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Abstract: Dilated cardiomyopathy (DCM) is a complex heart condition marked by genetic mutations, myocardial 
dysfunction, and progressive heart failure. N6-methyladenosine (m6A) methylation, a key epigenetic modification, 
plays a crucial role in DCM by regulating gene expression in various pathologic processes, including cardiomyocyte 
death, inflammation, fibrosis, and mitochondrial dysfunction. m6A modifications influence cardiomyocyte surviv-
al by modulating apoptosis, necroptosis, ferroptosis, and autophagy-related genes, balancing cellular death and 
survival pathways. Additionally, m6A-driven regulation of inflammation and fibrosis contributes to immune micro-
environment stability and extracellular matrix remodeling, affecting fibroblast activation and myocardial stiffness. 
Mitochondrial health, vital for cardiomyocyte energy demands, is also regulated by m6A methylation. Enzymes like 
methyltransferase-like (METTL) 3 and METTL14 promote mitophagy-related gene expression, while fat mass and 
obesity-associated protein modulates calcium homeostasis, mitigating oxidative stress and energy imbalances. 
Targeting m6A-related enzymes with small molecules, gene editing, or RNA interference (RNAi) offers potential for 
tailored DCM therapy. Emerging technologies, such as nanopore m6A-modified mRNA detection, reveal new insight 
into cardiomyocyte metabolism, suggesting novel therapeutic avenues. This review underscores m6A methylation as 
a pivotal epigenetic mechanism of DCM, providing a basis for advanced diagnosis and therapy.
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Introduction

Dilated cardiomyopathy (DCM) is a chronic 
heart condition marked by ventricular dilata- 
tion and reduced systolic function, ultimately 
leading to heart failure [1]. In the past, DCM 
was considered a rare condition. However, 
recent advancements in epidemiologic studies 
have revealed a prevalence as high as 1 in 250, 
making it one of the most common causes of 
heart failure worldwide and a major indication 
for heart transplantation [2]. DCM is marked 
primarily by left ventricular dilatation, thinning 
of the myocardial wall, and progressive loss of 
cardiac function [3, 4]. Although various treat-
ment options, including pharmacotherapy and 
device support, have been developed to slow 
DCM progression, the overall survival rate of 
patients remains low, highlighting the urgent 
need for deeper research into its pathophysio-
logic mechanisms to identify new therapeutic 
targets [5, 6].

In recent years, epigenetic research has pro-
vided new directions for understanding the 
pathogenesis of DCM. N6-methyladenosine 
(m6A) methylation is one of the most common 
epigenetic modifications of mRNA, playing a  
key regulatory role in RNA stability, splicing, 
translation, and degradation [7, 8]. This mo- 
dification is dynamically regulated by “writer” 
enzymes that add the modification, “eraser” 
enzymes that remove it, and “reader” proteins 
that recognize it, forming a complex and dyna- 
mic equilibrium [9-11]. m6A modification is 
linked to several cardiovascular diseases, in- 
cluding ischemic heart disease and heart fail-
ure, suggesting it may have extensive biologic 
functions in the cardiovascular system [12, 13].

m6A methylation may regulate cardiomyocyte 
behavior through multiple pathways, by affect-
ing cell proliferation, apoptosis, and metabo-
lism, thereby promoting structural remodeling 
of the heart [14, 15]. Previous studies have 
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demonstrated that m6A-related enzymes play 
crucial roles in heart-related diseases, with 
deficiencies in YTHDC1 shown to induce DCM 
in mice [16]. Furthermore, m6A modification 
may influence myocardial fibrosis development 
by modulating fibrosis-related signaling path-
ways [17, 18]. These studies suggest that m6A 
methylation may have a regulatory role in the 
development and progression of DCM, serving 
as a critical epigenetic regulatory node.

Based on this, the purpose of this review is to 
systematically summarize the regulatory mech-
anisms of m6A methylation in DCM and its ther-
apeutic implications. First, we will review and 
introduce the major pathophysiological mecha-
nisms of DCM and m6A methylation; next, we 
will delve into the role of m6A methylation in 
processes such as cardiomyocyte death, myo-
cardial inflammation and fibrosis, and mito-
chondrial dysfunction; finally, we will discuss 
the potential of m6A methylation as a therapeu-
tic target for personalized treatment.

DCM

Genetic mutations and epigenetic factors

The pathogenesis of DCM is closely associat- 
ed with various genetic mutations, particularly 
those affecting genes encoding structural pro-
teins of the myocardium. The titin gene (TTN) is 
one of the most significant genes implicated in 
DCM [19]. It is estimated that 35%-40% of 
hereditary DCM cases may be caused by muta-
tions in sarcomeric genes, most of which in- 
volve truncating mutations in TTN. These muta-
tions alter myocardial fiber compliance, con- 
tributing to the development of DCM [20]. 
Missense and truncating mutations in the gene 
encoding the nuclear lamina protein, lamin are 
the second most common cause of familial 
DCM, responsible for 5%-8% of autosomal 
dominant cases [21, 22].

In addition to these genetic factors, other 
mechanisms have been reported to play roles 
in the progression of DCM. Myocardial connex-
in (Cx) 43 expression is reduced in the patients 
with DCM who die suddenly. The alteration of 
quantity and distribution of myocardial Cx43 
expression is probably related to sudden death 
of the patients with DCM [23]. In clinical trials, 
increased p53 expression in DCM has been 
associated with dysregulation of the ubiquitin-

proteasome system [24]. Overall, these studies 
highlight the significant role of post-transcrip-
tional regulation of mRNA in the pathogenesis 
of DCM.

The role of epigenetic modifications in DCM  
has also gained increasing attention. Research 
suggests that DNA methylation, histone modifi-
cations, and non-coding RNAs are vital regula-
tors of DCM-related gene expression. For ex- 
ample, abnormal DNA methylation levels of 
specific genes have been observed in the myo-
cardial tissues of DCM patients, affecting the 
transcriptional activity of these genes [25, 26]. 
Recently, m6A methylation has also been iden- 
tified as a participant in the regulation of DCM. 
Preliminary studies suggest that it may modu-
late the pathophysiologic process of DCM 
through mechanisms such as remodeling the 
immune microenvironment [27] and influencing 
the splicing of TTN [16].

Cardiomyocyte death

Cardiomyocyte death is a key feature in the 
pathologic progression of DCM, involving vari-
ous regulated cell death mechanisms, includ-
ing apoptosis, necroptosis, ferroptosis, and 
pyroptosis. These forms of cell death collective-
ly alter the survival of cardiomyocytes and the 
overall function of the heart, accelerating dis-
ease progression [28].

In DCM, apoptosis is the primary form of car- 
diomyocyte death, often triggered by oxidative 
stress, inflammatory factors, and genetic muta-
tions. The intrinsic apoptotic pathway involves 
mitochondrial damage and activation of the 
caspase family, leading to programmed cell 
death in cardiomyocytes [29]. The extrinsic 
apoptotic pathway, mediated through death 
receptor signaling, further contributes to myo-
cardial injury [30]. Studies have shown that 
mutations in genes such as TTN and lamin A/C 
(LMNA) increase the susceptibility of cardiomy-
ocytes to apoptosis, exacerbating structural 
and functional cardiac impairment [31].

Beyond apoptosis, necroptosis and ferroptosis 
also play significant roles in DCM [28]. Ne- 
croptosis is characterized by inflammation, 
where activation of receptor-interacting protein 
kinase 3 (RIPK3) and mixed lineage kinase 
domain-like protein (MLKL) results in cell mem-
brane rupture. This form of cell death in DCM is 
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often accompanied by intense inflammatory 
responses, aggravating ventricular remodeling 
[32]. Ferroptosis, on the other hand, is mediat-
ed by iron-dependent lipid peroxidation, leading 
to cell death. This mechanism is closely linked 
to mitochondrial dysfunction and metabolic 
dysregulation within cardiomyocytes [33, 34].

In addition, autophagy also plays a dual role in 
DCM. Autophagy is an intracellular degradation 
mechanism that helps maintain cellular homeo-
stasis by clearing damaged organelles and  
proteins [35]. In cardiomyocytes, moderate 
autophagy is crucial for stress adaptation and 
the removal of damaged mitochondria [36]. 
However, when autophagy is excessively acti-
vated, it may contribute to cardiomyocyte 
death. In DCM, autophagy is often incomplete 
or impaired due to oxidative stress and energy 
deficiencies, leading to an accumulation of da- 
maged organelles and exacerbating myocardial 
dysfunction [37]. 

m6A methylation may play an important role in 
regulating cardiomyocyte death. For instance, 
preliminary studies suggest that methyltrans-
ferase-like 3 (METTL3) may positively influen- 
ce cardiomyocyte survival by modulating the 
mRNA stability of apoptosis- and autophagy-
related genes [14, 38].

Inflammation and fibrosis

Myocardial damage, from genetic or environ-
mental factors, triggers inflammation and re- 
cruits immune cells to repair the heart; infec-
tions and autoimmunity are the primary causes 
of inflammatory DCM [39]. Fibrosis, resulting 
from inflammation at injury sites, is a patholog-
ic hallmark of DCM alongside dilatation [1, 40]. 
Cardiac fibroblasts are central to fibrogenesis, 
activated by various cellular and humoral fac-
tors. Macrophages, CD4+ and CD8+ T cells, 
mast cells, and endothelial cells promote fibro-
genesis by directly activating fibroblasts and 
indirectly producing profibrotic molecules [41]. 
Regional dysfunction or volume overload incre- 
ases cardiac workload and wall stress, activat-
ing fetal genes and myocyte reprogramming 
into myofibroblasts [42]. These processes both 
result from and drive fibrosis. Over time, fibrotic 
tissue replaces damaged areas, stiffening the 
heart and accelerating dilatation and heart 
failure.

Mitochondrial dysfunction

A notable characteristic of DCM is mitochon-
drial dysfunction, which has a profound impact 
on myocardial energy metabolism and overall 
cardiac function [43]. Mitochondria are the pri-
mary sites of ATP production in cardiomyocyt- 
es, and their functional integrity is essential for 
maintaining the energy supply of these cells 
[44]. In DCM patients, common features inclu- 
de abnormal mitochondrial morphology and 
structure, reduced mitochondrial numbers, and 
impaired ATP synthesis capacity [45]. This mito-
chondrial dysfunction leads to decreased effi-
ciency of fatty acid oxidation and glycolytic 
pathways, resulting in inadequate energy sup-
ply and metabolic imbalance in cardiomyocytes 
[46].

Mitochondrial dysfunction is closely linked to 
the regulation of mitophagy. Mutations in the 
LMNA gene have been shown to affect the 
mitophagy process, leading to impaired clear-
ance of damaged mitochondria, which further 
reduces mitochondrial numbers and affects 
their function [47]. Similarly, mutations in the 
TTN significantly disrupt mitochondrial bio- 
energetics, rendering cardiomyocytes unable 
to produce sufficient ATP under high-energy 
demand conditions, which manifests as severe 
energy metabolic dysregulation [48].

Mitochondrial dysfunction also further affects 
calcium homeostasis in cardiomyocytes. Im- 
paired mitochondrial calcium transport dis-
rupts calcium signaling during cardiomyocyte 
contraction and relaxation, leading to a deterio-
ration in the mechanical function of the heart. 
This calcium imbalance exacerbates myocardi-
al cell damage and is a significant factor in the 
decline of cardiac function in DCM patients 
[49].

m6A methylation modification

Overview of m6A

m6A methylation is the selective addition of 
methyl groups to specific adenine bases in RNA 
by the RNA methyltransferase complex (MTC) 
[50]. m6A is the most prevalent dynamic and 
reversible modification in mammalian mRNA, 
occurring within a conserved DRACH motif (D = 
A, G, U; R = A, G; H = A, C, U) [51-53]. m6A modi-
fication affects mRNA stability, nuclear export, 
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and translation initiation by interacting with 
various proteins. Present in almost all RNA 
types-including mRNA, rRNA, tRNA, snRNA, 
miRNA, circRNA, and lncRNA-m6A plays es- 
sential roles in numerous physiologic and 
pathologic processes [54].

Regulation of m6A methylation

Similar to other classical epigenetic modifica-
tions, m6A RNA methylation is regulated by 
three enzyme groups: methyltransferases, 
demethylases, and m6A-binding proteins (or 
“readers”) [55].

Methyltransferases: The “writers” add methyl 
groups to RNA by forming the m6A MTC [50]. 
Key writers include Wilms tumor 1-associated 
protein (WTAP), METTL3, methyltransferase-
like 14 (METTL14), and subunits like VIRMA, 
ZC3H13, and RBM15/15B [56]. METTL3, 
METTL14, and WTAP are the core MTC compo-
nents [57]. METTL3 is the catalytic subunit, 
transferring methyl groups by interaction with 
S-adenosylmethionine (SAM). METTL14, highly 
similar to METTL3, binds RNA substrates and 
activates METTL3 [55]. Together, METTL3  
and METTL14 form a catalytic heterodimer. 
Although WTAP lacks catalytic function, it en- 
hances the methyltransferase activity of the 
METTL3-METTL14 heterodimer [58].

Demethylases: The “erasers” remove methyl 
groups from adenosine in RNA, reversing the 
modifications made by writers. In eukaryotes, 
the primary erasers are fat mass and obesity-
associated protein (FTO) and AlkB homolog 5 
(ALKBH5), both part of the AlkB family of DNA 
repair enzymes [59-61]. FTO, as the first identi-
fied m6A RNA demethylase, established the 
concept of reversible RNA modifications. FTO 
mainly functions in the cell nucleus, where it 
demethylates m6A marks through selective 
splicing and processing at the 3’end of mRNA 
[55, 62]. ALKBH5, another demethylase be- 
longing to the AlkB subfamily in mammals, par-
ticipates in various physiologic processes by 
regulating mRNA stability, splicing, and transla-
tion efficiency. These processes include fertili-
ty, cell survival, and apoptosis [63].

m6A-binding proteins (readers): Readers pri-
marily recognize modifications added by writ-
ers, identifying binding sites on RNA and me- 
thylated proteins and selectively binding to 

modified transcripts [64]. When scanning RNA 
for m6A modifications, readers bind to m6A-
modified RNA, recruiting various RNA-binding 
proteins to target mRNA. Readers may also 
alter the secondary structure of target mRNA 
[65, 66].

m6A readers include the YT521-B homology 
(YTH) protein family-such as YTHDF1/2/3 and 
YTHDC1/2-and the insulin-like growth factor 2 
mRNA-binding protein (IGF2BP) family [67]. 
YTHDF2 mediates the degradation of m6A-mod-
ified mRNA, while YTHDF1 and YTHDF3 en- 
hance mRNA translation, with YTHDF3 also 
inhibiting RNA eraser activity [68-70]. YTHDC1 
regulates mRNA splicing by retaining m6A-mod-
ified exons and facilitates nuclear export of 
modified transcripts [71-73]. YTHDC2 improves 
translation efficiency and reduces mRNA abun-
dance [72]. Nuclear HNRNP family proteins 
control RNA processing, and IGF2BP proteins 
promote the stability and translation of m6A-
modified mRNA [56]. Additionally, METTL3, typi-
cally a writer, can also act as a reader by pro-
moting translation of certain transcripts [74].

Recent studies suggest that m6A epigenetic 
modifications, including YTHDC1, may play an 
important role in the pathogenesis of DCM  
[16]. m6A methylation can influence several 
pathophysiologic mechanisms closely related 
to DCM, such as cardiomyocyte death, inflam-
mation, fibrosis, and mitochondrial metabolic 
disorders, underscoring its critical regulatory 
role in DCM progression [15, 27, 28, 44] (Table 
1).

Pathological regulatory mechanisms of m6A 
methylation in DCM

m6A modifications in cardiomyocyte death

Cardiomyocyte death is central to the patho-
logic progression of DCM and involves multiple 
forms of regulated cell death, such as apopto-
sis, necroptosis, ferroptosis, and autophagy. As 
an essential mechanism of epigenetic regula-
tion, m6A modification profoundly influences 
the expression and stability of key genes in- 
volved in these forms of cell death, ultimately 
determining the fate of cardiomyocytes [28].

Apoptosis: Apoptosis is the primary form of car-
diomyocyte death in DCM, regulated by both 
intrinsic and extrinsic pathways [75]. Intrinsic 
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Table 1. Types and functions of the m6A enzymes
Type Regulator Biological function References
Writers METTL3 Engages with SAM to transfer methyl groups, catalyzing the m6A methylation 

process
[55]

METTL14 By identifying RNA substrates and forming heterodimers with METTL3, it activates 
and amplifies METTL3’s methylation capacity

[55]

WTAP Interacts with the METTL3-METTL14 complex, significantly boosting MTC’s  
methyltransferase function

[58]

VIRMA (KIAA1429) Directs the MTC’s core components to targeted RNA regions [56]
ZC3H3 Plays a role in positioning MTC within the nucleus [56]
RBM15/15B Binds with the METTL3-METTL14 heterodimer to recruit particular RNA sites [56]

Erasers FTO Eliminates m6A modifications to facilitate mRNA splicing and translation [55, 62]
ALKBH5 Removes m6A marks, aiding mRNA splicing and export from the nucleus [63]

Readers YTHDF1 Enhances both mRNA translation and subsequent protein production [68-70]
YTHDF2 Facilitates mRNA breakdown and influences its cellular localization [68-70]
YTHDF3 Collaborates with YTHDF1 to boost mRNA translation or supports RNA  

degradation through YTHDF2
[68-70]

YTHDC1 Controls both mRNA splicing and its export [71-73]
YTHDC2 Elevates target mRNA’s translation efficiency while decreasing its quantity [72]
IGF2BP Enhances the translation and stability of modified mRNA [56]

SAM: S-adenosylmethionine; METTL3: Methyltransferase-like 3; METTL14: Methyltransferase-like 14; WTAP: Wilms tumor 1-associated protein; 
MTC: m6A methyltransferase complex; VIRMA: KIAA1429; ZC3H13: Zinc Finger CCCH-Type Containing 13; RBM15/15B: RNA-binding motif 
protein 15/15B; FTO: Fat Mass and Obesity-associated protein; ALKBH5: AlkB homolog 5; YTHDF: YT521-B homology domain family; YTHDC: 
YT521-B homology domain-containing protein; IGF2BP: Insulin-like Growth Factor 2 mRNA-binding Protein.

apoptosis begins through the mitochondrial 
pathway, activating caspase-8 and down-
stream caspase-3, leading to cardiomyocyte 
apoptosis [76]. Studies indicate that m6A me- 
thylation plays a key regulatory role in apopto-
sis; for instance, m6A-mediated upregulation of 
miRNA-193a promotes cardiomyocyte apopto-
sis through the METTL3/miRNA-193a/BCL2L2 
pathway [14]. Conversely, Shen et al. demon-
strated through a heart failure mouse model 
that overexpression of FTO could inhibit car- 
diomyocyte apoptosis by modulating the m6A 
modification of Mhrt [77]. These findings sug-
gest that the dynamic changes in m6A modifica-
tions play a dual role in regulating cardiomyo-
cyte apoptosis.

Necroptosis: Necroptosis, a form of pro-
grammed cell death closely associated with 
inflammation, plays a significant role in the pro-
gression of DCM [78]. Necroptosis is typically 
triggered by the activation of receptor-interact-
ing protein kinase 1 (RIPK1), RIPK3, and MLKL, 
ultimately causing cell membrane rupture and 
the release of cellular contents, which leads to 
an inflammatory response [79]. Studies have 
found that m6A modification regulates necrop-
tosis by modulating the degradation of m6A-
modified mRNA of RIPK3, a necroptosis-associ-

ated gene, thereby reducing the occurrence of 
necroptosis [80].

Ferroptosis: Ferroptosis is an iron-dependent 
form of cell death characterized by iron-driven 
lipid peroxidation and failure of compensatory 
antioxidant systems [81]. In DCM, ferroptosis is 
triggered by iron metabolism dysregulation and 
antioxidant system impairment, which exacer-
bates myocardial damage [82, 83]. Studies 
have shown that m6A modification influences 
ferroptosis by regulating the expression of fer-
roptosis-related genes involved in iron metabo-
lism and antioxidant responses. For instance, 
METTL3-mediated m6A methylation on the  
solute carrier family 7 member 11 (SLC7A11) 
increases the m6A methylation level on its 
mRNA. YTHDF2 then directly binds to the m6A 
modification sites of SLC7A11, mediating its 
mRNA degradation. This recognition and sub-
sequent decay of SLC7A11 mRNA by YTHDF2 
promote ferroptosis, thereby exacerbating myo-
cardial injury [14]. Conversely, FTO inhibits fer-
roptosis in cardiomyocytes by demethylating 
m6A modifications on P53 or the P21/Nrf2 
pathway, thereby activating P21/Nrf2 to coun-
teract ferroptosis [84].

Autophagy: Autophagy is a critical process by 
which cells maintain homeostasis by degrading 
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and recycling damaged organelles [85]. In 
DCM, autophagy acts as a stress response that 
aids in clearing damaged mitochondria and 
proteins; however, both excessive and insuffi-
cient autophagy can worsen myocardial health 
[86, 87]. Research indicates that m6A modifi- 
cations play a significant regulatory role in key 
genes involved in autophagy. For example, 
METTL3 suppresses the expression of tran-
scription factor EB (TFEB) by adding m6A modi-
fications to the 3’-UTR of TFEB mRNA, thus 
inhibiting autophagy. Loss of METTL3 enhanc-
es autophagic flux in a TFEB-dependent man-
ner. In turn, TFEB regulates the expression of 
METTL3 and ALKBH5, creating a feedback loop 
by activating ALKBH5 transcription and reduc-
ing METTL3 mRNA stability [88].

In summary, m6A methylation plays a critical 
role in DCM through the dynamic regulation of 
genes involved in apoptosis, necroptosis, fer-
roptosis, and autophagy. Proper m6A modifica-
tion helps cardiomyocytes cope with adverse 
conditions such as metabolic and oxidative 
stress, thereby supporting cell survival and 
function. In contrast, imbalances in m6A mo- 
difications may intensify cell death and acceler-
ate DCM progression. Therefore, targeting the 
activity of m6A regulatory factors may provide 
novel therapeutic strategies for slowing the pro-
gression of DCM.

m6A modification in inflammation and myocar-
dial fibrosis

Inflammation: Dysregulation of the inflamma-
tion-induced immune microenvironment is a 
key factor in the pathogenesis of DCM, primar-
ily characterized by abnormal immune cell infil-
tration and excessive expression of pro-inflam-
matory cytokines in myocardial tissue. Single- 
sample gene set enrichment analysis has dem-
onstrated significantly increased infiltration of 
CD8+T lymphocytes, natural killer (NK) cells, 
monocytes, and B lymphocytes in the myocar-
dium of DCM patients, indicating a close re- 
lationship between changes in the immune 
microenvironment and DCM development. m6A 
methylation mediated by insulin-like growth 
factor-binding protein 2 (IGFBP2) has been 
found to disrupt the immune microenviron-
ment, increasing the risk of DCM [27]. This 
abnormal immune activation results in persis-
tent inflammatory stimulation of cardiomyo-
cytes, ultimately leading to myocardial fibrosis 

and further deterioration of cardiac function 
[89]. Additionally, miR-193a, enriched through 
m6A modification, has been identified as an 
important regulator in the inflammatory res- 
ponse of cardiomyocytes [13].

Fibrosis: Pro-inflammatory cytokines, such as 
interleukin-6 (IL-6) and tumor necrosis factor-
alpha (TNF-α), exacerbate myocardial fibrosis 
by activating the transforming growth factor-
beta (TGF-β)/SMAD signaling pathway, leading 
to fibroblast activation and excessive extra- 
cellular matrix deposition [17]. Progressive 
fibrosis increases myocardial stiffness, ulti-
mately resulting in ventricular remodeling and 
significantly impairing cardiac systolic and dia-
stolic function [18]. m6A modification plays a 
regulatory role in myocardial fibrosis by modu-
lating the expression of pro-fibrotic factors. For 
instance, METTL3 binds to the long non-coding 
RNA (lncRNA) MetBil, which is significantly 
increased in fibrotic tissue post-myocardial 
infarction in mice and in cardiac fibroblasts 
exposed to TGF-β1. Overexpression of MetBil 
promotes collagen deposition, fibroblast pro- 
liferation, and activation, enhancing cardiac 
fibrosis through interaction with METTL3 and 
regulating the methylation of fibrosis-related 
genes [15].

In contrast to the pro-fibrotic actions of m6A 
methyltransferases, demethylases such as 
FTO demonstrate protective effects against 
fibrosis and inflammation. Studies in mouse 
models of myocardial infarction have shown 
that overexpression of FTO reduces fibrosis  
and enhances angiogenesis [62]. Furthermore, 
increasing evidence indicates that m6A modifi-
cation mediates programmed cell death (PCD), 
affecting myocardial fibrosis [17]. Given the 
relationship between PCD and m6A modifica-
tion, the role of m6A in myocardial fibrosis war-
rants significant attention.

In summary, targeting the activity of m6A-relat-
ed factors may provide a therapeutic strategy 
to mitigate myocardial fibrosis and inflamma-
tion, thereby slowing the pathologic progres-
sion of DCM.

Mitochondrial dysfunction and m6A modifica-
tion

As the primary energy source for cardiomyo-
cytes, mitochondrial dysfunction leads directly 
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to reduced ATP production and increased oxi-
dative stress, worsening myocardial damage 
and cardiac dysfunction in DCM, including in- 
flammation and fibrosis [43]. In this context, 
m6A modification plays a crucial regulatory role 
in mitochondrial quality control and functional 
maintenance [44].

Studies have shown that m6A modification  
profoundly influences mitochondrial health by 
modulating gene expression related to mitoph-
agy and mitochondrial dynamics [44]. In DCM, 
m6A methyltransferases such as METTL3 and 
METTL14 enhance the stability and expression 
of mitophagy-related genes, such as PTEN-
induced kinase 1 (PINK1) and Parkin RBR E3 
ubiquitin protein ligase (PRKN), by increasing 
m6A modification levels on their mRNA. This 
enhances the clearance of damaged mitochon-
dria, reducing oxidative stress-induced cardio-
myocyte damage [90, 91]. This regulatory 
mechanism is essential for maintaining mito-
chondrial health, helping to mitigate energy 
metabolism disorders in DCM.

In addition, m6A modification plays a critical 
role in regulating mitochondrial calcium homeo-
stasis [92]. During mitochondrial dysfunction, 
abnormal calcium accumulation can trigger the 
opening of the mitochondrial permeability tran-
sition pore (mPTP), leading to mitochondrial 
depolarization and increased oxidative stress 
[93]. METTL3, through m6A modification, regu-
lates the expression of calcium transport-relat-
ed genes, thereby helping to maintain mito-
chondrial calcium homeostasis and reducing 
calcium overload damage to mitochondria. 
However, the high expression of the demethyl-
ase FTO removes m6A modifications from these 
genes, reducing their expression, resulting in 
calcium imbalance and exacerbating mitochon-
drial damage [44].

Mitochondrial dysfunction also causes a signifi-
cant increase in reactive oxygen species (ROS) 
levels, creating a vicious cycle of oxidative 
stress and mitochondrial damage [94]. Using 
hypoxia-ischemia and TGF-β1-induced fibrosis 
models, research has shown that inhibiting 
METTL3 and METTL14 reduces mitochondrial 
fragmentation and myofibrillar conversion, ef- 
fectively decreasing cardiomyocyte stress and 
death [95]. This indicates that m6A modifica- 
tion in DCM not only protects mitochondria by 
maintaining mitochondrial quality control and 

calcium homeostasis but also mitigates mito-
chondrial damage by enhancing antioxidant 
capacity, thereby slowing myocardial patholog-
ic progression.

Additionally, regulation of the NLRP3 inflamma-
some mechanism is closely related to mito-
chondrial function, since mitochondria play a 
key role in the activation and regulation of the 
NLRP3 inflammasome. Activation of NLRP3 
can further disrupt mitochondrial homeostasis, 
inducing NLRP3 deubiquitination, releasing 
mitochondria-derived molecules, and damag-
ing mitochondrial DNA [96]. WTAP has been 
shown to enhance the activation of the NLRP3 
inflammasome by promoting m6A methylation 
of NLRP3 mRNA, thereby inducing cellular 
inflammation [97].

In summary, m6A modification profoundly im- 
pacts mitochondrial dysfunction in DCM by reg-
ulating mitochondrial function and quality con-
trol. Targeting the activity of m6A-related fac-
tors may offer novel therapeutic strategies to 
improve mitochondrial function, alleviate meta-
bolic dysfunction, and reduce inflammation in 
DCM (Figure 1).

Conclusion and outlook

DCM is a complex disease caused by various 
genetic mutations leading to cardiomyopathy. 
m6A methylation, as a crucial epigenetic mech-
anism, significantly influences the progression 
of DCM. In this review, we discussed the regula-
tory roles of m6A modification in several DCM-
related pathologic processes, primarily includ-
ing cardiomyocyte death, inflammation, fibrosis, 
and mitochondrial dysfunction.

First, m6A modification directly participates in 
the pathologic changes in DCM driven by genet-
ic mutations by regulating the expression of key 
genes. For example, METTL3 influences the 
expression of crucial genes like TTN and LMNA 
through m6A modification of mRNA, and mu- 
tations in these genes are among the major 
causes of DCM. m6A modification not only 
affects gene expression levels but also regu-
lates cardiomyocyte stress responses by alter-
ing RNA splicing, post-transcriptional stability, 
and translational efficiency.

Second, m6A methylation plays a vital role in 
various forms of cardiomyocyte death, includ-
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ing apoptosis, necroptosis, ferroptosis, and 
autophagy. Regulatory factors such as ME- 
TTL3, FTO, and YTHDF2 influence cardiomyo-
cyte fate through modification or demethylation 
of cell death-related genes. This underscores 
m6A modification as a key regulatory factor bal-
ancing cardiomyocyte survival and death.

Additionally, m6A methylation also exerts sig- 
nificant effects on DCM-associated inflamma-
tion and fibrosis. Inflammation and fibrosis are 
primary features of DCM pathological remodel-
ing, and m6A modification regulates the inflam-
matory response and stability of the immune 
microenvironment by modulating inflammation-
related genes such as NLRP3. This, in turn, 
influences fibroblast activation and the fibrotic 
process. Overall, m6A modification plays a cen-
tral role in DCM epigenetic regulation, fine-tun-

ing gene expression across various pathologic 
processes.

In the future, therapeutic strategies targeting 
m6A methylation may include small molecule 
inhibitors or activators to modulate specifically 
the activity of “writers” or “erasers”, thereby 
restoring gene expression balance in DCM at 
the cellular level. Furthermore, gene editing 
technologies or RNA interference could be uti-
lized to precisely regulate m6A-related target 
genes, offering potential for personalized thera-
py. Recent studies suggest that nanopore 
detection of METTL3-dependent m6A-modified 
mRNA reveals a novel mechanism for regulat-
ing mitochondrial metabolism in cardiomyo-
cytes [98]. By targeting the dynamic regulation 
of m6A modifications, these emerging thera-
peutic and diagnostic approaches may provide 

Figure 1. Pathological regulatory mechanisms of m6A methylation in DCM. METTL3: Methyltransferase-like 3; FTO: 
Fat Mass and Obesity-associated protein; miRNA: MicroRNA; Mhrt: Myosin Heavy Chain-Associated RNA Transcripts; 
BCL2L2: BCL2-like Protein 2; WTAP: Wilms Tumor 1-Associated Protein; RIPK1: Receptor-Interacting Protein Kinase 
1; SLC7A11: Solute Carrier Family 7 Member 11; YTHDF2: YT521-B Homology Domain Family 2; Nrf2: Nuclear 
Factor Erythroid 2-Related Factor 2; P53-P21: Tumor Protein P53-P21 Pathway; ALKBH5: AlkB Homolog 5; TFEB: 
Transcription Factor EB; lncRNA: Long Non-Coding RNA; TGF-β1: Transforming Growth Factor Beta 1; PINK1: PTEN-
Induced Kinase 1; PRKN: Parkin; NLRP3: NOD-, LRR- and Pyrin Domain-Containing Protein 3; m6A: N6-Methyl-
adenosine; PCD: Programmed Cell Death.
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new clinical tools to effectively slow or even 
reverse the pathologic progression of DCM.

Limitations

While this review provides a comprehensive 
overview of the regulatory mechanisms of m6A 
methylation in DCM, it has several limitations 
that merit consideration. The discussion focus-
es predominantly on a narrow range of enzy- 
mes, particularly METTL3, METTL14, and FTO, 
while other regulators, such as ALKBH5, WTAP, 
and IGF2BP family proteins, received limited 
attention. Given the complexity of the m6A 
methylation network, a more holistic examina-
tion of these regulators may provide a deeper 
understanding of the interplay among different 
methylation factors in DCM pathophysiology.

Moreover, the review briefly touched upon ther-
apeutic strategies, such as small molecule 
inhibitors and gene editing, but lacked a 
detailed analysis of their feasibility, safety, or 
current progress in clinical or preclinical stud-
ies. Expanding this discussion would strength-
en the practical implications of the findings. 
Additionally, while the review highlighted the 
roles of m6A methylation in apoptosis, fibrosis, 
and inflammation, the underlying mechanistic 
pathways were not thoroughly explored. 
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