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Abstract: Objective: To evaluate the performance of ultrasound-based neural networks in predicting HER2 status 
in invasive breast cancer (IBC) patients, comparing DenseNet201, ResNet50, Breast Imaging Reporting and Data 
System (BI-RADS), and a multilayer perceptron (MLP) model. Methods: Between March 1 and December 30, 2019, 
268 female patients with IBC underwent ultrasound-guided core needle biopsy. A total of 1127 ultrasonic images 
were collected, divided into a training set (70%) and an internal validation set (30%). The HER2 status was pre-
dicted using BI-RADS, MLP, ResNet50, and DenseNet201 models. The diagnostic performance of these models 
was evaluated using accuracy and the area under the receiver operating characteristic curve (AUC). Results: BI-
RADS demonstrated the weakest prognostic capability, with an AUC of 0.526, sensitivity of 74.7%, and specificity of 
67.4%. The MLP model showed moderate performance with an AUC of 0.637 and accuracy of 75.1%. Among CNN 
models, DenseNet201 outperformed ResNet50, achieving an AUC of 0.660 and an accuracy of 73%, compared 
to ResNet50’s AUC of 0.537 and accuracy of 67%. For distinguishing HER2-low and HER2-zero expression levels, 
the MLP model exhibited the highest AUC of 0.790, followed by DenseNet201 at 0.783. In external validation, 
DenseNet201 demonstrated a robust AUC of 0.860 (95% CI: 0.674-1.000; P < 0.05). Conclusions: Ultrasound-
based DenseNet201 outperformed BI-RADS and ResNet50 for predicting HER2 status in IBC, offering a promising, 
non-invasive diagnostic tool for clinical application.
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Introduction

Breast cancer remains a global health chal-
lenge, affecting millions of women worldwide. 
Invasive breast cancer (IBC) accounts for 
approximately 85% of all cases, with human 
epidermal growth factor receptor 2 positive 
(HER2+) tumors representing 15% of these [1]. 
HER2+ IBC has a poor prognosis, with an 
increased risk of metastasis and lower survival 
rates compared to HER2-negative (HER2-) 
tumors [2]. Neoadjuvant therapy, particularly 
trastuzumab, is recommended for HER2+ IBC 
patients to improve clinical outcomes [3]. 

Accurate assessment of HER2 status is crucial 
for personalized treatment and monitoring 
therapy response. Magnetic resonance imag-

ing (MRI) is widely used for this purpose, provid-
ing detailed tumor visualization and therapy asse- 
ssment [4, 5]. However, MRI has limitations 
such as high cost, long examination times, and 
inaccessibility for patients with contraindica-
tions (e.g., claustrophobia, metallic implants). 
In contrast, ultrasonography is a cost-effective, 
widely accessible alternative, particularly effec-
tive in dense breast tissues, and is frequently 
used in Eastern countries [6]. Ultrasound not 
only aids in tumor diagnosis but also shows 
promise in monitoring the response to neoadju-
vant therapy in HER2+ cancer [7, 8]. However, 
the current use of the American College of 
Radiology Breast Imaging Reporting and Data 
System (ACR BI-RADS) in ultrasound is subjec-
tive, limiting its reliability and reproducibility. 
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This highlights the need for objective, automat-
ed methods to predict HER2 status in IBC.

In recent years, machine learning and deep 
learning algorithms, such as multilayer percep-
tron (MLP) and convolutional neural networks 
(CNNs), have shown promise in medical imag-
ing, including breast cancer diagnosis [9, 10]. 
While MLP is effective in solving complex prob-
lems with high tolerance for errors, CNNs excel 
at feature extraction and have been succe- 
ssfully applied to medical imaging [11-13]. 
Previous studies have demonstrated the effec-
tiveness of MRI-based CNNs in assessing 
HER2 status [14]. However, the potential of 
ultrasound-based MLP and CNNs for predicting 
HER2 status in IBC remains largely unexplored. 
This study aims to evaluate the efficacy of ultra-
sound-based MLP and CNN models in predict-
ing HER2 status in IBC patients.

Materials and methods

Participants and study design

This study enrolled 268 female patients diag-
nosed with IBC at The First Affiliated Hospital of 
Guangzhou University of Chinese Medicine 
between March 1 and December 30, 2019. All 
patients underwent ultrasound-guided core 
needle biopsy (US-CNB), yielding 1127 ultra-
sound images.

Inclusion criteria: (1) Female patients aged 18 
or older; (2) Pathologically confirmed IBC byUS-
CNB; (3) No prior systemic therapy (chemother-
apy, endocrine therapy, or targeted therapy) 
before biopsy; (4) Availability of complete and 
assessable ultrasound images; (5) Clear HER2 
status classification (HER2-low or HER2-zero) 
based on standard immunohistochemistry 
(IHC) and/or in situ hybridization (FISH).

Exclusion criteria: (1) Non-primary breast 
tumors (e.g., metastatic tumors or ductal carci-
noma in situ); (2) Prior breast cancer treat-
ments (e.g., surgery, radiotherapy); (3) Poor-
quality ultrasound images where key features 
were indiscernible; (4) Incomplete clinical or 
pathologic data. Eligible patients were random-
ly assigned to a training set (70%) or an internal 
validation set (30%).

External validation set: To assess model gener-
alizability, an external validation set was creat-

ed from consecutive eligible patients treated 
between January 2021 and December 2024, 
adhering to the same inclusion and exclusion 
criteria. For this external cohort, HER2- patients 
were specifically stratified.

Model evaluation: The performance of four 
models - BI-RADS, MLP, ResNet50, and Den- 
seNet201 - was evaluated for discriminating 
between HER2-zero and HER2-low expression 
statuses. Ethical approval for this retrospective 
study was obtained from the Research Ethics 
Committee of The First Affiliated Hospital of 
Guangzhou University of Chinese Medicine, 
and informed consent was waived.

Ultrasonic image acquisition and interpretation

Ultrasound images were obtained using a 
Toshiba Aplio 500 transducer (14 MHz frequen-
cy) by experienced radiologists, adhering to 
standard protocols to capture at least two 
orthogonal planes (radial and antiradial, or 
transverse and longitudinal) for each lesion. All 
images were stored in the hospital’s electronic 
medical record system. According to a previous 
report [15], two experienced breast radiolo-
gists (reader 1 with 10 years of experience, 
reader 2 with 5 years) retrospectively reviewed 
and annotated 14 ultrasound features for each 
image, including shape, margin, orientation, 
tumor size, vascularitybreast parenchymal 
characteristics (e.g., background echotexture 
of parenchyma (BEP), anteroposterior thick-
ness of breast parenchyma (TBP), its ratios to 
tissue before pectoralis fascia (RPF) and mam-
mary fat (RPT)), and BI-RADS category, as 
detailed in Figure S1. Interobserver and intrao-
bserver agreements were assessed for all 
features.

BI-RADS classification

The predictive ability of the BI-RADS category 
for HER2 status was evaluated using a receiver 
operating characteristic (ROC) curve. The area 
under the curve (AUC), cut-off value, sensitivity, 
and specificity were determined.

Ultrasound-based MLP models

An MLP model was developed using SPSS 
Statistics version 22.0 (IBM Corp.), incorporat-
ing clinical and ultrasound features. ROC curves 
and AUC values were calculated to evaluate the 



HER2 status in invasive breast cancer

8022	 Am J Transl Res 2025;17(10):8020-8032

Table 1. Clinical and ultrasound characteristics of the training and validation cohorts in IBC patients
Training Cohort P- 

value
Validation Cohort P- 

valueHER2- (n = 143) HER2+ (n = 50) HER2- (n = 50) HER2+ (n = 25)
Age (years)
    mean ± SD 52.3±11.3 52.9±12.2 0.710 54.1±12.2 53.4±11.4 0.690
Height (cm)
    mean ± SD 157.27±5.06 156.68±4.75 0.510 157.28±4.45 158.48±6.15 0.140
Weight (kg)
    mean ± SD 57.2±8.24 58.18±8.73 0.690 57.67±7.15 58.18±8.73 0.320
BMI
    mean ± SD 23.09±3.16 23.73±3.69 0.630 23.31±2.69 23.12±2.88 0.820
Echo Pattern 0.760 0.140
    Hyperechoic 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
    Complex cystic and solid 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
    Hypoechoic 63 (44.06%) 21 (42.00%) 23 (46.00%) 7 (28.00%)
    Isoechoic 1 (0.70%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
    Heterogeneous 79 (55.24%) 29 (58.00) 27 (54.00%) 18 (72.00%)
Shape 0.480 0.480
    Oval 6 (4.20%) 1 (2%) 1 (2.00%) 0 (0.00%)
    Round 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
    Irregular 137 (95.80%) 49 (98%) 49 (98.00%) 25 (100.00%)
Margin 0.170 0.880
    Circumscribed 3 (2.09%) 1 (2.00%) 2 (4.00%) 0 (0.00%)
    Indistinct 12 (8.39%) 4 (8.00%) 3 (6.00%) 1 (4.00%)
    Angular 72 (50.35%) 19 (38.00%) 22 (44.00%) 14 (56.00%)
    Micro-lobulated 56 (39.16%) 26 (52.00%) 23 (46.00%) 10 (40.00%)
Orientation 0.290 0.087
    Parallel 103 (72.03%) 32 (64.00%) 35 (70.00%) 22 (88.00%)
    Not parallel 40 (27.97%) 18 (36.00%) 15 (30.00%) 3 (12.00%)
Posterior Feature 0.310 0.089
    No posterior feature 2 (1.40%) 3 (6.00%) 0 (0.00%) 0 (0.00%)
    Enhancement sound 3 (2.10%) 4 (8.00%) 7 (14.00%) 0 (0.00%)
    Shadowing 28 (19.58%) 7 (14.00%) 7 (14.00%) 3 (12.00%)
    Combined pattern 110 (76.92%) 36 (72.00%) 36 (62.00%) 22 (88.00%)
Calcification 0.090 0.620
    In a mass 39 (27.27%) 20 (40.00%) 19 (38.00%) 11 (44.00%)
    Outside of a mass 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
    Intraductal Calcifications 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
    None 104 (72.73%) 30 (60.00%) 31 (62.00%) 14 (56.00%)
Vascularity Distribution 0.360 0.790
    Absent 11 (7.69%) 5 (10.00%) 8 (16.00%) 1 (4.00%)
    Vessels in rim 12 (8.39%) 6 (12.00%) 4 (8.00%) 5 (20.00%)
    Internal 120 (83.92%) 39 (78.00%) 38 (76.00%) 19 (26.00%)
Vascularity Grade 0.200 0.520
    Grade I 11 (7.69%) 5 (10.00%) 8 (16.00%) 1 (4.00%)
    Grade II 38 (26.57%) 15 (30.00%) 12 (24.00%) 8 (32.00%)
    Grade III 56 (39.16%) 22 (44.00%) 21 (42.00%) 11 (44.00%)
    Grade IV 38 (26.57%) 8 (16.00%) 9 (18.00%) 5 (20.00%)
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model’s predictive accuracy. Key variables 
influencing the model were identified, and a 
boxplot was used to visualize its performance.

Ultrasound-based CNN models

Two CNN models, ResNet50 and DenseNet201, 
were implemented using Python. The 1127 
images were divided into training (70%) and 
validation (30%) sets. Images were resized to 
224 × 224 pixels and augmented with tech-
niques such as horizontal flipping, scaling 
deformation, and noise addition to enhance 
model robustness. Data shuffling was applied 
to prevent overfitting. ROC curves, AUCs, and 
accuracy metrics were computed for both CNN 
models.

Statistical analysis 

SPSS 22.0 (IBM, USA) was used for statistical 
analysis. Continuous variables were expressed 
as mean ± standard deviation (SD), and cate-
gorical variables were presented as number (n) 
and percentage (%). Comparisons for continu-
ous variables were made using the Mann-
Whitney U test or t-test, depending on the data 
distribution, while Chi-square test test was 
used for categorical variables. Statistical sig-
nificance was set at P < 0.05 (two-sided).

Results

Clinical and ultrasonic characteristics 

The clinical and ultrasound characteristics are 
summarized in Table 1. No significant differ-
ence in the proportion of HER2+ cases was 
observed between the two cohorts (P > 0.05), 
nor were there significant differences in clinical 
or ultrasound characteristics (P > 0.05). When 
HER2- and HER2+ groups were compared, no 
significant differences were found in clinical or 
ultrasound features (P > 0.05).

BI-RADS category for HER2 status assessment

The use of BI-RADS category for predicting 
HER2 status (Figure 1) showed limited prog-
nostic ability, with an AUC of 0.526. The optimal 
cut-off value was identified as the BI-RADS 4C 
category, yielding a sensitivity of 74.7% and 
specificity of 67.4%. These results suggest that 
the BI-RADS category alone is insufficient for 
accurately predicting HER2 status.

MLP model for predicting HER2 status

The MLP model, using clinical and ultrasound 
characteristics, demonstrated moderate pre-
dictive ability, with an AUC of 0.637 in the train-

Lymph node Metastasis 0.371 0.621
    No 96 (67.13%) 31 (62.00%) 29 (58.00%) 16 (64.00%)
    Yes 47 (32.87%) 19 (38%) 21 (42.00%) 9 (36.00%)
BEP 0.322 0.851
    Homogenous 25 (17.48%) 6 (12.00%) 11 (22.00%) 6 (24.00%)
    In-homogenous 118 (82.52%) 44 (88.00%) 39 (78.00%) 19 (76.00%)
BI-RADS category 0.31 0.65
    3 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
    4A 2 (1.40%) 2 (4.00%) 0 (0.00%) 0 (0.00%)
    4B 8 (5.59%) 2 (4.00%) 2 (4.00%) 0 (0.00%)
    4C 37 (25.87%) 8 (16.00%) 14 (28.00%) 7 (28.00%)
    5 96 (67.13%) 28 (56.00%) 34 (68.00%) 18 (72.00%)
Tumor Size (mm)
    mean ± SD 23.95±10.65 23.42±9.76 0.800 24.68±11.59 27.57±10.08 0.950
TBP (mm)
    mean ± SD 8.75±3.81 10.2±4.38 0.630 8.02±3.55 9.56±3.95 0.260
RPT
    mean ± SD 0.50±0.30 0.49±.011 0.120 0.42±0.14 0.48±0.13 0.770
RPF
    mean ± SD 1.59±2.20 1.35±0.63 0.090 1.22±1.08 1.54±1.18 0.340
Note: BMI: body mass index; TBP: anteroposterior thickness of breast parenchyma; RPT: thickness ratio of breast parenchyma 
to tissue before pectoralis fascia; RPF: thickness ratio of breast parenchyma to mammary fat; BEP: background echotexture of 
parenchyma; BI-RADS: Breast Imaging Reporting and Data System.
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ing cohort. Accuracy was 75.1% in the training 
cohort and 65.3% in the validation cohort 
(Figure 2A). Feature importance analysis 
revealed that the TBP and RPF were the most 
influential features, followed by weight, RPT, 
and height (Figure 2B). Notably, the MLP model 
performed better in predicting HER2- status 
than HER2+ status, as shown in the boxplot 
analysis (Figure 2C).

CNN models for HER2 status prediction

Two CNN models, ResNet50 and DenseNet201, 
were applied to the ultrasound images. Den- 
seNet201 outperformed ResNet50, with an 
AUC of 0.660 compared to 0.537 for ResNet50, 
and accuracies of 73% and 67%, respectively 
(Figures 3 and 4).

Performance of BI-RADS, MLP, ResNet50, and 
DenseNet201 in differentiating HER2-zero and 
HER2-low expression

We evaluated the ability of four models - 
BI-RADS, MLP, ResNet50, and DenseNet201 - 
to distinguish between HER2-zero and HER2-
low expression in 193 HER2- patients. In the 
training set (143 patients: 69 HER2-low, 74 

status was further evaluated using a recruited 
validation set of 259 clinical cases. Among  
187 HER2- subjects, the average age was 
53.42±12.08 years, BMI was 22.18±2.11 kg/
m2, and tumor size was 22.03±11.26 mm. 
HER2+ counterparts (n = 72) had comparable 
characteristics: age = 52.89±11.53 years,  
BMI = 22.74±2.45 kg/m2, tumor size = 
22.21±10.83 mm. No significant intergroup  
differences were observed (P > 0.05; Table 2). 
ROC analysis (Figure 7) indicated an AUC of 
0.860 (95% CI: 0.674-1.000; P < 0.05), con-
firming the clinical utility of DenseNet201 for 
HER2 status prediction.

Discussion

This study demonstrated that single ultrasonic 
features are insufficient for predicting HER2 
status in invasive breast cancer (IBC), primarily 
due to the similar characteristics between 
HER2+ and HER2- cases, such as age > 40, 
irregular shape, and non-parallelism, as previ-
ously reported [15, 16]. Unlike prior studies, 
this investigation focused on evaluating the 
efficacy of three methods - BI-RADS, MLP, and 
CNN models - for predicting HER2 status in IBC 
[17-19]. Our findings revealed that the BI-RADS 

Figure 1. The receiver operating characteristic curve for the assess-
ment of HER2 status using the Breast Imaging Reporting and Data 
System (BI-RADS) category.

HER2-zero), performance metrics 
were as follows: BI-RADS: AUC = 
0.696 (95% CI: 0.607-0.784), accu-
racy = 39.13%; MLP: AUC = 0.790 
(95% CI: 0.711-0.868), accuracy = 
57.97%; ResNet50: AUC = 0.689 
(95% CI: 0.600-0.778), accuracy = 
39.13%; DenseNet201: AUC = 
0.783 (95% CI: 0.703-0.862), accu-
racy = 56.52% (Figure 5). In the 
validation set (50 patients: 22 
HER2-low, 28 HER2-zero), perfor-
mance was as follows: BI-RADS: 
AUC = 0.692 (95% CI: 0.537-
0.846), accuracy = 45.45%; MLP: 
AUC = 0.795 (95% CI: 0.658-
0.932), accuracy = 59.09%; 
ResNet50: AUC = 0.705 (95% CI: 
0.551-0.858), accuracy = 40.91%; 
DenseNet201: AUC = 0.818 (95% 
CI: 0.687-0.949), accuracy = 
63.64% (Figure 6).

External validation

The diagnostic performance of 
DenseNet201 for predicting HER2 
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Figure 2. The MLP Model for Predicting HER2 Status in IBC. A: ROC curve of The MLP Model for Predicting HER2 Status in IBC. Blue line: HER2 negative status; green 
line: HER2 positive status; MLP: multilayer perceptron; B: Feature Importance in the MLP Model for HER2 Status Prediction in IBC, and the length of each yellow bar 
indicates the weight assigned to the corresponding feature, with longer bars representing greater significance. Among all evaluated features, the top five features 
were identified as: TBP, RPF, weight, RPT and height. MLP: multilayer perceptron; BMI: body mass index; TBP: anteroposterior thickness of breast parenchyma; RPT: 
thickness ratio of breast parenchyma to tissue before pectoralis fascia; RPF: thickness ratio of breast parenchyma to mammary fat; BEP: background echotexture of 
parenchyma; C: Predictive Performance of the MLP Model for HER2-Positive and HER2-Negative IBC, and this box-plot illustrates the differential predictive capabili-
ties of the MLP model for HER2-positive and HER2-negative cases of IBC. 
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Figure 3. ROC Curves of ResNet50 and DenseNet201 models for HER2 status prediction in IBC. A: The figure of 
ResNet50 model; B: The figure of DenseNet201 model. 181 × 258 mm (300 × 300 DPI).
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category, while an established ultrasound clas-
sification system, had limited predictive power 

with an AUC of 0.526, consistent with earlier 
reports [20, 21]. This highlights the need for 

Figure 4. Example predictions of HER2 status in IBC using ResNet50 and DenseNet201 models. A: The correctly 
predicted case through using ResNet50 model; B: The correctly predicted case through using DenseNet201 model. 
125 × 164 mm (300 × 300 DPI).

Figure 5. Performance Comparison of BI-RADS (A), MLP (B), ResNet50 (C), and DenseNet201 (D) Models in Distin-
guishing HER2-Low and -Zero Expression Status (Training Set).
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more objective and quantitative approaches in 
HER2 status prediction.

The MLP model, known for its fault tolerance 
and capacity for comprehensive feature analy-
sis, demonstrated moderate predictive ability, 
with an AUC of 0.637. In this study, features 

such as the anteroposterior TBP and RPF were 
the most influential, emphasizing the impor-
tance of parenchymal characteristics in pre-
dicting HER2 status [22, 23]. Previous studies 
have suggested that dense breast tissue is 
closely linked to HER2+ cancer [24]. However, 
our analysis found that ultrasonic parenchymal 

Figure 6. Performance Comparison of BI-RADS (A), MLP (B), ResNet50 (C), and DenseNet201 (D) Models in Distin-
guishing HER2-Low and -Zero Expression Status (Validation Set).
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patterns, categorized according to BI-RADS, 
were insufficient for distinguishing HER2+ from 
HER2- cancers. This highlights the potential of 
MLP to integrate clinical and ultrasonographic 
features in building a predictive model, though 
there remains room for improvement.

Among the CNN models, DenseNet201 exhibit-
ed the highest predictive power. This can be 
attributed to DenseNet’s ability to automatical-
ly extract and learn hierarchical representa-
tions from raw ultrasound images without rely-
ing on manual region - of - interest (ROI) delin-
eation. DenseNet201 outperformed ResNet- 
50, achieving higher accuracy (73%) and AUC 

(0.660). Despite DenseNet201’s moderate pre-
dictive capacity compared to previous breast 
ultrasound studies [25, 26], it is important to 
note that those studies focused on differentiat-
ing benign from malignant tumors, whereas our 
study addressed the more challenging task of 
predicting HER2 status, where ultrasonograph-
ic features are more similar.

HER2- breast cancer includes two distinct sub-
types - HER2-low and HER2-zero - with different 
prognostic implications. In our comparative 
analyses, DenseNet201 outperformed both 
BI-RADS and ResNet50 in distinguishing HER2-
low and HER2-zero statuses. Notably, the MLP 

Table 2. Baseline characteristics of patients in the external validation cohort
HER2- (n = 187) HER2+ (n = 72) t/χ2 P-value

Age (years) 53.42±12.08 52.89±11.53 0.322 0.750
BMI (kg/m2) 22.18±2.11 22.74±2.45 1.749 0.082
Echo Pattern 4.089 0.394
    Hyperechoic 1 (0.53%) 1 (1.39%)
    Complex cystic and solid 1 (0.53%) 1 (1.39%)
    Hypoechoic 79 (42.25%) 25 (34.72%)
    Isoechoic 1 (0.53%) 2 (2.78%)
    Heterogeneous 105 (56.15%) 43 (59.72%)
Shape 0.699 0.705
    Oval 8 (4.28%) 4 (5.56%)
    Round 1 (0.53%) 1 (1.39%)
    Regular 178 (95.19%) 67 (93.06%)
Margin 5.696 0.127
    Circumscribed 2 (1.07%) 3 (4.17%)
    Indistinct 26 (13.90%) 5 (6.94%)
    Angular 63 (33.69%) 21 (29.17%)
    Micro-lobulated 96 (51.34%) 43 (59.72%)
Calcification 5.102 0.165
    In a mass 62 (33.16%) 26 (36.11%)
    Outside of a mass 1 (0.53%) 2 (2.78%)
    Intraductal Calcifications 1 (0.53%) 2 (2.78%)
    None 123 (65.78%) 42 (58.33%)
Vascularity Distribution Grading 1.262 0.738
    Grade I 26 (13.90%) 12 (16.67%)
    Grade II 41 (21.93%) 18 (25.00%)
    Grade III 58 (31.02%) 23 (31.94%)
    Grade IV 62 (33.16%) 19 (26.39%)
Lymph node Metastasis 1.480 0.700
    Yes 112 (59.89%) 45 (62.50%)
    No 75 (40.11%) 27 (37.50%)
Tumor Size (mm) 22.03±11.26 22.21±10.83 0.117 0.907
Note: BMI: body mass index; HER2, human epidermal growth factor receptor 2.
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model showed performance similar to Dense- 
Net201, with AUC values of 0.790 and 0.783, 
respectively. These results surpass previously 
reported models (AUC range: 0.684-0.765) 
[27], underscoring the superior capability of 
both MLP and DenseNet201 for distinguishing 
HER2- subtypes. External validation further 
confirmed DenseNet201’s reliability for HER2 
status prediction.

Some studies have achieved high AUCs by com-
bining CNN with manual ROI delineation for 
HER2 status prediction in IBC [14, 19]. However, 
this approach is labor-intensive and not suit-
able for routine clinical application. In contrast, 
our study employed fully automated proce-
dures, which improves efficiency and aligns 
with the growing use of artificial intelligence in 
medical image analysis, offering a more practi-
cal method.

While promising, our findings require validation 
in larger cohorts. Due to the limited sample 
size, the applicability and accuracy of our 
results may be affected. Future studies with 
multicenter datasets are needed to confirm 
and extend our observations. Additionally, inte-
grating multimodal imaging data could further 
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Conclusions

This study highlights the efficacy  
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Figure S1. The thickness ratio of breast parenchyma to tissue above the pectoralis fascia (RPT) was defined as 
a/c. Specifically, RPT represents the ratio of the maximum thickness of the total breast parenchyma (TBP) to the 
thickness of the pectoralis fascia. The thickness ratio of breast parenchyma to mammary fat (RPF) was defined as 
a/b, where RPF refers to the ratio of the thickness of TBP to the thickness of mammary fat. In accordance with the 
criteria of the fifth edition of the American College of Radiology Breast Imaging Reporting and Data System (ACR 
BI-RADS), detailed descriptions of imaging features are as follows: Breast background parenchymal echotexture 
comprises fat and fibroglandular parenchyma, which can be categorized as homogeneous or heterogeneous. Ho-
mogeneous echotexture includes two subtypes: fat-dominant homogeneous and fibroglandular-dominant homo-
geneous. Heterogeneous echotexture may present as focal or diffuse; it is characterized by multiple small regions 
with increased and decreased echogenicity, and may be accompanied by shadowing. For qualitative parameters of 
breast parenchyma and fat adjacent to lesions, measurements were performed at the maximum diameter of the tu-
mor on imaging. The mean diameter was calculated from three repeated measurements, and each mean diameter 
was required to be derived from three independent measurements.


