main targeted therapy currently available and, as discussed, are very relevant in the clinical context. The lack of pre-treatment tests for predicting response remains a significant challenge, and the availability of such analysis is crucial in clinical practice. Even without validation, the results presented are promising, and well-conducted validation studies are necessary.

The IBD prognosis has seen a wide range of applications, with particular emphasis on disease activity prediction. Identifying relapse is a crucial aspect of patient follow-up. Currently, this information is obtained either subjectively (through clinical scales) or objectively (by fecal calprotectin, endoscopic, or radiological evaluation) [159-161]. Given the limitations and challenges associated with objective methods [162], developing and validating a model to predict disease activity holds significant practical application, and validation studies should be carried out.

Another relevant application was for predicting disease course. Recently, Noor et al. [163] published data from a randomized clinical trial that evaluated the previously described prognostic assay [142]. Two main outcomes were analyzed: evaluating the marker and comparing step-up versus top-down treatment in newly diagnosed CD patients. In this scenario, the assay could not predict the course of the disease.

Although Noor et al. and Telesco et al. did not validate the disease course and treatment response models, these results provide crucial information for future research, highlighting the importance of robust models built from systematic data collection and well-defined outcomes. In light of these findings, Wyatt et al. [164] published a prospective study protocol to analyze multi-omics data to develop predictive tools for treatment response in IBD.

This study presents limitations that should be considered when interpreting the results. First, the methodological heterogeneity among the included studies prevented the performance of a meta-analysis, limiting the quantitative synthesis. The exclusion of studies focused on image analysis may have omitted relevant information about AI applications in imaging diagnosis in IBDs. However, this topic has already been fully discussed in the literature, and we would like to raise other aspects of AI and PM in IBD that have not yet been covered. Furthermore, the variability in sample sizes, validation methods, and performance metrics across studies makes direct comparisons difficult. Almost all studies are observational, post hoc analysis, or retrospective; therefore, clinical trials are needed to validate the results.

#### Conclusion

The application of AI in IBD shows significant potential to enhance clinical practice. The results demonstrated promising predictive performance, particularly in disease prognosis and predicting treatment response. However, clinical implementation of these models requires additional validation in other cohorts of patients and a more significant number of participants. Successful integration of AI in IBD management depends on developing standardized protocols, clearly defining clinically significant outcomes, and fostering interdisciplinary collaboration. Future studies should focus on validating and evaluating the actual clinical impact of these tools. The evolution of AI in IBD has the potential to refine our understanding of the pathophysiology and to personalize therapeutic interventions to improve outcomes.

#### Acknowledgements

We would like to thank Ana Paula de Morais for her assistance in searching articles in the databases. We also thank Prof. Tristan Guillermo Torriani for reviewing the English version of the manuscript. This work was supported by the National Council for Scientific and Technological Development (CNPq) [Grant scholarship number #302557/2021-0 for R.F.L.]. H.D.C (author) and J.F.S. (author) received a Master of Science scholarship from the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil), Finance Code 001. W.M.S. (coauthor) received an undergraduate scholarship from CNPq [2023].

#### Disclosure of conflict of interest

None.

#### Abbreviations

Al, Artificial Intelligence; AUC, Area Under the Receiver Operating Characteristic Curve; ASUC, Acute severe ulcerative colitis; BVS, Biblioteca Virtual em Saúde; CD, Crohn's Disease; IBD, Inflammatory Bowel Disease; ML, Machine Learning; PM, Precision Medicine; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses; PUCAI, Pediatric Ulcerative Colitis Activity Index; RNA, Ribonucleic Acid; SES-CD, Simple Endoscopic Score for Crohn's Disease; SR, Systematic Review; TNF, Tumor Necrosis Factor; UC, Ulcerative Colitis.

Address correspondence to: Dr. Raquel Franco Leal, Inflammatory Bowel Disease Research Laboratory, Gastrocenter, Carlos Chagas Street, 420, Cidade Universitária Zeferino Vaz, Campinas 13083-878, São Paulo, Brazil. Tel: +55-19-991375374; E-mail: rafranco.unicamp@gmail.com; rafranco@unicamp. br

#### References

- [1] de Lange KM, Moutsianas L, Lee JC, Lamb CA, Luo Y, Kennedy NA, Jostins L, Rice DL, Gutierrez-Achury J, Ji SG, Heap G, Nimmo ER, Edwards C, Henderson P, Mowat C, Sanderson J, Satsangi J, Simmons A, Wilson DC, Tremelling M, Hart A, Mathew CG, Newman WG, Parkes M, Lees CW, Uhlig H, Hawkey C, Prescott NJ, Ahmad T, Mansfield JC, Anderson CA and Barrett JC. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat Genet 2017; 49: 256-261.
- [2] Shan Y, Lee M and Chang EB. The gut microbiome and inflammatory bowel diseases. Annu Rev Med 2022; 73: 455-468.
- [3] Yau Y, Leong RW, Zeng M and Wasinger VC. Proteomics and metabolomics in inflammatory bowel disease. J Gastroenterol Hepatol 2013; 28: 1076-1086.
- [4] Cohen BL and Sachar DB. Update on anti-tumor necrosis factor agents and other new drugs for inflammatory bowel disease. BMJ 2017; 357: j2505.
- [5] Bouguen G and Peyrin-Biroulet L. Surgery for adult Crohn's disease: what is the actual risk? Gut 2011; 60: 1178-1181.
- [6] Buisson A, Chevaux JB, Allen PB, Bommelaer G and Peyrin-Biroulet L. Review article: the natural history of postoperative Crohn's disease recurrence. Aliment Pharmacol Ther 2012; 35: 625-633.
- [7] Dasharathy SS, Limketkai BN and Sauk JS. What's new in the postoperative management of Crohn's disease? Dig Dis Sci 2022; 67: 3508-3517.
- [8] Guindi M and Riddell RH. Indeterminate colitis. J Clin Pathol 2004; 57: 1233-1244.
- [9] Prenzel F and Uhlig HH. Frequency of indeterminate colitis in children and adults with IBD a metaanalysis. J Crohns Colitis 2009; 3: 277-281.
- [10] Romberg-Camps MJ, Dagnelie PC, Kester AD, Hesselink-van de Kruijs MA, Cilissen M, Engels LG, Van Deursen C, Hameeteman WH, Wolters FL, Russel MG and Stockbrügger RW. Influence of phenotype at diagnosis and of other potential prognostic factors on the course of inflammatory bowel disease. Am J Gastroenterol 2009; 104: 371-383.
- [11] Johnson KB, Wei WQ, Weeraratne D, Frisse ME, Misulis K, Rhee K, Zhao J and Snowdon JL. Precision medicine, ai, and the future of per-

sonalized health care. Clin Transl Sci 2021; 14: 86-93.

- [12] Borg-Bartolo SP, Boyapati RK, Satsangi J and Kalla R. Precision medicine in inflammatory bowel disease: concept, progress and challenges. F1000Res 2020; 9: F1000 Faculty Rev-54.
- [13] Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, Wang Y, Dong Q, Shen H and Wang Y. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol 2017; 2: 230-243.
- [14] Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, Mc-Guinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P and Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021; 372: n71.
- [15] Ouzzani M, Hammady H, Fedorowicz Z and Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev 2016; 5: 210.
- [16] Clooney AG, Eckenberger J, Laserna-Mendieta E, Sexton KA, Bernstein MT, Vagianos K, Sargent M, Ryan FJ, Moran C, Sheehan D, Sleator RD, Targownik LE, Bernstein CN, Shanahan F and Claesson MJ. Ranking microbiome variance in inflammatory bowel disease: a large longitudinal intercontinental study. Gut 2021; 70: 499-510.
- [17] Bosch S, Wintjens DSJ, Wicaksono A, Kuijvenhoven J, van der Hulst R, Stokkers P, Daulton E, Pierik MJ, Covington JA, de Meij TGJ and de Boer NKH. The faecal scent of inflammatory bowel disease: detection and monitoring based on volatile organic compound analysis. Dig Liver Dis 2020; 52: 745-752.
- [18] Serrano-Gómez G, Mayorga L, Oyarzun I, Roca J, Borruel N, Casellas F, Varela E, Pozuelo M, Machiels K, Guarner F, Vermeire S and Manichanh C. Dysbiosis and relapse-related microbiome in inflammatory bowel disease: a shotgun metagenomic approach. Comput Struct Biotechnol J 2021; 19: 6481-6489.
- [19] Sarrabayrouse G, Elias A, Yáñez F, Mayorga L, Varela E, Bartoli C, Casellas F, Borruel N, Herrera de Guise C, Machiels K, Vermeire S and Manichanh C. Fungal and bacterial loads: noninvasive inflammatory bowel disease biomarkers for the clinical setting. mSystems 2021; 6: e01277-20.
- [20] Zhou Y, Xu ZZ, He Y, Yang Y, Liu L, Lin Q, Nie Y, Li M, Zhi F, Liu S, Amir A, González A, Tripathi A, Chen M, Wu GD, Knight R, Zhou H and Chen Y. Gut microbiota offers universal biomarkers across ethnicity in inflammatory bowel disease

diagnosis and infliximab response prediction. mSystems 2018; 3: e00188-17.

- [21] Ye C, Zhu S, Gao Y and Huang Y. Landscape of sialylation patterns identify biomarkers for diagnosis and prediction of response to anti-TNF therapy in crohn's disease. Front Genet 2022; 13: 1065297.
- [22] Douglas GM, Hansen R, Jones CMA, Dunn KA, Comeau AM, Bielawski JP, Tayler R, El-Omar EM, Russell RK, Hold GL, Langille MGI and Van Limbergen J. Multi-omics differentially classify disease state and treatment outcome in pediatric Crohn's disease. Microbiome 2018; 6: 13.
- [23] Pei J, Wang G, Li Y, Li L, Li C, Wu Y, Liu J and Tian G. Utility of four machine learning approaches for identifying ulcerative colitis and Crohn's disease. Heliyon 2023; 10: e23439.
- [24] Montero-Meléndez T, Llor X, García-Planella E, Perretti M and Suárez A. Identification of novel predictor classifiers for inflammatory bowel disease by gene expression profiling. PLoS One 2013; 8: e76235.
- [25] Zheng C, Chen X, Ke Y, Xu X, Wu C and Jiang L. Constructing models for Crohn's disease diagnosis and prediction of infliximab non-response based on angiogenesis-related genes. Front Immunol 2024; 15: 1239496.
- [26] Wu Y, Wang Z, Xing M, Li B, Liu Z, Du P, Yang H and Wang X. The specific changes of urine raman spectra can serve as novel diagnostic tools for disease characteristics in patients with Crohn's disease. J Inflamm Res 2022; 15: 897-910.
- [27] Kang EA, Jang J, Choi CH, Kang SB, Bang KB, Kim TO, Seo GS, Cha JM, Chun J, Jung Y, Kim HG, Im JP, Kim S, Ahn KS, Lee CK, Kim HJ, Kim MS and Park DI. Development of a clinical and genetic prediction model for early intestinal resection in patients with Crohn's disease: results from the IMPACT study. J Clin Med 2021; 10: 633.
- [28] Stidham RW, Liu Y, Enchakalody B, Van T, Krishnamurthy V, Su GL, Zhu J and Waljee AK. The use of readily available longitudinal data to predict the likelihood of surgery in crohn disease. Inflamm Bowel Dis 2021; 27: 1328-1334.
- [29] Haberman Y, Karns R, Dexheimer PJ, Schirmer M, Somekh J, Jurickova I, Braun T, Novak E, Bauman L, Collins MH, Mo A, Rosen MJ, Bonkowski E, Gotman N, Marquis A, Nistel M, Rufo PA, Baker SS, Sauer CG, Markowitz J, Pfefferkorn MD, Rosh JR, Boyle BM, Mack DR, Baldassano RN, Shah S, Leleiko NS, Heyman MB, Grifiths AM, Patel AS, Noe JD, Aronow BJ, Kugathasan S, Walters TD, Gibson G, Thomas SD, Mollen K, Shen-Orr S, Huttenhower C, Xavier RJ, Hyams JS and Denson LA. Ulcerative

colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response. Nat Commun 2019; 10: 38.

- [30] Ghoshal UC, Rai S, Kulkarni A and Gupta A. Prediction of outcome of treatment of acute severe ulcerative colitis using principal component analysis and artificial intelligence. JGH Open 2020; 4: 889-897.
- [31] Zhang CB, Tang J, Wang XD, Lyu KS, Huang M and Gao X. Multi-alleles predict primary nonresponse to infliximab therapy in Crohn's disease. Gastroenterol Rep (Oxf) 2021; 9: 427-434.
- [32] Park SK, Kim YB, Kim S, Lee CW, Choi CH, Kang SB, Kim TO, Bang KB, Chun J, Cha JM, Im JP, Kim MS, Ahn KS, Kim SY and Park DI. Development of a machine learning model to predict non-durable response to anti-TNF therapy in Crohn's disease using transcriptome imputed from genotypes. J Pers Med 2022; 12: 947.
- [33] Morilla I, Uzzan M, Laharie D, Cazals-Hatem D, Denost Q, Daniel F, Belleannee G, Bouhnik Y, Wainrib G, Panis Y, Ogier-Denis E and Treton X. Colonic MicroRNA profiles, identified by a deep learning algorithm, that predict responses to therapy of patients with acute severe ulcerative colitis. Clin Gastroenterol Hepatol 2019; 17: 905-913.
- [34] Zhang T, Song B, Zhu W, Xu X, Gong QQ, Morando C, Dassopoulos T, Newberry RD, Hunt SR and Li E. An ileal Crohn's disease gene signature based on whole human genome expression profiles of disease unaffected ileal mucosal biopsies. PLoS One 2012; 7: e37139.
- [35] Duttagupta R, DiRienzo S, Jiang R, Bowers J, Gollub J, Kao J, Kearney K, Rudolph D, Dawany NB, Showe MK, Stamato T, Getts RC and Jones KW. Genome-wide maps of circulating miRNA biomarkers for ulcerative colitis. PLoS One 2012; 7: e31241.
- [36] Hübenthal M, Hemmrich-Stanisak G, Degenhardt F, Szymczak S, Du Z, Elsharawy A, Keller A, Schreiber S and Franke A. Sparse modeling reveals miRNA signatures for diagnostics of inflammatory bowel disease. PLoS One 2015; 10: e0140155.
- [37] Mirza AH, Berthelsen CH, Seemann SE, Pan X, Frederiksen KS, Vilien M, Gorodkin J and Pociot F. Transcriptomic landscape of IncRNAs in inflammatory bowel disease. Genome Med 2015; 7: 39.
- [38] Mossotto E, Ashton JJ, Coelho T, Beattie RM, MacArthur BD and Ennis S. Classification of paediatric inflammatory bowel disease using machine learning. Sci Rep 2017; 7: 2427.
- [39] El Mouzan MI, Korolev KS, Al Mofarreh MA, Menon R, Winter HS, Al Sarkhy AA, Dowd SE, Al Barrag AM and Assiri AA. Fungal dysbiosis pre-

dicts the diagnosis of pediatric Crohn's disease. World J Gastroenterol 2018; 24: 4510-4516.

- [40] Klein O, Fogt F, Hollerbach S, Nebrich G, Boskamp T and Wellmann A. Classification of inflammatory bowel disease from Formalin-Fixed, Paraffin-Embedded tissue biopsies via imaging mass spectrometry. Proteomics Clin Appl 2020; 14: e1900131.
- [41] Kedia S, Ghosh TS, Jain S, Desigamani A, Kumar A, Gupta V, Bopanna S, Yadav DP, Goyal S, Makharia G, Travis SPL, Das B and Ahuja V. Gut microbiome diversity in acute severe colitis is distinct from mild to moderate ulcerative colitis. J Gastroenterol Hepatol 2021; 36: 731-739.
- [42] Khorasani HM, Usefi H and Peña-Castillo L. Detecting ulcerative colitis from colon samples using efficient feature selection and machine learning. Sci Rep 2020; 10: 13744.
- [43] Li H, Lai L and Shen J. Development of a susceptibility gene based novel predictive model for the diagnosis of ulcerative colitis using random forest and artificial neural network. Aging (Albany NY) 2020; 12: 20471-20482.
- [44] Lins Neto MÁF, Verdi GMX, Veras AO, Veras MO, Caetano LC and Ursulino JS. Use of metabolomics to the diagnosis of inflammatory bowel disease. Arq Gastroenterol 2020; 57: 311-315.
- [45] Xu C, Zhou M, Xie Z, Li M, Zhu X and Zhu H. LightCUD: a program for diagnosing IBD based on human gut microbiome data. BioData Min 2021; 14: 2.
- [46] Dhaliwal J, Erdman L, Drysdale E, Rinawi F, Muir J, Walters TD, Siddiqui I, Griffiths AM and Church PC. Accurate classification of pediatric colonic inflammatory bowel disease subtype using a random forest machine learning classifier. J Pediatr Gastroenterol Nutr 2021; 72: 262-269.
- [47] El Mouzan MI, Winter HS, Al Sarkhy AA, Korolev K, Menon R and Assiri AA. Bacterial dysbiosis predicts the diagnosis of Crohn's disease in Saudi children. Saudi J Gastroenterol 2021; 27: 144-148.
- [48] Iablokov SN, Klimenko NS, Efimova DA, Shashkova T, Novichkov PS, Rodionov DA and Tyakht AV. Metabolic phenotypes as potential biomarkers for linking gut microbiome with inflammatory bowel diseases. Front Mol Biosci 2020; 7: 603740.
- [49] Kraszewski S, Szczurek W, Szymczak J, Reguła M and Neubauer K. Machine learning prediction model for inflammatory bowel disease based on laboratory markers. Working model in a discovery cohort study. J Clin Med 2021; 10: 4745.
- [50] Li B, Wu Y, Wang Z, Xing M, Xu W, Zhu Y, Du P, Wang X and Yang H. Non-invasive diagnosis of

Crohn's disease based on SERS combined with PCA-SVM. Anal Methods 2021; 13: 5264-5273.

- [51] Lu J, Wang Z, Maimaiti M, Hui W, Abudourexiti A and Gao F. Identification of diagnostic signatures in ulcerative colitis patients via bioinformatic analysis integrated with machine learning. Hum Cell 2022; 35: 179-188.
- [52] Manandhar I, Alimadadi A, Aryal S, Munroe PB, Joe B and Cheng X. Gut microbiome-based supervised machine learning for clinical diagnosis of inflammatory bowel diseases. Am J Physiol Gastrointest Liver Physiol 2021; 320: G328-G337.
- [53] Notararigo S, Martín-Pastor M, Viñuela-Roldán JE, Quiroga A, Dominguez-Munoz JE and Barreiro-de Acosta M. Targeted (1)H NMR metabolomics and immunological phenotyping of human fresh blood and serum samples discriminate between healthy individuals and inflammatory bowel disease patients treated with anti-TNF. J Mol Med (Berl) 2021; 99: 1251-1264.
- [54] Park SK, Kim S, Lee GY, Kim SY, Kim W, Lee CW, Park JL, Choi CH, Kang SB, Kim TO, Bang KB, Chun J, Cha JM, Im JP, Ahn KS, Kim SY and Park DI. Development of a machine learning model to distinguish between ulcerative colitis and Crohn's disease using RNA sequencing data. Diagnostics (Basel) 2021; 11: 2365.
- [55] Schneider N, Sohrabi K, Schneider H, Zimmer KP, Fischer P and de Laffolie J; CEDATA-GPGE Study Group. Machine learning classification of inflammatory bowel disease in children based on a large real-world pediatric cohort CEDATA-GPGE® registry. Front Med (Lausanne) 2021; 8: 666190.
- [56] Carreras J. Artificial intelligence analysis of ulcerative colitis using an autoimmune discovery transcriptomic panel. Healthcare (Basel) 2022; 10: 1476.
- [57] Nowak JK, Szymańska CJ, Glapa-Nowak A, Duclaux-Loras R, Dybska E, Ostrowski J, Walkowiak J and Adams AT. Unexpected actors in inflammatory bowel disease revealed by machine learning from whole-blood transcriptomic data. Genes (Basel) 2022; 13: 1570.
- [58] Yang Y, Xu L, Qiao Y, Wang T and Zheng Q. Construction of a neural network diagnostic model and investigation of immune infiltration characteristics for Crohn's disease. Front Genet 2022; 13: 976578.
- [59] Su Q, Liu Q, Lau RI, Zhang J, Xu Z, Yeoh YK, Leung TWH, Tang W, Zhang L, Liang JQY, Yau YK, Zheng J, Liu C, Zhang M, Cheung CP, Ching JYL, Tun HM, Yu J, Chan FKL and Ng SC. Faecal microbiome-based machine learning for multiclass disease diagnosis. Nat Commun 2022; 13: 6818.

- [60] Bu M, Cao X and Zhou B. Identification of potential biomarkers and immune infiltration characteristics in ulcerative colitis by combining results from two machine learning algorithms. Comput Math Methods Med 2022; 2022: 5412627.
- [61] Jagt JZ, Struys EA, Ayada I, Bakkali A, Jansen EEW, Claesen J, van Limbergen JE, Benninga MA, de Boer NKH and de Meij TGJ. Fecal Amino Acid analysis in newly diagnosed pediatric inflammatory bowel disease: a multicenter casecontrol study. Inflamm Bowel Dis 2022; 28: 755-763.
- [62] Kim H, Na JE, Kim S, Kim TO, Park SK, Lee CW, Kim KO, Seo GS, Kim MS, Cha JM, Koo JS and Park DI. A machine learning-based diagnostic model for Crohn's disease and ulcerative colitis utilizing fecal microbiome analysis. Microorganisms 2023; 12: 36.
- [63] Kang DY, Park JL, Yeo MK, Kang SB, Kim JM, Kim JS and Kim SY. Diagnosis of Crohn's disease and ulcerative colitis using the microbiome. BMC Microbiol 2023; 23: 336.
- [64] Alfonso Perez G and Castillo R. Gene identification in inflammatory bowel disease via a machine learning approach. Medicina (Kaunas) 2023; 59: 1218.
- [65] Shen X, Mo S, Zeng X, Wang Y, Lin L, Weng M, Sugasawa T, Wang L, Gu W and Nakajima T. Identification of antigen-presentation related B cells as a key player in Crohn's disease using single-cell dissecting, hdWGCNA, and deep learning. Clin Exp Med 2023; 23: 5255-5267.
- [66] Qian R, Tang M, Ouyang Z, Cheng H and Xing S. Identification of ferroptosis-related genes in ulcerative colitis: a diagnostic model with machine learning. Ann Transl Med 2023; 11: 177.
- [67] Hong S, Wang H, Chan S, Zhang J, Chen B, Ma X and Chen X. Identifying macrophage-related genes in ulcerative colitis using weighted coexpression network analysis and machine learning. Mediators Inflamm 2023; 2023: 4373840.
- [68] Shah R, Hoffman K, Denson L, Kugathasan S and Kellermayer R. Mucosal microbiome is predictive of pediatric Crohn's disease across geographic regions in North America. F1000Res 2022; 11: 156.
- [69] Zheng Z, Zhan S, Zhou Y, Huang G, Chen P and Li B. Pediatric Crohn's disease diagnosis aid via genomic analysis and machine learning. Front Pediatr 2023; 11: 991247.
- [70] Kang SB, Kim H, Kim S, Kim J, Park SK, Lee CW, Kim KO, Seo GS, Kim MS, Cha JM, Koo JS and Park DI. Potential oral microbial markers for differential diagnosis of Crohn's disease and ulcerative colitis using machine learning models. Microorganisms 2023; 11: 1665.
- [71] Zhan Y, Jin Q, Yousif TYE, Soni M, Ren Y and Liu S. Predicting pediatric Crohn's disease based

on six mRNA-constructed risk signature using comprehensive bioinformatic approaches. Open Life Sci 2023; 18: 20220731.

- [72] Mo S, Shen X, Huang B, Wang Y, Lin L, Chen Q, Weng M, Sugasawa T, Gu W, Tsushima Y and Nakajima T. Single-cell dissection, hdWGCNA and deep learning reveal the role of oxidatively stressed plasma cells in ulcerative colitis. Acta Biochim Biophys Sin (Shanghai) 2023; 55: 1730-1739.
- [73] Stafford IS, Ashton JJ, Mossotto E, Cheng G, Mark Beattie R and Ennis S. Supervised machine learning classifies inflammatory bowel disease patients by subtype using whole exome sequencing data. J Crohns Colitis 2023; 17: 1672-1680.
- [74] Wu X, Zhang T, Zhang T and Park S. The impact of gut microbiome enterotypes on ulcerative colitis: identifying key bacterial species and revealing species co-occurrence networks using machine learning. Gut Microbes 2024; 16: 2292254.
- [75] Chen ZA, Ma HH, Wang Y, Tian H, Mi JW, Yao DM and Yang CJ. Integrated multiple microarray studies by robust rank aggregation to identify immune-associated biomarkers in Crohn's disease based on three machine learning methods. Sci Rep 2023; 13: 2694.
- [76] Zhang S, Zhang G, Wang W, Guo SB, Zhang P, Wang F, Zhou Q, Zhou Z, Wang Y, Sun H, Cui W, Yang S and Yuan W. An assessment system for clinical and biological interpretability in ulcerative colitis. Aging (Albany NY) 2024; 16: 3856-3879.
- [77] Sokollik C, Pahud de Mortanges A, Leichtle AB, Juillerat P and Horn MP; Swiss IBD Cohort Study Group. Machine learning in antibody diagnostics for inflammatory bowel disease subtype classification. Diagnostics (Basel) 2023; 13: 2491.
- [78] Gao S, Gao X, Zhu R, Wu D, Feng Z, Jiao N, Sun R, Gao W, He Q, Liu Z and Zhu L. Microbial genes outperform species and SNVs as diagnostic markers for Crohn's disease on multicohort fecal metagenomes empowered by artificial intelligence. Gut Microbes 2023; 15: 2221428.
- [79] Yang Y, Hua Y, Zheng H, Jia R, Ye Z, Su G, Gu Y, Zhan K, Tang K, Qi S, Wu H, Qin S and Huang S. Biomarkers prediction and immune landscape in ulcerative colitis: findings based on bioinformatics and machine learning. Comput Biol Med 2024; 168: 107778.
- [80] Tang D, Huang Y, Che Y, Yang C, Pu B, Liu S and Li H. Identification of platelet-related subtypes and diagnostic markers in pediatric Crohn's disease based on WGCNA and machine learning. Front Immunol 2024; 15: 1323418.

- [81] Hu S, Bourgonje AR, Gacesa R, Jansen BH, Björk JR, Bangma A, Hidding IJ, van Dullemen HM, Visschedijk MC, Faber KN, Dijkstra G, Harmsen HJM, Festen EAM, Vich Vila A, Spekhorst LM and Weersma RK. Mucosal hostmicrobe interactions associate with clinical phenotypes in inflammatory bowel disease. Nat Commun 2024; 15: 1470.
- [82] He T, Wang K, Zhao P, Zhu G, Yin X, Zhang Y, Zhang Z, Zhao K, Wang Z and Wang K. Integrative computational approach identifies immune-relevant biomarkers in ulcerative colitis. FEBS Open Bio 2022; 12: 500-515.
- [83] Zhang L, Mao R, Lau CT, Chung WC, Chan JCP, Liang F, Zhao C, Zhang X and Bian Z. Identification of useful genes from multiple microarrays for ulcerative colitis diagnosis based on machine learning methods. Sci Rep 2022; 12: 9962.
- [84] Tang D, Pu B, Liu S and Li H. Identification of cuproptosis-associated subtypes and signature genes for diagnosis and risk prediction of Ulcerative colitis based on machine learning. Front Immunol 2023; 14: 1142215.
- [85] Li Y, Tang M, Zhang FJ, Huang Y, Zhang J, Li J, Wang Y, Yang J and Zhu S. Screening of ulcerative colitis biomarkers and potential pathways based on weighted gene co-expression network, machine learning and ceRNA hypothesis. Hereditas 2022; 159: 42.
- [86] Chen Q, Bei S, Zhang Z, Wang X and Zhu Y. Identification of diagnostic biomarks and immune cell infiltration in ulcerative colitis. Sci Rep 2023; 13: 6081.
- [87] Wu GL, Li L, Chen XY, Zhang WF, Wu JB, Yu X and Chen HJ. Machine learning-based B cellrelated diagnostic biomarker signature and molecular subtypes characteristic of ulcerative colitis. Aging (Albany NY) 2024; 16: 2774-2788.
- [88] Waljee AK, Cohen-Mekelburg S, Liu Y, Liu B, Zhu J and Higgins PDR. Assessing clinical disease recurrence using laboratory data in surgically resected patients from the TOPPIC trial. Crohns Colitis 360 2020; 2: otaa088.
- [89] Gorenjak M, Repnik K, Jezernik G, Jurgec S, Skok P and Potočnik U. Genetic prediction profile for adalimumab response in Slovenian Crohn's disease patients. Z Gastroenterol 2019; 57: 1218-1225.
- [90] Sakurai T, Nishiyama H, Sakai K, De Velasco MA, Nagai T, Komeda Y, Kashida H, Okada A, Kawai I, Nishio K, Ogata H and Kudo M. Mucosal microbiota and gene expression are associated with long-term remission after discontinuation of adalimumab in ulcerative colitis. Sci Rep 2020; 10: 19186.
- [91] Kim SY, Shin SY, Saeed M, Ryu JE, Kim JS, Ahn J, Jung Y, Moon JM, Choi CH and Choi HK. Pre-

diction of clinical remission with adalimumab therapy in patients with ulcerative colitis by fourier transform-infrared spectroscopy coupled with machine learning algorithms. Metabolites 2023; 14: 2.

- [92] Wang L, Fan R, Zhang C, Hong L, Zhang T, Chen Y, Liu K, Wang Z and Zhong J. Applying machine learning models to predict medication nonadherence in Crohn's disease maintenance therapy. Patient Prefer Adherence 2020; 14: 917-926.
- [93] Yu S, Li H, Li Y, Xu H, Tan B, Tian BW, Dai YM, Tian F and Qian JM. Development and validation of novel models for the prediction of intravenous corticosteroid resistance in acute severe ulcerative colitis using logistic regression and machine learning. Gastroenterol Rep (Oxf) 2022; 10: goac053.
- [94] Takayama T, Okamoto S, Hisamatsu T, Naganuma M, Matsuoka K, Mizuno S, Bessho R, Hibi T and Kanai T. Computer-aided prediction of long-term prognosis of patients with ulcerative colitis after cytoapheresis therapy. PLoS One 2015; 10: e0131197.
- [95] Jones CMA, Connors J, Dunn KA, Bielawski JP, Comeau AM, Langille MGI and Van Limbergen J. Bacterial taxa and functions are predictive of sustained remission following exclusive enteral nutrition in pediatric Crohn's disease. Inflamm Bowel Dis 2020; 26: 1026-1037.
- [96] Harun R, Lu J, Kassir N and Zhang W. Machine learning-based quantification of patient factors impacting remission in patients with ulcerative colitis: insights from etrolizumab phase III clinical trials. Clin Pharmacol Ther 2024; 115: 815-824.
- [97] Kang GU, Park S, Jung Y, Jee JJ, Kim MS, Lee S, Lee DW, Shin JH and Koh H. Exploration of potential gut microbiota-derived biomarkers to predict the success of fecal microbiota transplantation in ulcerative colitis: a prospective cohort in Korea. Gut Liver 2022; 16: 775-785.
- [98] Wu X, Li P, Wang W, Xu J, Ai R, Wen Q, Cui B and Zhang F. The underlying changes in serum metabolic profiles and efficacy prediction in patients with extensive ulcerative colitis undergoing fecal microbiota transplantation. Nutrients 2023; 15: 3340.
- [99] Telesco SE, Brodmerkel C, Zhang H, Kim LL, Johanns J, Mazumder A, Li K, Baribaud F, Curran M, Strauss R, Paxson B, Plevy S, Davison T, Knight L, Dibben S, Schreiber S, Sandborn W, Rutgeerts P, Siegel CA, Reinisch W and Greenbaum LE. Gene expression signature for prediction of golimumab response in a phase 2a open-label trial of patients with ulcerative colitis. Gastroenterology 2018; 155: 1008-1011, e1008.

- [100] Feng J, Chen Y, Feng Q, Ran Z and Shen J. Novel gene signatures predicting primary non-response to infliximab in ulcerative colitis: development and validation combining random forest with artificial neural network. Front Med (Lausanne) 2021; 8: 678424.
- [101] Ghiassian SD, Voitalov I, Withers JB, Santolini M, Saleh A and Akmaev VR. Network-based response module comprised of gene expression biomarkers predicts response to infliximab at treatment initiation in ulcerative colitis. Transl Res 2022; 246: 78-86.
- [102] Li L, Chen R, Zhang Y, Zhou G, Chen B, Zeng Z, Chen M and Zhang S. A Novel model based on serum biomarkers to predict primary non-response to infliximab in Crohn's disease. Front Immunol 2021; 12: 646673.
- [103] Chen X, Jiang L, Han W, Bai X, Ruan G, Guo M, Zhou R, Liang H, Yang H and Qian J. Artificial neural network analysis-based immune-related signatures of primary non-response to infliximab in patients with ulcerative colitis. Front Immunol 2021; 12: 742080.
- [104] Mishra N, Aden K, Blase JI, Baran N, Bordoni D, Tran F, Conrad C, Avalos D, Jaeckel C, Scherer M, Sørensen SB, Overgaard SH, Schulte B, Nikolaus S, Rey G, Gasparoni G, Lyons PA, Schultze JL, Walter J, Andersen V; SYSCID Consortium; Dermitzakis ET, Schreiber S and Rosenstiel P. Longitudinal multi-omics analysis identifies early blood-based predictors of anti-TNF therapy response in inflammatory bowel disease. Genome Med 2022; 14: 110.
- [105] Derakhshan Nazari MH, Shahrokh S, Ghanbari-Maman L, Maleknia S, Ghorbaninejad M and Meyfour A. Prediction of anti-TNF therapy failure in ulcerative colitis patients by ensemble machine learning: a prospective study. Heliyon 2023; 9: e21154.
- [106] Li Y, Pan J, Zhou N, Fu D, Lian G, Yi J, Peng Y and Liu X. A random forest model predicts responses to infliximab in Crohn's disease based on clinical and serological parameters. Scand J Gastroenterol 2021; 56: 1030-1039.
- [107] Hassan-Zahraee M, Ye Z, Xi L, Dushin E, Lee J, Romatowski J, Leszczyszyn J, Danese S, Sandborn WJ, Banfield C, Gale JD, Peeva E, Longman RS, Hyde CL and Hung KE. Baseline serum and stool microbiome biomarkers predict clinical efficacy and tissue molecular response after ritlecitinib induction therapy in ulcerative colitis. J Crohns Colitis 2024; 18: 1361-1370.
- [108] Waljee AK, Sauder K, Patel A, Segar S, Liu B, Zhang Y, Zhu J, Stidham RW, Balis U and Higgins PDR. Machine learning algorithms for objective remission and clinical outcomes with thiopurines. J Crohns Colitis 2017; 11: 801-810.

- [109] Lees CW, Deuring JJ, Chiorean M, Daperno M, Bonfanti G, Germino R, Brown PB, Modesto I and Edwards RA. Prediction of early clinical response in patients receiving tofacitinib in the OCTAVE Induction 1 and 2 studies. Therap Adv Gastroenterol 2021; 14: 17562848211054710.
- [110] Joustra V, Li Yim AYF, van Gennep S, Hageman I, de Waard T, Levin E, Lauffer P, de Jonge W, Henneman P, Löwenberg M and D'Haens GR. Peripheral blood DNA methylation signatures and response to tofacitinib in moderate-to-severe ulcerative colitis. J Crohns Colitis 2024; 18: 1179-1189.
- [111] Waljee AK, Wallace BI, Cohen-Mekelburg S, Liu Y, Liu B, Sauder K, Stidham RW, Zhu J and Higgins PDR. Development and validation of machine learning models in prediction of remission in patients with moderate to severe Crohn disease. JAMA Netw Open 2019; 2: e193721.
- [112] He M, Li C, Tang W, Kang Y, Zuo Y and Wang Y. Machine learning gene expression predicting model for ustekinumab response in patients with Crohn's disease. Immun Inflamm Dis 2021; 9: 1529-1540.
- [113] Chaparro M, Baston-Rey I, Fernández Salgado E, González García J, Ramos L, Diz-Lois Palomares MT, Argüelles-Arias F, Iglesias Flores E, Cabello M, Rubio Iturria S, Núñez Ortiz A, Charro M, Ginard D, Dueñas Sadornil C, Merino Ochoa O, Busquets D, Iyo E, Gutiérrez Casbas A, Ramírez de la Piscina P, Boscá-Watts MM, Arroyo M, García MJ, Hinojosa E, Gordillo J, Martínez Montiel P, Velayos Jiménez B, Quílez Ivorra C, Vázquez Morón JM, Huguet JM, González-Lama Y, Muñagorri Santos AI, Amo VM, Martín Arranz MD, Bermejo F, Martínez Cadilla J, Rubín de Célix C, Fradejas Salazar P, López San Román A, Jiménez N, García-López S, Figuerola A, Jiménez I, Martínez Cerezo FJ, Taxonera C, Varela P, de Francisco R, Monfort D, Molina Arriero G, Hernández-Camba A, García Alonso FJ, Van Domselaar M, Pajares-Villarroya R, Núñez A, Rodríguez Moranta F, Marín-Jiménez I, Robles Alonso V, Martín Rodríguez MDM, Camo-Monterde P, García Tercero I, Navarro-Llavat M, García LA, Hervías Cruz D, Kloss S, Passey A, Novella C, Vispo E, Barreirode Acosta M and Gisbert JP. Using interpretable machine learning to identify baseline predictive factors of remission and drug durability in Crohn's disease patients on ustekinumab. J Clin Med 2022; 11: 4518.
- [114] Liefferinckx C, Hubert A, Thomas D, Bottieau J, Minsart C, Cremer A, Amininejad L, Vallée F, Toubeau JF and Franchimont D. Predictive models assessing the response to ustekinumab highlight the value of therapeutic drug monitoring in Crohn's disease. Dig Liver Dis 2023; 55: 366-372.

- [115] Morikubo H, Tojima R, Maeda T, Matsuoka K, Matsuura M, Miyoshi J, Tamura S and Hisamatsu T. Machine learning using clinical data at baseline predicts the medium-term efficacy of ustekinumab in patients with ulcerative colitis. Sci Rep 2024; 14: 4386.
- [116] Waljee AK, Liu B, Sauder K, Zhu J, Govani SM, Stidham RW and Higgins PDR. Predicting corticosteroid-free endoscopic remission with vedolizumab in ulcerative colitis. Aliment Pharmacol Ther 2018; 47: 763-772.
- [117] Waljee AK, Liu B, Sauder K, Zhu J, Govani SM, Stidham RW and Higgins PDR. Predicting corticosteroid-free biologic remission with vedolizumab in Crohn's disease. Inflamm Bowel Dis 2018; 24: 1185-1192.
- [118] Dulai PS, Singh S, Vande Casteele N, Meserve J, Winters A, Chablaney S, Aniwan S, Shashi P, Kochhar G, Weiss A, Koliani-Pace JL, Gao Y, Boland BS, Chang JT, Faleck D, Hirten R, Ungaro R, Lukin D, Sultan K, Hudesman D, Chang S, Bohm M, Varma S, Fischer M, Shmidt E, Swaminath A, Gupta N, Rosario M, Jairath V, Guizzetti L, Feagan BG, Siegel CA, Shen B, Kane S, Loftus EV Jr, Sandborn WJ, Sands BE, Colombel JF, Lasch K and Cao C. Development and validation of clinical scoring tool to predict outcomes of treatment with vedolizumab in patients with ulcerative colitis. Clin Gastroenterol Hepatol 2020; 18: 2952-2961, e2958.
- [119] Miyoshi J, Maeda T, Matsuoka K, Saito D, Miyoshi S, Matsuura M, Okamoto S, Tamura S and Hisamatsu T. Machine learning using clinical data at baseline predicts the efficacy of vedolizumab at week 22 in patients with ulcerative colitis. Sci Rep 2021; 11: 16440.
- [120] Chen J, Girard M, Wang S, Kisfalvi K and Lirio R. Using supervised machine learning approach to predict treatment outcomes of vedolizumab in ulcerative colitis patients. J Biopharm Stat 2022; 32: 330-345.
- [121] Venkatapurapu SP, Iwakiri R, Udagawa E, Patidar N, Qi Z, Takayama R, Kumar K, Sato Y, Behar M, Offner P, Dwivedi G, Miyasaka H, Suzuki RK, Hamada AL, D'Alessandro PM and Fernandez J. A computational platform integrating a mechanistic model of Crohn's disease for predicting temporal progression of mucosal damage and healing. Adv Ther 2022; 39: 3225-3247.
- [122] Chen KA, Nishiyama NC, Kennedy Ng MM, Shumway A, Joisa CU, Schaner MR, Lian G, Beasley C, Zhu LC, Bantumilli S, Kapadia MR, Gomez SM, Furey TS and Sheikh SZ. Linking gene expression to clinical outcomes in pediatric Crohn's disease using machine learning. Sci Rep 2024; 14: 2667.
- [123] Jain S, Kedia S, Sethi T, Bopanna S, Yadav DP, Goyal S, Padhan R, Venigalla PM, Sahni P,

Dash NR, Pal S, Makharia G, Travis SPL and Ahuja V. Predictors of long-term outcomes in patients with acute severe colitis: a northern Indian cohort study. J Gastroenterol Hepatol 2018; 33: 615-622.

- [124] Dong Y, Xu L, Fan Y, Xiang P, Gao X, Chen Y, Zhang W and Ge Q. A novel surgical predictive model for Chinese Crohn's disease patients. Medicine (Baltimore) 2019; 98: e17510.
- [125] Sofo L, Caprino P, Schena CA, Sacchetti F, Potenza AE and Ciociola A. New perspectives in the prediction of postoperative complications for high-risk ulcerative colitis patients: machine learning preliminary approach. Eur Rev Med Pharmacol Sci 2020; 24: 12781-12787.
- [126] Bodelier AG, Smolinska A, Baranska A, Dallinga JW, Mujagic Z, Vanhees K, van den Heuvel T, Masclee AA, Jonkers D, Pierik MJ and van Schooten FJ. Volatile organic compounds in exhaled air as novel marker for disease activity in Crohn's disease: a metabolomic approach. Inflamm Bowel Dis 2015; 21: 1776-1785.
- [127] Waljee AK, Lipson R, Wiitala WL, Zhang Y, Liu B, Zhu J, Wallace B, Govani SM, Stidham RW, Hayward R and Higgins PDR. Predicting hospitalization and outpatient corticosteroid use in inflammatory bowel disease patients using machine learning. Inflamm Bowel Dis 2017; 24: 45-53.
- [128] Braun T, Di Segni A, BenShoshan M, Neuman S, Levhar N, Bubis M, Picard O, Sosnovski K, Efroni G, Farage Barhom S, Glick Saar E, Lahad A, Weiss B, Yablecovitch D, Lahat A, Eliakim R, Kopylov U, Ben-Horin S and Haberman Y. Individualized dynamics in the gut microbiota precede Crohn's disease flares. Am J Gastroenterol 2019; 114: 1142-1151.
- [129] Gan RW, Sun D, Tatro AR, Cohen-Mekelburg S, Wiitala WL, Zhu J and Waljee AK. Replicating prediction algorithms for hospitalization and corticosteroid use in patients with inflammatory bowel disease. PLoS One 2021; 16: e0257520.
- [130] Popa IV, Diculescu M, Mihai C, Prelipcean CC and Burlacu A. Developing a neural network model for a non-invasive prediction of histologic activity in inflammatory bowel diseases. Turk J Gastroenterol 2021; 32: 276-286.
- [131] Popa IV, Burlacu A, Gavrilescu O, Dranga M, Prelipcean CC and Mihai C. A new approach to predict ulcerative colitis activity through standard clinical-biological parameters using a robust neural network model. Neural Computing and Applications 2021; 33: 14133-14146.
- [132] Gomollón F, Gisbert JP, Guerra I, Plaza R, Pajares Villarroya R, Moreno Almazán L, López Martín MC, Domínguez Antonaya M, Vera Mendoza MI, Aparicio J, Martínez V, Tagarro I, Fernández-Nistal A, Lumbreras S, Maté C and

Montoto C; Premonition-CD Study Group. Clinical characteristics and prognostic factors for Crohn's disease relapses using natural language processing and machine learning: a pilot study. Eur J Gastroenterol Hepatol 2022; 34: 389-397.

- [133] Barberio B, Facchin S, Patuzzi I, Ford AC, Massimi D, Valle G, Sattin E, Simionati B, Bertazzo E, Zingone F and Savarino EV. A specific microbiota signature is associated to various degrees of ulcerative colitis as assessed by a machine learning approach. Gut Microbes 2022; 14: 2028366.
- [134] Li X, Yan L, Wang X, Ouyang C, Wang C, Chao J, Zhang J and Lian G. Predictive models for endoscopic disease activity in patients with ulcerative colitis: practical machine learning-based modeling and interpretation. Front Med (Lausanne) 2022; 9: 1043412.
- [135] Fiorino G, Danese S, Peyrin-Biroulet L, Sans M, Bonelli F, Calleri M, Zierold C, Pollastro R, Moretti F and Malesci A. LIAISON(®) Calprotectin for the prediction of relapse in quiescent ulcerative colitis: the EuReCa study. United European Gastroenterol J 2022; 10: 836-843.
- [136] Cai W, Xu J, Chen Y, Wu X, Zeng Y and Yu F. Performance of machine learning algorithms for predicting disease activity in inflammatory bowel disease. Inflammation 2023; 46: 1561-1574.
- [137] Li X, Tang Z, Liu Y, Zhu X and Liu F. Risk prediction model based on blood biomarkers for predicting moderate to severe endoscopic activity in patients with ulcerative colitis. Front Med (Lausanne) 2023; 10: 1101237.
- [138] Pang W, Zhang B, Jin L, Yao Y, Han Q and Zheng X. Serological biomarker-based machine learning models for predicting the relapse of ulcerative colitis. J Inflamm Res 2023; 16: 3531-3545.
- [139] Gavrilescu O, Popa IV, Dranga M, Mihai R, Cijevschi Prelipcean C and Mihai C. Laboratory data and IBDQ-effective predictors for the noninvasive machine-learning-based prediction of endoscopic activity in ulcerative colitis. J Clin Med 2023; 12: 3609.
- [140] Jangi S, Hsia K, Zhao N, Kumamoto CA, Friedman S, Singh S and Michaud DS. Dynamics of the gut mycobiome in patients with ulcerative colitis. Clin Gastroenterol Hepatol 2024; 22: 821-830, e827.
- [141] Lee JC, Lyons PA, McKinney EF, Sowerby JM, Carr EJ, Bredin F, Rickman HM, Ratlamwala H, Hatton A, Rayner TF, Parkes M and Smith KG. Gene expression profiling of CD8+ T cells predicts prognosis in patients with Crohn disease and ulcerative colitis. J Clin Invest 2011; 121: 4170-4179.

- [142] Biasci D, Lee JC, Noor NM, Pombal DR, Hou M, Lewis N, Ahmad T, Hart A, Parkes M, McKinney EF, Lyons PA and Smith KGC. A blood-based prognostic biomarker in IBD. Gut 2019; 68: 1386-1395.
- [143] Ungaro RC, Hu L, Ji J, Nayar S, Kugathasan S, Denson LA, Hyams J, Dubinsky MC, Sands BE and Cho JH. Machine learning identifies novel blood protein predictors of penetrating and stricturing complications in newly diagnosed paediatric Crohn's disease. Aliment Pharmacol Ther 2021; 53: 281-290.
- [144] Wang J, Ortiz C, Fontenot L, Xie Y, Ho W, Mattai SA, Shih DQ and Koon HW. High circulating elafin levels are associated with Crohn's diseaseassociated intestinal strictures. PLoS One 2020; 15: e0231796.
- [145] Sudhakar P, Verstockt B, Cremer J, Verstockt S, Sabino J, Ferrante M and Vermeire S. Understanding the molecular drivers of disease heterogeneity in Crohn's disease using multi-omic data integration and network analysis. Inflamm Bowel Dis 2021; 27: 870-886.
- [146] Levartovsky A, Barash Y, Ben-Horin S, Ungar B, Soffer S, Amitai MM, Klang E and Kopylov U. Machine learning for prediction of intra-abdominal abscesses in patients with Crohn's disease visiting the emergency department. Therap Adv Gastroenterol 2021; 14: 17562848211053114.
- [147] Ma JL, Zhang HJ, Zhang CF, Zhang YY and Wang GM. Construction of molecular subgroups of ulcerative colitis. Eur Rev Med Pharmacol Sci 2023; 27: 9333-9345.
- [148] Chang MJ, Hao JW, Qiao J, Chen MR, Wang Q, Wang Q, Zhang SX, Yu Q and He PF. A compendium of mucosal molecular characteristics provides novel perspectives on the treatment of ulcerative colitis. J Crohns Colitis 2023; 17: 909-918.
- [149] Joustra VW, Li Yim AYF, de Bruyn JR, Duijvestein M, Hageman IL, de Jonge WJ, Henneman P, Wildenberg M and D'Haens G. Peripheral blood DNA methylation profiles do not predict endoscopic post-operative recurrence in Crohn's disease patients. Int J Mol Sci 2022; 23: 10467.
- [150] Rajalingam A, Sekar K and Ganjiwale A. Identification of potential genes and critical pathways in postoperative recurrence of Crohn's disease by machine learning and WGCNA network analysis. Curr Genomics 2023; 24: 84-99.
- [151] Cushing KC, McLean R, McDonald KG, Gustafsson JK, Knoop KA, Kulkarni DH, Sartor RB and Newberry RD. Predicting risk of postoperative disease recurrence in Crohn's disease: patients with indolent Crohn's disease have distinct whole transcriptome profiles at the

time of first surgery. Inflamm Bowel Dis 2019; 25: 180-193.

- [152] Keshteli AH, Tso R, Dieleman LA, Park H, Kroeker KI, Jovel J, Gillevet PM, Sikaroodi M, Mandal R, Fedorak RN and Madsen KL. A distinctive urinary metabolomic fingerprint is linked with endoscopic postoperative disease recurrence in Crohn's disease patients. Inflamm Bowel Dis 2018; 24: 861-870.
- [153] Sokol H, Brot L, Stefanescu C, Auzolle C, Barnich N, Buisson A, Fumery M, Pariente B, Le Bourhis L, Treton X, Nancey S, Allez M and Seksik P; REMIND Study Group Investigators. Prominence of ileal mucosa-associated microbiota to predict postoperative endoscopic recurrence in Crohn's disease. Gut 2020; 69: 462-472.
- [154] Tseng Y, Mo S, Zeng Y, Zheng W, Song H, Zhong B, Luo F, Rong L, Liu J and Luo Z. Machine learning model in predicting sarcopenia in Crohn's disease based on simple clinical and anthropometric measures. Int J Environ Res Public Health 2022; 20: 656.
- [155] Gupta VK, Paul S and Dutta C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front Microbiol 2017; 8: 1162.
- [156] Sundararajan M and Najmi A. The many Shapley values for model explanation. ICML 2020; 119: 9269-9278.
- [157] Misra BB, Langefeld C, Olivier M and Cox LA. Integrated omics: tools, advances and future approaches. J Mol Endocrinol 2019; 62: R21-R45.
- [158] Jayasooriya N, Baillie S, Blackwell J, Bottle A, Petersen I, Creese H, Saxena S and Pollok RC; POP-IBD study group. Systematic review with meta-analysis: time to diagnosis and the impact of delayed diagnosis on clinical outcomes in inflammatory bowel disease. Aliment Pharmacol Ther 2023; 57: 635-652.
- [159] Lamb CA, Kennedy NA, Raine T, Hendy PA, Smith PJ, Limdi JK, Hayee B, Lomer MCE, Parkes GC, Selinger C, Barrett KJ, Davies RJ, Bennett C, Gittens S, Dunlop MG, Faiz O, Fraser A, Garrick V, Johnston PD, Parkes M, Sanderson J, Terry H; IBD guidelines eDelphi consensus group; Gaya DR, Iqbal TH, Taylor SA, Smith M, Brookes M, Hansen R and Hawthorne AB. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut 2019; 68 Suppl 3: s1-s106.
- [160] Turner D, Ruemmele FM, Orlanski-Meyer E, Griffiths AM, de Carpi JM, Bronsky J, Veres G, Aloi M, Strisciuglio C, Braegger CP, Assa A, Romano C, Hussey S, Stanton M, Pakarinen M, de Ridder L, Katsanos K, Croft N, Navas-López V, Wilson DC, Lawrence S and Russell RK. Man-

agement of paediatric ulcerative colitis, part 1: ambulatory care-an evidence-based Guideline From European Crohn's and Colitis Organization and European Society of Paediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr 2018; 67: 257-291.

- [161] van Rheenen PF, Aloi M, Assa A, Bronsky J, Escher JC, Fagerberg UL, Gasparetto M, Gerasimidis K, Griffiths A, Henderson P, Koletzko S, Kolho KL, Levine A, van Limbergen J, Martin de Carpi FJ, Navas-López VM, Oliva S, de Ridder L, Russell RK, Shouval D, Spinelli A, Turner D, Wilson D, Wine E and Ruemmele FM. The medical management of paediatric Crohn's disease: an ECCO-ESPGHAN guideline update. J Crohns Colitis 2020; jjaa161.
- [162] Anyane-Yeboa A, Quezada S, Rubin DT and Balzora S. The impact of the social determinants of health on disparities in inflammatory bowel disease. Clin Gastroenterol Hepatol 2022; 20: 2427-2434.
- [163] Noor NM, Lee JC, Bond S, Dowling F, Brezina B, Patel KV, Ahmad T, Banim PJ, Berrill JW, Cooney R, De La Revilla Negro J, de Silva S, Din S, Durai D, Gordon JN, Irving PM, Johnson M, Kent AJ, Kok KB, Moran GW, Mowat C, Patel P, Probert CS, Raine T, Saich R, Seward A, Sharpstone D, Smith MA, Subramanian S, Upponi SS, Wiles A, Williams HRT, van den Brink GR, Vermeire S, Jairath V, D'Haens GR, McKinney EF, Lyons PA, Lindsay JO, Kennedy NA, Smith KGC and Parkes M; PROFILE Study Group. A biomarker-stratified comparison of top-down versus accelerated step-up treatment strategies for patients with newly diagnosed Crohn's disease (PROFILE): a multicentre, open-label randomised controlled trial. Lancet Gastroenterol Hepatol 2024; 9: 415-427.
- [164] Wyatt NJ, Watson H, Anderson CA, Kennedy NA, Raine T, Ahmad T, Allerton D, Bardgett M, Clark E, Clewes D, Cotobal Martin C, Doona M, Doyle JA, Frith K, Hancock HC, Hart AL, Hildreth V, Irving PM, Igbal S, Kennedy C, King A, Lawrence S, Lees CW, Lees R, Letchford L, Liddle T, Lindsay JO, Maier RH, Mansfield JC, Marchesi JR, McGregor N, McIntyre RE, Ostermayer J, Osunnuyi T, Powell N, Prescott NJ, Satsangi J, Sharma S, Shrestha T, Speight A, Strickland M, Wason JM, Whelan K, Wood R, Young GR, Zhang X, Parkes M, Stewart CJ, Jostins-Dean L and Lamb CA. Defining predictors of responsiveness to advanced therapies in Crohn's disease and ulcerative colitis: protocol for the IBD-RESPONSE and nested CD-metaRESPO-NSE prospective, multicentre, observational cohort study in precision medicine. BMJ Open 2024; 14: e073639.

| Article                     | Year | Precision medicine | Population size - Country                                                                                                                                        | Data used                                                                                             | Algorithm                                          | Training and validation strategy                                                             | External validation | Best results                                                                                                                                                                         |
|-----------------------------|------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zhang et al.<br>[34]        | 2012 | Diagnosis          | Prospective study with 94 IBD (57<br>ileal CD, 37 UC) and 35 controls -<br>United States of America                                                              | Mucosal gene expres-<br>sion                                                                          | Ensemble                                           | One cohort for training and the other for testing                                            | Yes                 | lleal CD vs. non-CD (control + UC)<br>accuracy was 89% and 80% in the<br>training and testing set, respectively.                                                                     |
| Duttagupta et<br>al. [35]   | 2012 | Diagnosis          | Case-control study with 20 UC<br>and 20 controls - United States of<br>America                                                                                   | Microarray analysis of<br>miRNA expression levels<br>in micro-vesicle, PBMC,<br>and platelet fraction | Support vector machine,<br>Hierarchical clustering | Train-test split 100 times                                                                   | No                  | UC vs. control accuracy was 92.8% -<br>data derived from platelet fraction.                                                                                                          |
| Hübenthal et<br>al. [36]    | 2015 | Diagnosis          | 40 CD, 36 UC, and 38 health<br>controls from Germany and<br>130 inflammation controls (IC)<br>[GSE31568]                                                         | miRNAs expression from whole blood                                                                    | Elastic SCAD support vector machine                | Train-test split                                                                             | No                  | AUC was 0.889, 0.984, and 1 for<br>CD vs. UC, CD vs. IC, and UC vs. IC,<br>respectively.                                                                                             |
| Mirza et al.<br>[37]        | 2015 | Diagnosis          | Cross-sectional study with 13 CD, 20 UC, and 12 controls - Denmark                                                                                               | Mucosal transcriptomics                                                                               | Support vector machine                             | Leave-one-out<br>cross-validation                                                            | No                  | Inflamed CD vs. inflamed UC model accuracy was 77.8%.                                                                                                                                |
| Mossotto et<br>al. [38]     | 2017 | Diagnosis          | Pediatric prospective study with 178<br>CD and 80 UC - England                                                                                                   | Endoscopy and histol-<br>ogy data                                                                     | Linear support vector machine                      | Data were split by<br>discovery, training,<br>and validation set with<br>cross-validation    | No                  | CD vs. UC AUC was 0.87.                                                                                                                                                              |
| El Mouzan et<br>al. [39]    | 2018 | Diagnosis          | Pediatric prospective study with 15<br>CD and 20 controls - Saudi Arabia                                                                                         | Fungal ITS sequencing<br>from stool                                                                   | Logistic regression                                | 100 (iterative) 5-fold cross-validation                                                      | No                  | CD vs. control AUC was 0.85.                                                                                                                                                         |
| Klein et al.<br>[40]        | 2020 | Diagnosis          | Retrospective study with 28 IBD<br>(14 UC, 14 CD) and 14 controls -<br>Germany                                                                                   | Mass spectrometry                                                                                     | Linear discriminant<br>analysis                    | Leave-one-out<br>cross-validation                                                            | No                  | Discrimination between UC and CD accuracy was 78.6% (UC 85.7%, CD 71.4%).                                                                                                            |
| Kedia et al.<br>[41]        | 2021 | Diagnosis          | Prospective study with 24 UC, 19<br>ASUC, and 50 controls - India                                                                                                | 16S rRNA sequencing<br>from stool                                                                     | Random forest                                      | 50 (iterative) train-test splits                                                             |                     | UC vs. ASUC AUC was 0.98 and 0.99, considering genus and class taxonomy levels, respectively.                                                                                        |
| Khorasani et<br>al. [42]    | 2020 | Diagnosis          | Post hoc analysis [GSE1152,<br>GSE11223, GSE22619, GSE75214<br>(for training)] with 39 UC and 38<br>controls - United States of America,<br>Belgium, and Germany | Mucosal gene<br>expression                                                                            | Support vector machine                             | Three datasets for<br>training with 5-fold<br>cross-validation and one<br>for validation     | Yes                 | The gene model achieved average precision of 1 and 0.62 for active UC patients vs. controls and inactive UC vs. controls, respectively.                                              |
| Li et al. [43]              | 2020 | Diagnosis          | Post hoc analysis [GSE109142,<br>GSE92415] with 313 UC and 41<br>controls                                                                                        | Mucosal gene<br>expression                                                                            | Random forest, artificial<br>neural network        | One cohort for training<br>and the other for<br>validation                                   | Yes                 | UC vs. control in the validation set reached an AUC of 0.9506.                                                                                                                       |
| Lins Neto MÁ<br>et al. [44] | 2020 | Diagnosis          | Cross-sectional study with 21 IBD<br>(10 DC, 11UC) and 15 controls -<br>Brazil                                                                                   | Fecal metabolomics                                                                                    | Partial least squares discriminant analysis        | Cross-validation                                                                             | No                  | Controls vs. CD accuracy was 100%.<br>Controls vs. UC accuracy was 69%.                                                                                                              |
| Xu et al. [45]              | 2021 | Diagnosis          | Post hoc analysis 94 IBD (81UC,<br>13 CD) e 177 controls - Spain and<br>Denmark                                                                                  | Stool 16S rRNA and metagenomics                                                                       | Light gradient boosting                            | 5-fold cross-validation                                                                      | No                  | UC vs. CD AUC was 0.989 and 0.963<br>using metagenomics 16s rRNA,<br>respectively.                                                                                                   |
| Dhaliwal et al.<br>[46]     | 2021 | Diagnosis          | Pediatric prospective study with 58<br>IBD (41 UC, 17 CD) for training, and<br>15 IBD (14 UC, 1 CD) for validation<br>- Canada                                   | Baseline clinical,<br>endoscopic, radiologic,<br>and histologic                                       | Random Forest,<br>similarity Network<br>Fusion     | Samples were split into<br>training and validation<br>with leave-one-out<br>cross-validation | No                  | Two groups without complete segrega-<br>tion between CD and UC were seen.<br>Diagnostic, predictive model accuracy<br>was 97% and 100% for training and<br>validation, respectively. |

| Supplementary | Table 1. Descri | ption of all manu | scripts included | in the s | systematic r | eview |
|---------------|-----------------|-------------------|------------------|----------|--------------|-------|
|---------------|-----------------|-------------------|------------------|----------|--------------|-------|

| El Mouzan et<br>al. [47]  | 2021 | Diagnosis | Pediatric prospective study with 17<br>CD and 18 controls - Saudi Arabia                                                                                                                                                                                         | 16s rRNA sequencing<br>from stool and mucosal<br>biopsies | Logistic regression                                                                              | 5-Fold cross-validation 100 (iterative) times                                                          | No  | CD vs. controls AUC was 0.97.                                                                                                                                                                           |
|---------------------------|------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lablokov et al.<br>[48]   | 2020 | Diagnosis | Post hoc analysis with 294 CD, 191<br>UC, and 667 controls - Spain, China,<br>and Netherlands                                                                                                                                                                    | 16S rRNA from stool                                       | Random forest                                                                                    | Train-test split and leave-<br>one-dataset out                                                         | No  | Taxonomy-based classifier AUC was 0.887 for CD vs. control and 0.7656 for UC vs. control.                                                                                                               |
| Kraszewski et<br>al. [49] | 2021 | Diagnosis | Cross-sectional study with 372 IBD<br>(180 UC, 192 CD) and 271 controls<br>- Poland                                                                                                                                                                              | Clinical and laboratory                                   | Random forest                                                                                    | Train-test split                                                                                       | No  | Average precision was 97% and<br>91% for predicting CD and UC from<br>controls, respectively.                                                                                                           |
| Li et al. [50]            | 2021 | Diagnosis | 95 CD (58 active and 37 inactive)<br>and 48 controls - China                                                                                                                                                                                                     | Raman spectroscopy<br>from urine                          | PCA-Support vector<br>machine                                                                    | Leave-one-patient-out                                                                                  | No  | CD vs. control accuracy was 82.5%.                                                                                                                                                                      |
| Lu et al. [51]            | 2022 | Diagnosis | Post hoc analysis [GSE87473 and GSE48634] with 174 UC and 90 controls                                                                                                                                                                                            | Mucosal gene<br>expression                                | Logistic regression                                                                              | 5-fold cross-validation<br>for training and one<br>dataset for validation                              | Yes | UC vs. control AUC was 0.8497 and 0.7208 in training and validation, respectively.                                                                                                                      |
| Manandhar et<br>al. [52]  | 2021 | Diagnosis | Post hoc analysis with 729 IBD, 700 non-IBD, 331 CD, and 141 UC                                                                                                                                                                                                  | 16s rRNA from stool                                       | Random forest                                                                                    | 50 (iterative) times<br>train-test splits with<br>10-fold cross-validation                             | No  | CD vs. UC AUC was 0,92.                                                                                                                                                                                 |
| Notararigo et<br>al. [53] | 2021 | Diagnosis | Case-control study with 19 CD, 9<br>UC, and 10 controls - Spain                                                                                                                                                                                                  | Blood serum<br>metabolomics                               | Orthogonal-partial least<br>squares discriminant<br>analysis                                     | Cross-validation                                                                                       | No  | Accuracy was 93.3% for CD vs. control and 68.7% for UC vs. control.                                                                                                                                     |
| Park et al.<br>[54]       | 2021 | Diagnosis | 94 CD and 33 UC - South Korea                                                                                                                                                                                                                                    | Mucosal gene<br>expression                                | Partial least squares discriminant analysis                                                      | Iterative cross-validation with random splits                                                          | No  | Accuracy was 96.2% for CD vs.<br>UC and 85.3% for inflamed CD vs.<br>inflamed UC.                                                                                                                       |
| Schneider et<br>al. [55]  | 2021 | Diagnosis | Pediatric prospective study with<br>CEDATA-GPGE data with different<br>subsets of patients - German-speak-<br>ing Countries                                                                                                                                      | Laboratory and endoscopy data                             | Convolutional neural<br>network                                                                  | Train-test split with<br>10-fold cross-validation                                                      | No  | Considering data from the follow-up<br>set, CD vs. UC accuracy was 86.15%,<br>while data from 2018 was 90.57%.                                                                                          |
| Carreras [56]             | 2022 | Diagnosis | Post hoc analysis [GSE38713] with 30 UC and 13 controls - Spain                                                                                                                                                                                                  | Mucosal gene<br>expression                                | C5, logistic regression,<br>neural network, support<br>vector machine, dis-<br>criminant XGBoost | Not informed                                                                                           | No  | Seven different models reached an accuracy of 100% for UC vs. control.                                                                                                                                  |
| Nowak et al.<br>[57]      | 2022 | Diagnosis | Post hoc analysis with adults and children's patients with 100 UC, 99 CD, and 95 controls - Poland                                                                                                                                                               | Whole-blood gene<br>expression                            | LASSO regression                                                                                 | 10-fold cross-validation                                                                               | No  | AUC was 0.87 for UC vs. control and 0.83 for CD vs. control.                                                                                                                                            |
| Yang et al.<br>[58]       | 2022 | Diagnosis | Post hoc analysis [GSE16879,<br>GSE112366 for training and<br>GSE36807 for validation] with                                                                                                                                                                      | Mucosal gene<br>expression                                | Neural network                                                                                   | One cohort for training<br>(with train-test split and<br>10-fold 100-repeated<br>cross-validation) and | Yes | CD vs. control AUC was 0.984 and 0.945 in training and validation, respectively.                                                                                                                        |
|                           |      |           | 191 CD, 45 controls                                                                                                                                                                                                                                              |                                                           |                                                                                                  | another for validation                                                                                 |     |                                                                                                                                                                                                         |
| Su et al. [59]            | 2022 | Diagnosis | 2030 patients (colorectal cancer<br>n=174, colorectal adenomas<br>n=168, CD n=200, UC, n=147,<br>irritable bowel syndrome n=145,<br>obesity n=148, cardiovascular<br>disease n=143, post-acute<br>COVID-19 syndrome n=302 and<br>healthy controls n=893) - China | Stool metagenomics                                        | Random forest                                                                                    | Train-test split with<br>20 (iterative) 5-fold<br>cross-validation                                     | Yes | Multi-class prediction for UC and<br>CD reached an AUC of 0.93 for both<br>classes. External validation (different<br>locations) reached an AUC of 0.693<br>and 0.798 for UC and CD, respec-<br>tively. |
|                           |      |           | <ul> <li>External dataset from 12 studies</li> </ul>                                                                                                                                                                                                             |                                                           |                                                                                                  |                                                                                                        |     |                                                                                                                                                                                                         |

| Bu et al. [60]                        | 2022 | Diagnosis | Post hoc analysis with [GSE87466,<br>GSE107597 as training and<br>GSE13367 for validation] 163<br>patients                                                                                    | Mucosal gene expres-<br>sion                             | Logistic regression                                      | Two datasets for training<br>and another for<br>validation                                                      | Yes | UC vs. control AUC was 0.977 and 0.889 in training and validation sets, respectively.                                                                                                                                                                                                                                             |
|---------------------------------------|------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Jagt et al. [61]                      | 2022 | Diagnosis | Pediatric case-control study with 40<br>CD, 38 UC, and 105 controls from<br>Belgium                                                                                                           | Stool metabolomics (amino acids)                         | Random forest                                            | Train-test split                                                                                                | No  | UC vs. CD accuracy was 58%, while<br>CD vs. control and UC vs. control<br>accuracy were 80% and 90%,<br>respectively.                                                                                                                                                                                                             |
| Kim et al. [62]                       | 2023 | Diagnosis | Prospective study with 670 CD,<br>113 UC, and 1063 controls - South<br>Korea                                                                                                                  | 16S rRNA from stool                                      | Sparse partial least<br>squares discriminant<br>analysis | 100 (iterative) train-test splits                                                                               | No  | CD vs. UC AUC was 0.988.                                                                                                                                                                                                                                                                                                          |
| Kang et al.<br>[63]                   | 2023 | Diagnosis | 173 CD, 259 UC, and 50 controls<br>for training - Korea<br>50 CD and 30 UC patients from<br>the United States of America for<br>validation                                                    | Stool metagenomics                                       | Regularized logistic regression                          | Train-test split with<br>10-fold cross-validation                                                               | Yes | CD vs. UC AUC was 0.873, 0.778,<br>and 0.633 in training, testing, and<br>validations sets, respectively.                                                                                                                                                                                                                         |
| Alfonso Perez<br>and Castillo<br>[64] | 2023 | Diagnosis | Post hoc analysis [GSE193677] with<br>1157 CD, 872 UC, and 461 controls<br>- United States of America                                                                                         | Mucosal gene expres-<br>sion                             | Bagged tree                                              | Train-test split with 10-fold cross-validation                                                                  | No  | CD vs. UC accuracy was 73.4%.                                                                                                                                                                                                                                                                                                     |
| Shen et al.<br>[65]                   | 2023 | Diagnosis | Post hoc analysis [GSE134809,<br>GSE112366 and GSE75214] with<br>436 IBD and 26 controls                                                                                                      | Mucosal gene expres-<br>sion and single-cell<br>analysis | Naïve Bayes and convo-<br>lutional neural network        | One dataset for training<br>with 10 (iterative) 5-fold<br>cross-validation and oth-<br>ers for validation       | Yes | CD vs. control AUC was 0.905<br>and 0.963 in training and external<br>validation, respectively.<br>Using GSE75214 (CD and UC sam-<br>ples), the model could discriminate<br>CD vs. UC with an AUC of 0.771. Using<br>CNN integrating single-cell and gene<br>expression data, AUC was 0.9111 in<br>training and 0.963 in testing. |
| Qian et al.<br>[66]                   | 2023 | Diagnosis | Post hoc analysis [GSE87466,<br>GSE75214] with 184 UC and 43<br>control and [GSE87473] 106 UC and<br>21 controls for validation                                                               | Mucosa gene expres-<br>sion                              | Logistic regression                                      | The training set was<br>divided into four groups<br>(46 UC and 43 controls)<br>with 5-fold cross-<br>validation | Yes | UC vs. control AUC was 1.0 and 0.995 in training and validation sets, respectively.                                                                                                                                                                                                                                               |
| Hong et al.<br>[67]                   | 2023 | Diagnosis | Post hoc analysis [GSE36807,<br>GSE87466, GSE87473, GSE38713,<br>GSE3629, GSE16879, GSE23597,<br>GSE53306, GSE48959, GSE75214,<br>and GSE13367] with UC and control<br>patients total of 1187 | Mucosa gene expres-<br>sion                              | Random forest and ex-<br>treme gradient boosting         | GSE87473 for training<br>and GSE38713 for<br>testing                                                            | Yes | Both models reached an AUC of 1 for UC vs. control.                                                                                                                                                                                                                                                                               |
| Shah et al.<br>[68]                   | 2022 | Diagnosis | Post hoc analysis with 447 pediatric<br>patients CD and 222 controls -<br>Canada and the United States of<br>America                                                                          | Mucosal microbiome<br>16S rRNA                           | Random forest                                            | Train-test split                                                                                                | No  | CD vs. control AUCs ~ 0.85 - 0.91.                                                                                                                                                                                                                                                                                                |

| Zheng et al.<br>[69]    | 2023 | Diagnosis | Post hoc analysis [GSE57945,<br>GSE93624, GSE101794,<br>GSE117875 for testing and<br>GSE62207 for validation] with 947<br>pediatric CD and 185 controls                                                                                                                 | Mucosa gene expres-<br>sion          | Artificial neural network                                | Four datasets for<br>training with 5-fold<br>cross-validation and one<br>for testing                           | Yes | CD vs. control AUC was 0.954 and 0.889 in training and testing sets, respectively.                                                                                        |
|-------------------------|------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kang et al.<br>[70]     | 2023 | Diagnosis | Prospective study with 127 CD, 175<br>UC, and 100 controls - South Korea                                                                                                                                                                                                | Saliva 16s rRNA                      | Sparse Partial Least<br>Squares Discriminant<br>Analysis | 100 (iterative) train-test splits                                                                              | No  | CD vs. UC AUC was 0.923.                                                                                                                                                  |
| Zhan et al.<br>[71]     | 2023 | Diagnosis | Post hoc analysis [GSE10616] with pediatric 31 CD and 11 controls                                                                                                                                                                                                       | Mucosal gene<br>expression           | Random forest                                            | 5-fold cross-validation                                                                                        | No  | CD vs. controls AUC was 1.                                                                                                                                                |
| Mo et al. [72]          | 2023 | Diagnosis | Post hoc analysis [GSE182270,<br>GSE87466, GSE75214,<br>GSE165512, and GSE190595] with<br>UC and control data                                                                                                                                                           | Mucosal gene<br>expression           | Support vector machine                                   | One dataset for training<br>with 10 (iterative) 5-fold<br>cross-validation and an-<br>other one for validation | Yes | UC vs. control AUC was 0.991.                                                                                                                                             |
| Stafford et al.<br>[73] | 2023 | Diagnosis | 600 CD, 306 UC - United Kingdom                                                                                                                                                                                                                                         | Whole exome<br>sequencing from blood | Random forest                                            | Train-test split                                                                                               | No  | CD vs. UC AUC was 0.68.                                                                                                                                                   |
| Wu et al. [74]          | 2024 | Diagnosis | Post hoc analysis [PRJEB33711,<br>PRJNA50637, PRJDB6133,<br>PRJNA368966, PRJNA296920,<br>PRJNA431126, PRJNA596546,<br>PRJNA681685, PRJNA753210,<br>PRJNA541040, PRJNA398089,<br>PRJNA386260] with 873UC, 746<br>controls - Japan, United States of<br>America and China | Stool 16S rRNA                       | Deep Neural Network                                      | Train-test split                                                                                               | No  | UC vs. control AUC was 0.96.                                                                                                                                              |
| Chen et al.<br>[75]     | 2023 | Diagnosis | Post hoc analysis [GSE75214,<br>GSE126124 and GSE186582<br>for training and GSE95095 and<br>GSE179285 for validation] with 671<br>CD and 109 controls                                                                                                                   | Mucosa gene<br>expression            | Logistic regression                                      | Three datasets com-<br>bined for training and<br>two independent sets for<br>validation                        | Yes | Filtered genes from different ap-<br>proaches were fitted into a logistic<br>regression model that reached an<br>AUC of 0.969 in training and 0.83 in<br>validation sets. |
| Zhang et al.<br>[76]    | 2024 | Diagnosis | Post hoc analysis [GSE87466 for<br>training and GSE47908, GSE59076,<br>GSE75214, GSE92415, GSE14580<br>for validation] with 398 UC and 101<br>controls                                                                                                                  | Mucosal gene<br>expression           | Artificial neural network                                | One dataset for training<br>and five for validation                                                            | Yes | UC vs. control AUC was 0.970 and 1<br>in training and testing sets, respec-<br>tively. Considering five validation sets,<br>the mean AUC was 0.9588.                      |
| Sokollik et al.<br>[77] | 2023 | Diagnosis | Prospective study with 176 IBD<br>(50 CD, 50 UC, and 76 IBD-U) -<br>Switzerland                                                                                                                                                                                         | Anti-body profiles                   | Logistic regression, ex-<br>treme gradient boosting      | Train-test split with<br>5-fold cross-validation                                                               | No  | Multiclass (CD vs. UC vs. IBD-U) ac-<br>curacy was 76% and 70% in training<br>and testing sets, respectively.                                                             |
| Gao et al. [78]         | 2023 | Diagnosis | Post hoc analysis with 785 CD and<br>456 controls for discovery and 85<br>CD, 92 controls as validation sets<br>- United States of America, China,<br>Spain, and the Netherlands                                                                                        | Stool metagenomics                   | Neural network                                           | 10-fold cross-validation<br>cohort-to-cohort transfer<br>and leave-one-cohort-out<br>validation                | Yes | CD vs. control considering species,<br>gene, and SNV AUC was 0.97, 0.95,<br>and 0.77, respectively.                                                                       |
| Yang et al.<br>[79]     | 2024 | Diagnosis | Post hoc analysis [GSE87473,<br>GSE87466, GSE165512] with 233<br>UC and 88 controls - United States<br>of America and Italy                                                                                                                                             | Mucosal gene expres-<br>sion         | Artificial neural network                                | Train-test split                                                                                               | No  | UC vs. control AUC was 0.994 and 0.946 in the training and testing sets, respectively.                                                                                    |

| Tang et al.<br>[80]  | 2024 | Diagnosis               | Post hoc analysis [GSE117993,<br>GSE93624] with 302 pediatric CD<br>and 90 control and [GSE101794]<br>254 pediatric CD and 50 controls<br>for validation                                                          | Mucosa gene<br>expression                | Support vector machine<br>recursive feature<br>elimination, LASSO<br>regression,<br>gradient boosting, ex-                      | Combined datasets for<br>training and one for<br>validation                                             | Yes | Nomogram using the markers genes<br>reached an AUC > 0.8 in the training<br>set and 0.839 in the validation set.                                                                                 |
|----------------------|------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |      |                         |                                                                                                                                                                                                                   |                                          | treme gradient boosting,                                                                                                        |                                                                                                         |     |                                                                                                                                                                                                  |
|                      |      |                         |                                                                                                                                                                                                                   |                                          | random forest                                                                                                                   |                                                                                                         |     |                                                                                                                                                                                                  |
| Hu et al. [81]       | 2024 | Diagnosis               | 154 UC, 181 CD, and 16 controls -<br>Netherlands                                                                                                                                                                  | Mucosal gene expres-<br>sion and16S rRNA | Extreme gradient boosting                                                                                                       | Train-test split with<br>5-fold cross-validation                                                        | No  | CD vs. UC AUC was 0.80.                                                                                                                                                                          |
| He et al. [82]       | 2022 | Diagnosis               | Post hoc analysis [GSE36807,<br>GSE65114] with 44 UC and 27<br>controls - Spain, USA, Ireland, and<br>Belgian                                                                                                     | Mucosal gene<br>expression               | LASSO logistic<br>regression and support<br>vector machine                                                                      | Train-test split                                                                                        | Yes | Six candidate biomarkers (UC vs. controls) were selected and validated in an independent dataset with an overall AUC of 0.9.                                                                     |
| Zhang et al.<br>[83] | 2022 | Diagnosis               | Post hoc analysis [GSE48634,<br>GSE6731, GSE114527, GSE13367,<br>GSE36807, and GSE3629 for<br>training and GSE53306, GSE87473,<br>GSE74265, and GSE96665 for<br>testing] with 387 UC patients and<br>139 controls | Mucosa gene<br>expression                | Support vector machine,<br>LASSO, random forest,<br>gradient boosting, princi-<br>pal component analysis,<br>and neural network | Six datasets were used<br>for training and four<br>for testing with 10-fold<br>cross-validation (SMOTE) | No  | The study identified two genes,<br>OLFM4 and C4BPB, as potentially<br>helpful in diagnosing UC, with average<br>AUC values > 0.8 in both training and<br>testing datasets.                       |
| Tang et al.<br>[84]  | 2023 | Diagnosis               | Post hoc analysis [GSE38713,<br>GSE87473, GSE92415, GSE87466]<br>with 298 UC and 55 controls for<br>training and 87 UC and 21 controls<br>for validation                                                          | Mucosa gene<br>expression                | Random forest, support<br>vector machine, and<br>LASSO regression                                                               | Combined datasets for<br>training and one for<br>validation                                             | Yes | Three machine learning methods<br>selected seven signature genes,<br>and a nomogram built with AUC was<br>0.982 for UC vs. control.                                                              |
| Li et al. [85]       | 2022 | Diagnosis               | Post hoc analysis [GSE75214<br>and GSE87466 for training<br>and GSE37283, GSE134025,<br>GSE160804, GSE38713 and<br>GSE179285 for validation] with 209<br>UC and 79 controls                                       | Mucosal gene<br>expression               | LASSO regression                                                                                                                | Two datasets for training and five for testing                                                          | Yes | Five predictors were selected,<br>reaching an AUC > 0.7 for predicting<br>UC vs. controls.                                                                                                       |
| Chen et al.<br>[86]  | 2023 | Diagnosis               | Post hoc analysis [GSE38713 as the training set and GSE94648 as the test set] with 55 UC and 35 controls                                                                                                          | Mucosal gene<br>expression               | Random forest                                                                                                                   | One dataset for training<br>and another for<br>validation                                               | Yes | Seven genes were selected, and the<br>mean AUC in the training set was ><br>0.9 for UC vs. control.                                                                                              |
| Wu et al. [87]       | 2024 | Diagnosis               | Post hoc analysis [GSE48634,<br>GSE92415 for training, and<br>GSE179285 and GSE107499 for<br>validation] with 297 UC and 121<br>controls                                                                          | Gene expression                          | Random forest and<br>LASSO (feature<br>selection)                                                                               | Two datasets for training and two for validation                                                        | Yes | Three potential predictors were<br>selected after feature selection, and<br>the nomogram built to predict UC vs.<br>control AUC was 0.762 and 0.722 in<br>training and validation, respectively. |
| Clooney et al.       | 2021 | Diagnosis,              | Prospective study with 303 CD, 228                                                                                                                                                                                | Stool 16S rRNA                           | Extreme gradient                                                                                                                | N leave-one-out                                                                                         | No  | CD vs. UC AUC was 0.67.                                                                                                                                                                          |
| [16]                 |      | Prognosis<br>(activity) | UC, and 161 controls - Ireland and<br>Canada                                                                                                                                                                      |                                          | boosting                                                                                                                        | cross-validation                                                                                        |     | Disease activity (based on fecal calprotectin measurement) prediction AUC was 0.73 for CD and 0.91 for UC.                                                                                       |
| Bosch et al.         | 2020 | Diagnosis,              | Prospective study with 280 IBD                                                                                                                                                                                    | Volatile organic                         | Sparse logistic                                                                                                                 | Train-test split                                                                                        | No  | CD vs. UC AUC was 0.55.                                                                                                                                                                          |
| [17]                 |      | Prognosis<br>(activity) | patients (164 CD, 112 UC patients,<br>4 IBD-undetermined) and 227<br>Controls - Netherlands                                                                                                                       | compound                                 | regression                                                                                                                      |                                                                                                         |     | Active disease vs. remission (based<br>on fecal calprotectin measurement)<br>AUC was 0.52 and 0.63 for CD and<br>UC, respectively.                                                               |

| Serrano-                     | 2021                                                                                                        | Diagnosis,                                   | Post-hoc analysis USA (65 CD, 38                                                                                   | Stool 16S rRNA                                                          | Random forest             | USA for training and test-                                                                        | Yes                    | CD vs. non-CD AUC was 0.938.                                                                                                                                                                                                                                                            |
|------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gómez et al.                 |                                                                                                             | Prognosis                                    | UC and 27 controls), European                                                                                      |                                                                         |                           | ing (train-test split) with                                                                       |                        | UC vs. non-UC AUC was 0.646.                                                                                                                                                                                                                                                            |
| [18]                         |                                                                                                             | (activity)                                   | controls] + Belgium [49 CD])                                                                                       |                                                                         |                           | and European cohort for validation                                                                |                        | CD relapse vs. remission AUC was 0.769.                                                                                                                                                                                                                                                 |
| Sarrabayrouse<br>et al. [19] | 2021                                                                                                        | Diagnosis,<br>Prognosis<br>(activity)        | Retrospective study with 34 CD, 31<br>UC, and 28 controls - Belgium and<br>Spain                                   | Clinical, laboratory, and<br>microbiome (fungal and<br>bacterial loads) | Random forest             | Train-test split                                                                                  | No                     | Disease remission (based on clinical scores) AUC was 0.875 for CD and 0.833 for UC.                                                                                                                                                                                                     |
|                              |                                                                                                             |                                              |                                                                                                                    |                                                                         |                           |                                                                                                   |                        | CD vs. UC AUC was 0.759, while for<br>UC vs. CD, it was 0.859.                                                                                                                                                                                                                          |
| Zhou et al.<br>[20]          | Zhou et al. 2018<br>[20]                                                                                    | Diagnosis,<br>Treatment<br>response          | iagnosis, Cross-sectional study with 123 DII<br>reatment (72 DC, 51 UC), 73 controls, and 16<br>seponse CD - China | Clinical data and 16s<br>rRNA                                           | Random forest             | 5 (iterative) 10-fold cross-validation                                                            | Yes (for<br>diagnosis) | In the diagnosis model (disease vs<br>control), AUC was 0.895 and 0.932<br>for CD and UC, respectively.                                                                                                                                                                                 |
|                              |                                                                                                             | (IFX)                                        |                                                                                                                    |                                                                         |                           |                                                                                                   |                        | The AUC for Prism and Risk data<br>validation was 0.72 and 0.875 for<br>CD and 0.639 and 0.791 for UC,<br>respectively.                                                                                                                                                                 |
|                              |                                                                                                             |                                              |                                                                                                                    |                                                                         |                           |                                                                                                   |                        | Infliximab treatment response (based on CDAI) AUC was 0.938.                                                                                                                                                                                                                            |
| Ye et al. [21]               | 2022                                                                                                        | Diagnosis,<br>Treatment<br>response<br>(IFX) | Post hoc analysis [GSE16879,<br>GSE111761, GSE42296,<br>GSE107865, GSE179285] with CD<br>and control samples       | Gene expression                                                         | Logistic regression       | One dataset for training<br>and two independent<br>sets for validation                            | Yes                    | CD vs. control AUC was 0.917 in<br>the GSE16879 set - the AUCs in<br>GSE179285 and GSE94648 were<br>0.952 and 0.915, respectively. Those<br>genes could differentiate infliximab<br>response (based on endoscopic and<br>histologic findings) with an AUC of<br>0.912 in GSE16879 data. |
| Douglas et al.<br>[22]       | 2018                                                                                                        | Diagnosis,<br>Treatment                      | Pediatric case-control study with 20 CD and 20 controls - Scotland +                                               | 16s rRNA and shotgun metagenomic                                        | Random forest             | Leave-one-out cross-<br>validation                                                                | No                     | 16s rRNA at genus level accuracy was 84.2% for CD vs. control.                                                                                                                                                                                                                          |
|                              |                                                                                                             | response                                     | post hoc analysis with 444 CD and 287 controls (RISK) for validation of key features                               |                                                                         |                           |                                                                                                   |                        | The accuracy of treatment response<br>(based on no need for a second<br>induction) was 77.8%. Top features<br>were tested in the RISK cohort with<br>an accuracy of 73.2%.                                                                                                              |
| Pei et al. [23]              | 2024                                                                                                        | Diagnosis,<br>Prognosis<br>(activity)        | Retrospective study with 414 IBD<br>(283 CD, 131 UC), 423 healthy<br>controls, and 344 non-IBD intestinal          | Peripheral blood routine data                                           | Artificial neural network | Train-test split                                                                                  | Yes                    | UC vs. CD AUC was 0.988 and 1 in training and validation sets, respectively.                                                                                                                                                                                                            |
|                              | diseases and a validation set with<br>100 IBD (76 CD, 24 UC), 108 health<br>controls, and 101 non-IBD and - |                                              |                                                                                                                    |                                                                         |                           | Active CD vs. remission CD AUC was 0.942 and 0.773 in training and validation sets, respectively. |                        |                                                                                                                                                                                                                                                                                         |
|                              |                                                                                                             |                                              | Giina                                                                                                              |                                                                         |                           |                                                                                                   |                        | Active UC vs. remission UC AUC was 1<br>and 0.904 in training and validation<br>sets, respectively.                                                                                                                                                                                     |

| Montero-<br>Meléndez et<br>al. [24] | 2013 | Diagnosis,<br>Prognosis<br>(course)              | 28 IBD (15 UC e 13 CD) e seven<br>controls - United States of America<br>and Spain     | Mucosal gene<br>expression                                               | Hierarchical clustering,<br>diagonal linear<br>discriminant analysis | Leave-one-out<br>cross-validation                                                 | No  | Hierarchical analysis found two<br>distinct subgroups (high and low<br>inflammation status) within CD and<br>UC. The accuracy of predicting those<br>subgroups was 92.3% for CD and<br>100% for UC.    |
|-------------------------------------|------|--------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |      |                                                  |                                                                                        |                                                                          |                                                                      |                                                                                   |     | Diagnostic accuracy for CD vs UC was 79%.                                                                                                                                                              |
| Zheng et al.<br>[25]                | 2024 | Diagnosis,<br>Treatment                          | Post hoc analysis [GSE112366,<br>GSE186582, GSE16879,                                  | Mucosal gene<br>expression                                               | Random forest, LASSO regression                                      | Train-test split                                                                  | Yes | CD vs. control AUC was 0.897 (random forest).                                                                                                                                                          |
|                                     |      | response<br>(IFX)                                | GSE111761] with more than 148<br>CD and                                                |                                                                          |                                                                      |                                                                                   |     | Infliximab non-response AUC was 0.876 (LASSO regression model).                                                                                                                                        |
| Chen et al.<br>[122]                | 2024 | Prognosis,<br>(course,                           | Pediatric prospective study with 120<br>CD - United States of America                  | Clinical and mucosal                                                     | Extreme gradient boosting                                            | Leave-one-out<br>cross-validation                                                 | No  | The AUC for predicting strictures was 0.84.                                                                                                                                                            |
|                                     |      | activity,<br>surgery)                            |                                                                                        |                                                                          |                                                                      |                                                                                   |     | Disease remission (based on steroid-free) AUC was 0.83.                                                                                                                                                |
|                                     |      |                                                  |                                                                                        |                                                                          |                                                                      |                                                                                   |     | The AUC for predicting the need for surgery was 0.75.                                                                                                                                                  |
| Jain et al.<br>[123]                | 2018 | Prognosis<br>(surgery)                           | Retrospective study with 179 ASUC<br>- India                                           | Demographic, clinical, and laboratory                                    | Random forest                                                        | Train-test split                                                                  | No  | One year colectomy prediction accuracy was 77%.                                                                                                                                                        |
| Dong et al.<br>[124]                | 2019 | Prognosis<br>(surgery)                           | Retrospective study with 239 CD patients - China                                       | Demographics, clinical,<br>laboratory, treatment<br>history, and imaging | Random forest                                                        | Train-test and split with<br>10 (iterative) times and<br>10-fold cross-validation | No  | The AUC for predicting the need for surgery was 0.9864.                                                                                                                                                |
| Kang et al.<br>[27]                 | 2021 | Prognosis<br>(surgery)                           | Prospective study with 463 CD -<br>South Korea                                         | Clinical and single-nu-<br>cleotide polymorphism                         | CatBoost                                                             | One cohort for train and the other for validation                                 | Yes | Surgery prediction AUC was 0.878 in the training and 0.836 in external validation.                                                                                                                     |
| Stidham et al.<br>[28]              | 2021 | Prognosis<br>(surgery)                           | Retrospective study with 2809 CD -<br>United States of America                         | Clinical, demographic<br>and laboratory                                  | Logistic regression                                                  | #1 30 (iterative)<br>train-test splits with<br>k-fold cross-validation            | No  | The AUC for predicting the need for surgery was #1 0.781 and #2 0.775.                                                                                                                                 |
|                                     |      |                                                  |                                                                                        |                                                                          |                                                                      | #2 50 (iterative)<br>train-test splits                                            |     |                                                                                                                                                                                                        |
| Sofo et al.<br>[125]                | 2020 | Prognosis<br>(post-surgery<br>complica-<br>tion) | Retrospective study with 32 UC -<br>Italy                                              | Clinical, demographics,<br>and laboratory                                | Support vector machine                                               | Leave-one-out<br>cross-validation                                                 | No  | The accuracy was 87.5% for infectious minor complications (wound infection), 91.2% for infectious major complications (intra-abdominal abscess or sepsis), and 84.3% for non-infectious complications. |
| Bodelier et al.<br>[126]            | 2015 | Prognosis<br>(activity)                          | Prospective study with 191 CD<br>(active + inactive) and 110 controls<br>- Netherlands | Volatile organic com-<br>pound                                           | Random Forest                                                        | Train-test split                                                                  | No  | Active and inactive (based on HBI score) CD were predicted with an AUC of 0.88.                                                                                                                        |
| Waljee et al.<br>[127]              | 2017 | Prognosis<br>(activity)                          | Retrospective study with 6448 CD e<br>9863 RU - United States of America               | Clinical and laboratory                                                  | Random forest                                                        | Train-test split                                                                  | No  | Predicting future hospitalizations/<br>steroid (a proxy for IBD flare), AUC was<br>0.87 for CD and 0.88 for UC.                                                                                        |
| Braun et al.<br>[128]               | 2019 | Prognosis<br>(activity)                          | Prospective study with 45 CD<br>patients - Israel                                      | Stool microbiome 16S<br>rRNA                                             | Random Forest                                                        | Uninformed                                                                        | No  | Predicting activity (based on CDAI),<br>AUC was 0.87.                                                                                                                                                  |

| Gan et al.<br>[129]        | 2021 | Prognosis<br>(activity)                                         | Retrospective study with 95,878<br>(42,977 CD e 40,167 UC) patients -<br>United States of America                  | Demographic and labo-<br>ratory data       | Random forest                                                           | Train-test split                                   | No | Flair (based on an inpatient/emergen-<br>cy visit or an outpatient corticosteroid<br>prescription) AUC was 0.791 and 0.8<br>for UC and CD, respectively.                                                                         |
|----------------------------|------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Popa et al.<br>[130]       | 2021 | Prognosis<br>(activity)                                         | Prospective study with 371 UC and 115 CD - Romania                                                                 | Clinical and laboratorial                  | Neural network                                                          | Train-test split with one validation set           | No | UC and CD activity (based on histol-<br>ogy) AUC was 0.9719 and 0.9641,<br>respectively.                                                                                                                                         |
| Popa et al.<br>[131]       | 2021 | Prognosis<br>(activity)                                         | Prospective study with 386 UC -<br>Romania                                                                         | Clinical and laboratorial                  | Neural network                                                          | Train-test split with one validation set           | No | UC activity (based on Mayo score)<br>accuracy was 94.37% on the test set<br>and 93.33% on the validation set.                                                                                                                    |
| Gomollón et<br>al. [132]   | 2022 | Prognosis<br>(activity)                                         | Retrospective study with 5938 CD<br>- Spain                                                                        | Demographics, clinical, and laboratory     | Random forest                                                           | Train-test split                                   | No | Disease relapse AUC was 0.88 with an accuracy of 0.84.                                                                                                                                                                           |
| Barberio et al.<br>[133]   | 2022 | Prognosis<br>(activity)                                         | Prospective study with 46 UC (20 active, 26 inactive) and 36 controls - Italy                                      | Stool microbiome 16S<br>rRNA               | Sparse partial least<br>squares discriminant<br>analysis, random forest | Train-test split                                   | No | Two predictive models' accuracy was 100% for predicting controls, active and inactive disease.                                                                                                                                   |
| Li et al. [134]            | 2022 | Prognosis<br>(activity)                                         | Cross-sectional study with 420<br>UC - China                                                                       | Demographics, clinical,<br>and laboratory  | Random forest and ex-<br>treme gradient boosting                        | Train-validation-test split                        | No | Disease activity based on UCEIS (XG-<br>Boost) AUC was 0.8140 and 0.8140<br>in validation and test sets, respective-<br>ly. MES model (Random Forest) AUC<br>was 0.8508 and 0.8192 in validation<br>and test sets, respectively. |
| Fiorino et al.<br>[135]    | 2022 | Prognosis<br>(activity)                                         | Prospective study with 142 UC<br>(108 remission, 35 relapse) - Italy,<br>France, and Spain                         | Clinical and laboratorial                  | Logistic regression                                                     | Train-test split                                   | No | Relapse vs. remission (based on<br>Mayo score) AUC was 0.754.                                                                                                                                                                    |
| Cai et al.<br>[136]        | 2023 | Prognosis<br>(activity)                                         | Retrospective study with 275 UC<br>(177 active, 98 remission) and 601<br>CD (302 active, 299 remission) -<br>China | Clinical and laboratorial                  | Support vector machine,                                                 | Train-test split with 10-<br>fold cross-validation | No | The AUC for CD active vs. CD remis-<br>sion (based on CDAI) was 0.955 and<br>0.975 in the training and testing sets,<br>respectively (support vector machine).                                                                   |
|                            |      |                                                                 |                                                                                                                    |                                            | Logistic regression                                                     |                                                    |    | UC active vs. remission (based on<br>Mayo score) AUC was 0.876 and<br>0.875 in training and testing sets, re-<br>spectively (logistic regression model).                                                                         |
| Li, et al. [137]           | 2023 | Prognosis<br>(activity)                                         | Retrospective study with 65 UC -<br>China                                                                          | Demographics, clinical,<br>and laboratory  | LASSO regression                                                        | 3-fold cross-validation                            | No | Four predictors were selected, and<br>the nomogram-built AUC was 0.860<br>for the prediction of moderate to<br>severe endoscopic activity.                                                                                       |
| Pang et al.<br>[138]       | 2023 | Prognosis<br>(activity)                                         | Retrospective cohort study with 292<br>UC (178 relapse, 114 non-relapse)-<br>China                                 | Clinical, laboratory, and serological data | Random forest                                                           | Train-test split                                   | No | Relapse prediction AUC was 0.889<br>and 0.871 in training and testing sets,<br>respectively.                                                                                                                                     |
| Gavrilescu et<br>al. [139] | 2023 | Prognosis<br>(activity)                                         | Prospective study with 187 UC patients - in Romania                                                                | Laboratory and IBDQ score                  | Random forest                                                           | Train-test split with 10-<br>fold cross-validation | No | Active vs. remission UC (based on<br>Mayo score) AUC was 0.99 and 0.909<br>in training and test sets, respectively.                                                                                                              |
| Jangi et al.<br>[140]      | 2024 | Prognosis<br>(activity)                                         | Post hoc analysis [SPARC IBD<br>cohort] with 421 UC patients (104<br>active UC, 317 remission UC)                  | Stool fungal (ITS2)                        | Random forest                                                           | Train-test split with 10-<br>fold cross-validation | No | Remission UC vs. active UC (based on PRO-2 $\geq$ 2) AUC was -0.80.                                                                                                                                                              |
| Wu et al. [26]             | 2022 | Prognosis<br>(activity),<br>Treatment<br>response<br>(ADA, IFX) | 188 CD (100 active and 88 inactive)<br>- China                                                                     | Metabolomics from<br>urine                 | PCA - Support vector<br>machine                                         | Leave-one-patient-out cross-validation             | No | Active CD vs. inactive CD (based<br>on CDAI and endoscopy) AUC was<br>0.856. ANT-TNF treatment response<br>accuracy was 0.912.                                                                                                   |

| Lee et al.<br>[141]         | 2011 | Prognosis<br>(course)                     | Prospective study with 35 CD and 32 UC - United Kingdom                                                                                                                    | CD4 and CD8 T cell gene expression                            | Consensus clustering                                                     | Not applicable                                                    | No                  | Using CD8 T cell expression and con-<br>sensus clustering, it was possible to<br>identify two distinctive clusters for CD<br>and UC with different disease curse.                                                                                                          |
|-----------------------------|------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Biasci et al.<br>[142]      | 2019 | Prognosis<br>(course)                     | Prospective study with 69 (39 CD,<br>30 UC) for model development and<br>123 (66 DC, 57 UC) patients for<br>validation - United Kingdom                                    | Transcriptomic data<br>from whole blood and<br>CD8 T cells    | Consensus clustering                                                     | Train-test split with<br>nested leave-one-out<br>cross-validation | Yes                 | Classifier stratified patients into two<br>distinct subgroups: iBDhi patients<br>experienced significantly more aggres-<br>sive disease than iBDlo, with earlier<br>need for treatment escalation and<br>more escalations over time.                                       |
| Ungaro et al.<br>[143]      | 2021 | Prognosis<br>(course)                     | Pediatric case-cohort study using<br>RISK data with 265 (167 with com-<br>plications and 98 without) - United<br>States of America and Canada                              | Clinical, serologies, and protein expression                  | Random survival forests                                                  | 200 (iterative) 5-fold cross-validation                           | No                  | The protein-based model performed<br>better than serologies-only and clini-<br>cal variables-only models for predict-<br>ing stricturing (B2) and penetrating<br>(B3) disease with an AUC of 0.68 and<br>0.79, respectively.                                               |
| Wang et al.<br>[144]        | 2020 | Prognosis<br>(course)                     | Prospective study with 175 IBD (80<br>UC, 95 CD) e 70 controls - United<br>States of America                                                                               | Clinical and serum elafin level                               | Decision forest                                                          | Train-test split                                                  | No                  | Stricturing prediction for CD AUC was 0.917.                                                                                                                                                                                                                               |
| Sudhakar et<br>al. [145]    | 2021 | Prognosis<br>(course)                     | Cross-sectional study with 33 CD -<br>Belgium                                                                                                                              | Blood gene expres-<br>sion, single nucleotide<br>polymorphism | Multi-Omics Factor<br>Analysis                                           | Not applicable                                                    | Not ap-<br>plicable | The study identified cell type-specific<br>gene expression signatures, path-<br>ways, and hub genes associated<br>with clinical heterogeneity, including<br>disease behavior and location, which<br>could potentially serve as molecular<br>markers for disease subtyping. |
| Levartovsky et<br>al. [146] | 2021 | Prognosis<br>(course)                     | Retrospective study with 309 CD<br>- Israel                                                                                                                                | Clinical, demographics, and laboratory                        | Random forest                                                            | 100 (iterative) times train-test split                            | No                  | Prediction of intra-abdominal ab-<br>scesses (diagnosed based on imaging<br>reports) AUC was 0.817.                                                                                                                                                                        |
| Ma et al.<br>[147]          | 2023 | Prognosis<br>(course)                     | Post hoc analysis [GSE11223,<br>GSE13367, GSE53306, GSE87466,<br>and GSE212849] with 362 UC and<br>126 controls                                                            | Mucosal gene<br>expression                                    | Consensus clustering                                                     | Not applicable                                                    | Not ap-<br>plicable | Unsupervised analysis classified<br>patients into two subgroups: sub-<br>group I had higher UCSS scores and<br>extensive disease, whereas subgroup<br>II had lower UCSS and limited disease<br>extent.                                                                     |
| Chang et al.<br>[148]       | 2023 | Prognosis<br>(course)                     | Post hoc analysis [GSE87466,<br>GSE107499, GSE59071,<br>GSE48958,                                                                                                          | Mucosal gene<br>expression                                    | Hierarchical agglomera-<br>tive clustering, extreme<br>gradient boosting | Train-test split with 10-fold cross-validation                    | Yes                 | Unsupervised analysis revealed<br>three distinct groups with distinct<br>molecular, cellular, and clinical char-<br>acteristics.                                                                                                                                           |
|                             |      |                                           | GSE47908,<br>GSE36807,15GSE38713,<br>GSE75214, GSE48634, and<br>GSE13367] with 455 UC, 147 con-<br>trols for training, and one external<br>data with 100 UC for validation |                                                               |                                                                          |                                                                   |                     | Using supervised analysis, it was<br>possible to predict those subtypes<br>with an AUC of 0.9718 and 0.8706<br>in training and validation sets,<br>respectively.                                                                                                           |
| Joustra et al.<br>[149]     | 2022 | Prognosis<br>(post-surgery<br>recurrence) | Post hoc analysis with 25 CD (12<br>endoscopic remission, 13<br>endoscopic recurrence)                                                                                     | DNA methylation                                               | Elastic net classification                                               | Train-test with 50<br>(iterative) 5-fold<br>cross-validation      | No                  | Endoscopic recurrence vs. remission<br>(based on Rutgeerts scores) AUC was<br>0.625.                                                                                                                                                                                       |

| Rajalingam et<br>al. [150] | 2023 | Prognosis<br>(post-surgery<br>recurrence) | Post hoc analysis [GSE186582] with<br>37 post-operative CD remission and<br>84 post-operative CD recurrence             | Mucosa gene<br>expression                                             | Logistic regression                                                                                        | Train-test split with 10-fold cross-validation              | No | Post-operative CD remission vs recurrence AUC was 0.91.                                                                                                                                                                                                                                                          |
|----------------------------|------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cushing et al.<br>[151]    | 2019 | Prognosis<br>(post-surgery<br>recurrence) | Prospective study with 60 CD -<br>United States of America                                                              | Mucosal transcriptome                                                 | Random Forest and hierarchical clustering                                                                  | Uninformed                                                  | No | Predicting i0 vs i1-i4 Rutgeerts score<br>revealed an out-of-bag estimate<br>error rate of 8.33% for the TNF-naïve<br>patients.<br>Unsupervised analysis identified<br>distinct transcriptome profiles associ-<br>ated with indolent disease course in<br>both anti-TNF-naïve and anti-TNF-<br>exposed patients. |
| Keshteli et al.<br>[152]   | 2018 | Prognosis<br>(post-surgery<br>recurrence) | 38 CD patients (28 recurrence; 10 remission) - Canada                                                                   | Urinary metabolomic                                                   | Logistic regression                                                                                        | 10-fold cross-validation                                    | No | Endoscopic recurrence after surgery AUC was 0.91.                                                                                                                                                                                                                                                                |
| Sokol et al.<br>[153]      | 2020 | Prognosis<br>(post-surgery<br>recurrence) | Prospective study with 201 CD -<br>France                                                                               | 16s rRNA, clinical and demographic                                    | Random forest                                                                                              | Train-test split                                            | No | Postoperative endoscopic recurrence<br>(based on Rutgeerts score) AUC was<br>0.81 based on 16s rRNA data only,<br>losing performance when adding<br>clinical data (AUC of 0.786).                                                                                                                                |
| Tseng et al.<br>[154]      | 2022 | Prognosis<br>(sarcopenia)                 | Retrospective study with 167 CD<br>- China                                                                              | Demographics, clinical,<br>laboratory                                 | LightGBM                                                                                                   | Train-test split                                            | No | Sarcopenia prediction AUC was 0.933.                                                                                                                                                                                                                                                                             |
| Waljee et al.<br>[88]      | 2020 | Treatment<br>response<br>(6-MCP)          | Post hoc analysis [TOPPIC trial] with 117 CD patients                                                                   | Clinical and laboratorial                                             | LASSO penalized logistic<br>regression, random<br>forest                                                   | Train-test split                                            | No | Models did not discriminate well for<br>predicting clinical, endoscopic, or<br>biologic recurrence after surgery, with<br>AUC ranging from 0.50 to 0.62.                                                                                                                                                         |
| Gorenjak et<br>al. [89]    | 2019 | Treatment<br>response<br>(ADA)            | Prospective study with 47 CD patients - Slovenia                                                                        | Mucosal gene expres-<br>sion and single nucleo-<br>tide polymorphisms | Ensemble                                                                                                   | Trai-test split with nested cross-validation                | No | Adalimumab response (based on<br>IBDQ score) accuracy was 96.2%<br>at week 12 and 100% at week 20,<br>and 30.                                                                                                                                                                                                    |
| Sakurai et al.<br>[90]     | 2020 | Treatment<br>response<br>(ADA)            | Observational study with 9 UC and<br>three controls - Japan                                                             | Mucosal gene expression                                               | Hierarchical clustering,<br>logistic regression, naive<br>Bayes, neural network,<br>support vector machine | 10-Fold Cross-validation                                    | No | Hierarchical clustering identified three<br>distinct clusters from baseline and<br>24th-week samples (non-relapses,<br>baseline relapses, and relapses 24 <sup>th</sup><br>week). Four machine learning models<br>AUC was 1.                                                                                     |
| Kim et al. [91]            | 2023 | Treatment<br>response<br>(ADA)            | Prospective study with 62 UC and 30 controls – South Korea                                                              | Stool metabolomics                                                    | Support vector machine                                                                                     | Train-test split with<br>10-fold cross-validation           | No | Adalimumab treatment response<br>(based on Mayo score) AUC was 1<br>and 0.99 in training and testing sets<br>at week 8 and 52, respectively.                                                                                                                                                                     |
| Wang et al.<br>[92]        | 2020 | Treatment<br>response<br>(AZA)            | Cross-sectional study with 446<br>CD - China                                                                            | Clinical and questionnaire data                                       | Support vector machine                                                                                     | Train-test split with 10-fold cross-validation              | No | Predicting azathioprine nonadherence, AUC was 0.93.                                                                                                                                                                                                                                                              |
| Haberman et<br>al. [29]    | 2019 | Treatment<br>response<br>(CS)             | Pediatric post hoc analysis of PRO-<br>TECT with 256 UC and 20 controls<br>- Canada and the United States of<br>America | Clinical and mucosal gene expression                                  | Logistic regression                                                                                        | Discovery cohort<br>(N=152) and validation<br>cohort (N=50) | No | Corticosteroid-free remission at week 4 AUC was 0.777.                                                                                                                                                                                                                                                           |

| Ghoshal et al.<br>[30]    | 2020 | Treatment<br>response<br>(CS, IFX,<br>CsA)    | Prospective study with 263 ASUC<br>- India                                                                            | Clinical and laboratorial                          | Artificial neural network                   | Train-test split                                                                                   | No                    | Response to medical treatment (based on CAI) accuracy was 73%.                                                                                                              |
|---------------------------|------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Yu et al. [93]            | 2022 | Treatment<br>response<br>(CS)                 | Retrospective study with 129 ASUC<br>(153 responders, 41 non-respond-<br>ers) - China                                 | Clinical, demographics,<br>and laboratory          | LASSO Logistic<br>Regression                | Discovery cohort with<br>100 (iterative) train-test<br>splits and another<br>cohort for validation | Yes                   | Treatment response (based on no<br>requirement for rescue therapy) AUC<br>was 0.873 and 0.703 in internal<br>validation and external validation,<br>respectively.           |
| Takayama et<br>al. [94]   | 2015 | Treatment<br>response<br>(Cytoapher-<br>esis) | Retrospective study with 90 UC -<br>Japan                                                                             | Clinical                                           | Artificial neural network                   | Train-test split                                                                                   | No                    | The sensitivity and specificity in predicting the requirement of opera-<br>tion after CAP therapy were 0.96 and 0.97, respectively; no AUC or accuracy was provided.        |
| Jones et<br>al.[95]       | 2020 | Treatment<br>response<br>(EEN)                | Pediatric prospective study with 22<br>CD - Canada                                                                    | Clinical, 16S rRNA and metagenomics                | Random forest                               | Leave-one-out cross-<br>validation                                                                 | No                    | Enteral nutrition response (based on wPCDAI score) AUC was 0.90.                                                                                                            |
| Harun et al.<br>[96]      | 2024 | Treatment<br>response<br>(ETR)                | Post hoc analysis [NCT02163759,<br>NCT02171429, NCT02165215<br>and NCT02165215] with 1,684 UC<br>patients             | Demographics, clinical,<br>and laboratory          | Extreme gradient<br>boosting                | 5-fold cross-validation                                                                            | No                    | Treatment response (based on Mayo<br>score) at induction and maintenance<br>for Etrolizumab AUC was 0.74 and<br>0.75, respectively.                                         |
| Kang et al.<br>[97]       | 2022 | Treatment<br>response<br>(FMT)                | Prospective study with 10 UC (4<br>non-responders, six responders)<br>- Korea                                         | Stool 16S rRNA                                     | LASSO logistic regres-<br>sion              | 5-fold cross-validation                                                                            | No                    | Fecal microbiota transplantation<br>treatment response (based on Mayo<br>score) AUC was 0.844.                                                                              |
| Wu et al. [98]            | 2023 | Treatment<br>response<br>(FMT)                | Prospective study with 44 UC (13 re-<br>missions, 31 non-remission) - China                                           | Serum metabolomics                                 | Random forest                               | Train-test split with 10-<br>fold cross-validation                                                 | No                    | Clinical remission (based on partial<br>Mayo score) 3 months post-FMT AUC<br>was 0.963.                                                                                     |
| Telesco et al.<br>[99]    | 2018 | Treatment<br>response<br>(GOL)                | Clinical trial with 103 UC - Europe<br>and North America                                                              | Mucosal gene<br>expression                         | k-nearest neighbors                         | The model was trained<br>data from the ACT1<br>(infliximab) and PURSUIT<br>(golimumab)             |                       | Golimumab endoscopic remission at<br>week 6 AUC was 0.688 and 0,671 at<br>week 30. Clinical response was not<br>possible to predict.                                        |
| Feng et al.<br>[100]      | 2021 | Treatment<br>response<br>(IFX)                | Post hoc analysis [GSE16879,<br>GSE12251, GSE23597] with 148<br>UC patients - Belgian and United<br>States of America | Mucosal transcriptome                              | Random forest and artificial neural network | Two cohort                                                                                         | Yes F<br>(l<br>a<br>s | Prediction of primary responders<br>(based on Mayo endoscopic subscore<br>and histological score) AUC was 0.93<br>and 0.81in training and validation<br>sets, respectively. |
|                           |      |                                               |                                                                                                                       |                                                    |                                             | for train and                                                                                      |                       |                                                                                                                                                                             |
|                           |      |                                               |                                                                                                                       |                                                    |                                             | the other for validation                                                                           |                       |                                                                                                                                                                             |
| Ghiassian et<br>al. [101] | 2022 | Treatment<br>response<br>(IFX)                | Post hoc analysis [GSE14580 and GSE12251] with 46 UC - Belgium                                                        | Mucosal gene<br>expression                         | Artificial neural network                   | One cohort for the train<br>with leave-one-out cross-<br>validation and<br>the other for           | Yes                   | Infliximab non-response (based on no<br>endoscopic and histologic healing)<br>AUC was 0.83.                                                                                 |
| Zhang et al.<br>[31]      | 2021 | Treatment<br>response<br>(IFX)                | Retrospective study with 206 CD (42 primary non-responders) - China                                                   | Clinical and single<br>nucleotide<br>polymorphisms | LASSO logistic<br>regression                | validation<br>100 (iterative) train-test<br>splits                                                 | No                    | The AUCs for predicting primary<br>non-response to infliximab (based<br>on SES-CD score) were 0.818 and<br>0.888 in the training and testing sets,<br>respectively.         |
| Li et al. [102]           | 2021 | Treatment<br>response<br>(IFX)                | Prospective and retrospective study with 260 CD patients - China                                                      | Cytokines levels                                   | Logistic regression                         | Retrospective data was<br>used for model develop-<br>ment with bootstrapping                       | No                    | Primary non-responders to IFX (based<br>on CDAI or need of treatment scala-<br>tion) AUC was 0.896.                                                                         |

| Chen et al.<br>[103]                 | 2021 | Treatment<br>response<br>(IFX)                   | Post hoc analysis [GSE12251,<br>GSE16879, GSE23597, and<br>GSE73661 for validation] with 50<br>UC patients                                                                                                                         | Mucosal gene<br>expression                                       | Artificial neural network                                                                               | Train-test and<br>verification split with<br>500 (iterative) times | Yes | Response to IFX (based on Mayo<br>endoscopic subscore and histologi-<br>cal score) AUC was 0.850 and 0.759<br>in testing in the validation sets,<br>respectively.                                                                  |
|--------------------------------------|------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mishra et al.<br>[104]               | 2022 | Treatment<br>response<br>(IFX)                   | Prospective study with 19 UC and 18 CD - Germany                                                                                                                                                                                   | Mucosal gene<br>expression and DNA<br>methylation                | Random forest                                                                                           | 10-fold cross-validation                                           | No  | TNF-therapy response at week 14<br>AUC was 1 and 0.97 for CD and UC,<br>respectively.                                                                                                                                              |
| Derakhshan<br>Nazari et al.<br>[105] | 2023 | Treatment<br>response<br>(IFX, ADA)              | Post hoc analysis [GSE12251,<br>GSE16879 for discovery cohort<br>and GSE73661 for validation]<br>with 38 UC responders and 19 UC<br>non-responders + prospective study<br>with 10 UC responders and 12 UC<br>non-responders - Iran | Mucosal gene expres-<br>sion                                     | Ensemble                                                                                                | Two datasets for training and two for testing                      | Yes | Infliximab response (based on Mayo<br>subscore and histologic grade) AUC<br>was 0.991 and 0.981 in discovery<br>and validation, respectively. Iran co-<br>hort treated with adalimumab could<br>be predicted with an AUC of 0.948. |
| Park et al.<br>[32]                  | 2022 | Treatment<br>response<br>(IFX, bios-<br>similar) | Post hoc analysis from IMPACT<br>study with 234 CD (14 non-durable<br>response, 220 durable response)<br>- Korea                                                                                                                   | Clinical and gene<br>expression                                  | LASSO logistic regres-<br>sion                                                                          | 100 (iterative) train-test splits                                  | No  | Non-durable response vs. durable response AUC was 0.935.                                                                                                                                                                           |
| Li et al. [106]                      | 2021 | Treatment<br>response<br>(IFX)                   | Retrospective study with 174 CD (51 with response) - China                                                                                                                                                                         | Demographics, clinical,<br>laboratory, and imaging<br>parameters | Random forest                                                                                           | Train-test split with 10-<br>fold cross-validation                 | No  | Prediction of infliximab response<br>(based on CDAI and no surgery<br>needed) AUC was 0.90.                                                                                                                                        |
| Hassan-<br>Zahraee et al.<br>[107]   | 2023 | Treatment<br>response<br>(RIT)                   | Post hoc analysis [NCT02958865]<br>with 123 UC                                                                                                                                                                                     | Serum metabolomics                                               | Logistic regression                                                                                     | Not specified                                                      | No  | Predicting modified remission for<br>Ritlecitinib (based on modified<br>Mayo score, stool frequency, and<br>rectal bleeding), AUC was 0.88, and<br>endoscopic improvement (Mayo endo-<br>scopic subscore) AUC was 0.83.            |
| Morilla et al.<br>[33]               | 2019 | Treatment<br>response<br>(CS, CsA,<br>IFX)       | Retrospective study with 47 ASUC<br>for model development and 29<br>ASUC for validation, both - France                                                                                                                             | Mucosal microRNAs and clinical                                   | Deep neural network,<br>linear discriminant<br>analysis, topological<br>data analysis, random<br>forest | One cohort for train and the other for validation                  | No  | Responders vs. non-responders AUC was 0.97, 0.90, and 0.83 in the discovery set and 0.91, 0.82, and 0.82 in the validation set for corticosteroids, infliximab, and cyclosporine, respectively.                                    |
| Waljee et al.<br>[60]                | 2017 | Treatment<br>response<br>(TP)                    | Retrospective study with 1080<br>(435 UC, 616 CD) - United States of<br>America                                                                                                                                                    | Clinical, demographics,<br>and laboratory                        | Random forest                                                                                           | Train-test split                                                   | No  | Thiopurines remission AUC was 0.79 for both UC and CD.                                                                                                                                                                             |
| Lees et al.<br>[109]                 | 2021 | Treatment<br>response<br>(TOFA)                  | Post hoc analysis [OCTAVE Induction 1 and 2] with 841 UC                                                                                                                                                                           | Clinical and laboratorial                                        | Logistic regression                                                                                     | Train-test split and 5-fold cross-validation                       | No  | Tofacitinib response at week 8 (based<br>on Mayo score) AUC was 0.87 and<br>0.88 in training and testing sets,<br>respectively.                                                                                                    |
| Joustra et al.<br>[110]              | 2023 | Treatment<br>response<br>(TOFA)                  | Prospective study with 31 UC (16<br>responses, 15 non-response) -<br>Netherlands                                                                                                                                                   | DNA methylation                                                  | Gradient boosting                                                                                       | Train-test with 100<br>(iterative) 10-fold cross-<br>validation    | No  | Tofacitinib UC responders vs. UC non-<br>responders AUC was 0.74 at week 8.                                                                                                                                                        |
| Waljee et al.<br>[111]               | 2019 | Treatment<br>response<br>(UST)                   | Post hoc analysis [UNITI-1, UNITI-2, and IM-UNITI] with 401 CD patients                                                                                                                                                            | Demographic and<br>laboratory                                    | Random forest                                                                                           | 100 (iterative) train-test splits                                  | No  | The week-8 model AUC was 0.78 for<br>predicting Ustekinumab response<br>(based on CRP) beyond week 42                                                                                                                              |

| He et al. [112]                    | 2021 | Treatment<br>response<br>(UST) | Post hoc analysis [GSE112366] with 86 CD patients and 26 controls                                 | Mucosal gene expres-<br>sion              | Logistic regression                 | Train-test split                                                                        | No  | Ustekinumab response (based on<br>CDAI) AUC was 0.746 and 0.734 in<br>training and validation sets, respec-<br>tively.                                                                                                                                 |
|------------------------------------|------|--------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chaparro et<br>al. [113]           | 2022 | Treatment<br>response<br>(UST) | Retrospective study with 463 CD<br>- Spain                                                        | Clinical and laboratory data              | Generalized additive model          | 10-fold cross-validation                                                                | No  | Ustekinumab remission (based on HBI) AUC was 0.796.                                                                                                                                                                                                    |
| Liefferinckx et<br>al. [114]       | 2022 | Treatment<br>response<br>(UST) | Retrospective study with 80 CD patients - Belgium                                                 | Clinical and laboratorial                 | Random forest and gradient boosting | Nested cross-validation                                                                 | No  | Gradient boosting and Random Forest<br>reached similar results for predicting<br>clinical response at week 16 with<br>AUC of 0.87 and 0.86, respectively,<br>while endoscopic response based on<br>random forest performed better with<br>AUC of 0.92. |
| Morikubo et<br>al. [115]           | 2024 | Treatment<br>response<br>(UST) | Retrospective study with 71 UC -<br>Japan                                                         | Clinical and laboratorial                 | Random forest                       | One cohort for training<br>with 5-fold cross-vali-<br>dation and another for<br>testing | Yes | Steroid-free clinical remission at week 22 AUC was 1 and 0.677 in training and testing sets, respectively.                                                                                                                                             |
| Waljee et al.<br>[116]             | 2018 | Treatment<br>response<br>(VDZ) | Post hoc analysis [GMEINI 1 trial]<br>with 491 UC                                                 | Clinical and laboratorial                 | Random forest                       | 50 (iterative) train-test splits                                                        | No  | Corticosteroid-free endoscopic remis-<br>sion at week 52 AUC was 0.73 using<br>data through week 6.                                                                                                                                                    |
| Waljee et al.<br>[117]             | 2018 | Treatment<br>response<br>(VDZ) | Post hoc analysis [NCT00783692] with 472 CD patients                                              | Clinical, demographics,<br>and laboratory | Random forest                       | 50 (iterative) train-test splits                                                        | No  | Vedolizumab response (no corticosteroid uses and CRP $\leq$ 5 mg/L) at week 52 AUC was 0.75 using data through week 6.                                                                                                                                 |
| Dulai et al.<br>[118]              | 2020 | Treatment<br>response<br>(VDZ) | Post hoc analysis from GEMINI 1<br>trial with 620 UC patients and 199<br>UC patients from VICTORY | Clinical and laboratorial                 | Logistic regression                 | One cohort<br>for train and<br>the other for<br>validation                              | Yes | Vedolizumab response (based on<br>Mayo score) AUC was 0.65 and 0.64<br>in training and validation cohorts, re-<br>spectively. The model was converted<br>into a clinical decision support tool.                                                        |
| Miyoshi et al.<br>[119]            | 2021 | Treatment<br>response<br>(VDZ) | Retrospective study with 69 UC patients - Japan                                                   | Clinical and laboratory                   | Logistic regression, random forest  | One cohort for training<br>and the other for valida-<br>tion                            | Yes | Steroid-free clinical remission (based<br>on Lichtiger) at week 22 accuracy<br>was 100% in training and 68.6% in<br>validation.                                                                                                                        |
| Chen et al.<br>[120]               | 2022 | Treatment<br>response<br>(VDZ) | Post hoc analysis with 543 UC pa-<br>tients from VISIBLE 1 and VERSITY<br>data                    | Demographic, clinical,<br>and laboratory  | Elastic net regularized regression  | Train-test split with 5-fold cross-validation                                           | No  | Vedolizumab remission at week 52<br>(based on Mayo score) AUC was<br>0.811.                                                                                                                                                                            |
| Venkata-<br>purapu et al.<br>[121] | 2022 | Treatment<br>response<br>(VDZ) | Post hoc analysis [VERSIFY] with 69 CD                                                            | Clinical, laboratory, and demographics    | Classification tree                 | Not informed                                                                            | No  | The responder classifier predicted<br>endoscopic remission (sensitivity of<br>80% and specificity of 69%) and mu-<br>cosal healing (sensitivity of 75% and<br>specificity of 70%) over 26 weeks. No<br>AUC or accuracy was reported.                   |

6-MCP, 6-mercaptopurine; ACT1, Active Ulcerative Colitis Trial 1; ADA, Adalimumab; ASUC, acute severe ulcerative colitis; AUC, Area Under the Curve; CD, Crohn's Disease; CDAI, Crohn's Disease Activity Index; CRP, C-Reactive Protein; CS, corticosteroid; CsA, Cyclosporine A; DNA, Deoxyribonucleic Acid; EEN, Exclusive Enteral Nutrition; ETN, Etrolizumab; FMT, Fecal Microbiota Transplantation; GSE, Gene Expression Omnibus Series; HBI, Harvey-Bradshaw Index; IBDQ, Inflammatory Bowel Disease Questionnaire; IFX, Infliximab; ITS, internal transcribed spacer; LASSO, Least Absolute Shrinkage and Selection Operator; LR, Logistic Regression; Mayo score, Mayo Clinic Score; miRNA, microRNAs; NTC, ClinicalTrials.gov identification code; CRP, C-reactive protein; PRO-2, 2-item patient-reported outcome; PRJNA, National Center for Biotechnology Information BioProject database project number; PURSUIT, Program of Ulcerative Colitis Research Studies Utilizing an Investigational Treatment; RIT, ritlecitinib; rRNA, Ribosomal Ribonucleic Acid; SC, Corticosteroid; SES-CD, Simple Endoscopic Score for Crohn's Disease Activity Index.