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Abstract: Objective: To evaluate the performance of ultrasound-based neural networks in predicting HER2 status
in invasive breast cancer (IBC) patients, comparing DenseNet201, ResNet50, Breast Imaging Reporting and Data
System (BI-RADS), and a multilayer perceptron (MLP) model. Methods: Between March 1 and December 30, 2019,
268 female patients with IBC underwent ultrasound-guided core needle biopsy. A total of 1127 ultrasonic images
were collected, divided into a training set (70%) and an internal validation set (30%). The HER2 status was pre-
dicted using BI-RADS, MLP, ResNet50, and DenseNet201 models. The diagnostic performance of these models
was evaluated using accuracy and the area under the receiver operating characteristic curve (AUC). Results: BI-
RADS demonstrated the weakest prognostic capability, with an AUC of 0.526, sensitivity of 74.7%, and specificity of
67.4%. The MLP model showed moderate performance with an AUC of 0.637 and accuracy of 75.1%. Among CNN
models, DenseNet201 outperformed ResNet50, achieving an AUC of 0.660 and an accuracy of 73%, compared
to ResNet50’s AUC of 0.537 and accuracy of 67%. For distinguishing HER2-low and HER2-zero expression levels,
the MLP model exhibited the highest AUC of 0.790, followed by DenseNet201 at 0.783. In external validation,
DenseNet201 demonstrated a robust AUC of 0.860 (95% Cl: 0.674-1.000; P < 0.05). Conclusions: Ultrasound-
based DenseNet201 outperformed BI-RADS and ResNet50 for predicting HER2 status in IBC, offering a promising,
non-invasive diagnostic tool for clinical application.

Keywords: Invasive breast cancer, HER2 status, ultrasound imaging, neural network, convolutional neural net-
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Introduction ing (MRI) is widely used for this purpose, provid-
ingdetailedtumorvisualizationandtherapyasse-
ssment [4, 5]. However, MRI has limitations
such as high cost, long examination times, and
inaccessibility for patients with contraindica-
tions (e.g., claustrophobia, metallic implants).
In contrast, ultrasonography is a cost-effective,
widely accessible alternative, particularly effec-
tive in dense breast tissues, and is frequently
used in Eastern countries [6]. Ultrasound not
only aids in tumor diagnosis but also shows
promise in monitoring the response to neoadju-
vant therapy in HER2+ cancer [7, 8]. However,

Breast cancer remains a global health chal-
lenge, affecting millions of women worldwide.
Invasive breast cancer (IBC) accounts for
approximately 85% of all cases, with human
epidermal growth factor receptor 2 positive
(HER2+) tumors representing 15% of these [1].
HER2+ IBC has a poor prognosis, with an
increased risk of metastasis and lower survival
rates compared to HER2-negative (HER2-)
tumors [2]. Neoadjuvant therapy, particularly
trastuzumab, is recommended for HER2+ IBC

patients to improve clinical outcomes [3].

Accurate assessment of HER2 status is crucial
for personalized treatment and monitoring
therapy response. Magnetic resonance imag-

the current use of the American College of
Radiology Breast Imaging Reporting and Data
System (ACR BI-RADS) in ultrasound is subjec-
tive, limiting its reliability and reproducibility.
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This highlights the need for objective, automat-
ed methods to predict HER2 status in IBC.

In recent years, machine learning and deep
learning algorithms, such as multilayer percep-
tron (MLP) and convolutional neural networks
(CNNs), have shown promise in medical imag-
ing, including breast cancer diagnosis [9, 10].
While MLP is effective in solving complex prob-
lems with high tolerance for errors, CNNs excel
at feature extraction and have been succe-
ssfully applied to medical imaging [11-13].
Previous studies have demonstrated the effec-
tiveness of MRI-based CNNs in assessing
HER2 status [14]. However, the potential of
ultrasound-based MLP and CNNs for predicting
HER2 status in IBC remains largely unexplored.
This study aims to evaluate the efficacy of ultra-
sound-based MLP and CNN models in predict-
ing HER2 status in IBC patients.

Materials and methods
Participants and study design

This study enrolled 268 female patients diag-
nosed with IBC at The First Affiliated Hospital of
Guangzhou University of Chinese Medicine
between March 1 and December 30, 2019. All
patients underwent ultrasound-guided core
needle biopsy (US-CNB), yielding 1127 ultra-
sound images.

Inclusion criteria: (1) Female patients aged 18
or older; (2) Pathologically confirmed IBC byUS-
CNB; (3) No prior systemic therapy (chemother-
apy, endocrine therapy, or targeted therapy)
before biopsy; (4) Availability of complete and
assessable ultrasound images; (5) Clear HER2
status classification (HER2-low or HER2-zero)
based on standard immunohistochemistry
(IHC) and/or in situ hybridization (FISH).

Exclusion criteria: (1) Non-primary breast
tumors (e.g., metastatic tumors or ductal carci-
noma in situ); (2) Prior breast cancer treat-
ments (e.g., surgery, radiotherapy); (3) Poor-
quality ultrasound images where key features
were indiscernible; (4) Incomplete clinical or
pathologic data. Eligible patients were random-
ly assigned to a training set (70%) or an internal
validation set (30%).

External validation set: To assess model gener-
alizability, an external validation set was creat-
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ed from consecutive eligible patients treated
between January 2021 and December 2024,
adhering to the same inclusion and exclusion
criteria. For this external cohort, HER2- patients
were specifically stratified.

Model evaluation: The performance of four
models - BI-RADS, MLP, ResNet50, and Den-
seNet201 - was evaluated for discriminating
between HER2-zero and HER2-low expression
statuses. Ethical approval for this retrospective
study was obtained from the Research Ethics
Committee of The First Affiliated Hospital of
Guangzhou University of Chinese Medicine,
and informed consent was waived.

Ultrasonic image acquisition and interpretation

Ultrasound images were obtained using a
Toshiba Aplio 500 transducer (14 MHz frequen-
cy) by experienced radiologists, adhering to
standard protocols to capture at least two
orthogonal planes (radial and antiradial, or
transverse and longitudinal) for each lesion. All
images were stored in the hospital’s electronic
medical record system. According to a previous
report [15], two experienced breast radiolo-
gists (reader 1 with 10 years of experience,
reader 2 with 5 years) retrospectively reviewed
and annotated 14 ultrasound features for each
image, including shape, margin, orientation,
tumor size, vascularitybreast parenchymal
characteristics (e.g., background echotexture
of parenchyma (BEP), anteroposterior thick-
ness of breast parenchyma (TBP), its ratios to
tissue before pectoralis fascia (RPF) and mam-
mary fat (RPT)), and BI-RADS category, as
detailed in Figure S1. Interobserver and intrao-
bserver agreements were assessed for all
features.

BI-RADS classification

The predictive ability of the BI-RADS category
for HER2 status was evaluated using a receiver
operating characteristic (ROC) curve. The area
under the curve (AUC), cut-off value, sensitivity,
and specificity were determined.

Ultrasound-based MLP models

An MLP model was developed using SPSS
Statistics version 22.0 (IBM Corp.), incorporat-
ing clinical and ultrasound features. ROC curves
and AUC values were calculated to evaluate the
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Table 1. Clinical and ultrasound characteristics of the training and validation cohorts in IBC patients

Training Cohort P- Validation Cohort P-
HER2- (n = 143) HER2+ (n=50) value HER2-(n=50) HER2+ (n=25) value

Age (years)
mean = SD 52.3+11.3 52.9+12.2 0.710 54.1+12.2 53.4+11.4 0.690

Height (cm)
mean + SD 157.27+5.06 156.68+4.75 0.510 157.28+4.45 158.48+6.15 0.140

Weight (kg)
mean = SD 57.2+8.24 58.18+8.73 0.690 57.67+7.15 58.18+8.73 0.320

BMI
mean = SD 23.09+3.16 23.73+£3.69 0.630 23.31+2.69 23.12+2.88 0.820

Echo Pattern 0.760 0.140
Hyperechoic 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

Complex cystic and solid 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Hypoechoic 63 (44.06%) 21 (42.00%) 23 (46.00%) 7 (28.00%)
Isoechoic 1 (0.70%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Heterogeneous 79 (55.24%) 29 (58.00) 27 (54.00%) 18 (72.00%)

Shape 0.480 0.480
Oval 6 (4.20%) 1 (2%) 1(2.00%) 0 (0.00%)

Round 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Irregular 137 (95.80%) 49 (98%) 49 (98.00%) 25 (100.00%)

Margin 0.170 0.880

Circumscribed 3 (2.09%) 1 (2.00%) 2 (4.00%) 0 (0.00%)
Indistinct 12 (8.39%) 4 (8.00%) 3 (6.00%) 1 (4.00%)
Angular 72 (50.35%) 19 (38.00%) 22 (44.00%) 14 (56.00%)

Micro-lobulated 56 (39.16%) 26 (52.00%) 23 (46.00%) 10 (40.00%)

Orientation 0.290 0.087
Parallel 103 (72.03%) 32 (64.00%) 35 (70.00%) 22 (88.00%)

Not parallel 40 (27.97%) 18 (36.00%) 15 (30.00%) 3 (12.00%)

Posterior Feature 0.310 0.089
No posterior feature 2 (1.40%) 3 (6.00%) 0 (0.00%) 0 (0.00%)
Enhancement sound 3(2.10%) 4 (8.00%) 7 (14.00%) 0 (0.00%)
Shadowing 28 (19.58%) 7 (14.00%) 7 (14.00%) 3 (12.00%)
Combined pattern 110 (76.92%) 36 (72.00%) 36 (62.00%) 22 (88.00%)

Calcification 0.090 0.620
In a mass 39 (27.27%) 20 (40.00%) 19 (38.00%) 11 (44.00%)

Outside of a mass 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Intraductal Calcifications 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
None 104 (72.73%) 30 (60.00%) 31 (62.00%) 14 (56.00%)

Vascularity Distribution 0.360 0.790
Absent 11 (7.69%) 5 (10.00%) 8 (16.00%) 1 (4.00%)

Vessels in rim 12 (8.39%) 6 (12.00%) 4 (8.00%) 5 (20.00%)
Internal 120 (83.92%) 39 (78.00%) 38 (76.00%) 19 (26.00%)
Vascularity Grade 0.200 0.520
Grade | 11 (7.69%) 5 (10.00%) 8 (16.00%) 1 (4.00%)
Grade Il 38 (26.57%) 15 (30.00%) 12 (24.00%) 8 (32.00%)
Grade llI 56 (39.16%) 22 (44.00%) 21 (42.00%) 11 (44.00%)
Grade IV 38 (26.57%) 8 (16.00%) 9 (18.00%) 5 (20.00%)
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No 96 (67.13%) 31 (62.00%)

Yes 47 (32.87%) 19 (38%)
BEP

Homogenous 25 (17.48%) 6 (12.00%)

In-homogenous 118 (82.52%) 44 (88.00%)
BI-RADS category

3 0 (0.00%) 0 (0.00%)

4A 2 (1.40%) 2 (4.00%)

4B 8 (5.59%) 2 (4.00%)

4C 37 (25.87%) 8 (16.00%)

5 96 (67.13%) 28 (56.00%)
Tumor Size (mm)

mean = SD 23.95+10.65 23.4249.76
TBP (mm)

mean + SD 8.75+3.81 10.2+4.38
RPT

mean + SD 0.50+£0.30 0.49+.011
RPF

mean = SD 1.59+2.20 1.35+0.63

0.371 0.621
29 (58.00%) 16 (64.00%)
21 (42.00%) 9 (36.00%)
0.322 0.851
11 (22.00%) 6 (24.00%)
39 (78.00%) 19 (76.00%)
0.31 0.65
0 (0.00%) 0 (0.00%)
0 (0.00%) 0 (0.00%)
2 (4.00%) 0 (0.00%)
14 (28.00%) 7 (28.00%)
34 (68.00%) 18 (72.00%)
0.800 24.68+11.59 27.57+10.08 0.950
0.630 8.02+3.55 9.56+3.95 0.260
0.120 0.4210.14 0.48+0.13 0.770
0.090 1.22+1.08 1.54+1.18 0.340

Note: BMI: body mass index; TBP: anteroposterior thickness of breast parenchyma; RPT: thickness ratio of breast parenchyma
to tissue before pectoralis fascia; RPF: thickness ratio of breast parenchyma to mammary fat; BEP: background echotexture of
parenchyma; BI-RADS: Breast Imaging Reporting and Data System.

model’'s predictive accuracy. Key variables
influencing the model were identified, and a
boxplot was used to visualize its performance.

Ultrasound-based CNN models

Two CNN models, ResNet50 and DenseNet201,
were implemented using Python. The 1127
images were divided into training (70%) and
validation (30%) sets. Images were resized to
224 x 224 pixels and augmented with tech-
niques such as horizontal flipping, scaling
deformation, and noise addition to enhance
model robustness. Data shuffling was applied
to prevent overfitting. ROC curves, AUCs, and
accuracy metrics were computed for both CNN
models.

Statistical analysis

SPSS 22.0 (IBM, USA) was used for statistical
analysis. Continuous variables were expressed
as mean = standard deviation (SD), and cate-
gorical variables were presented as number (n)
and percentage (%). Comparisons for continu-
ous variables were made using the Mann-
Whitney U test or t-test, depending on the data
distribution, while Chi-square test test was
used for categorical variables. Statistical sig-
nificance was set at P < 0.05 (two-sided).
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Results
Clinical and ultrasonic characteristics

The clinical and ultrasound characteristics are
summarized in Table 1. No significant differ-
ence in the proportion of HER2+ cases was
observed between the two cohorts (P > 0.05),
nor were there significant differences in clinical
or ultrasound characteristics (P > 0.05). When
HER2- and HER2+ groups were compared, no
significant differences were found in clinical or
ultrasound features (P > 0.05).

BI-RADS category for HER2 status assessment

The use of BI-RADS category for predicting
HER2 status (Figure 1) showed limited prog-
nostic ability, with an AUC of 0.526. The optimal
cut-off value was identified as the BI-RADS 4C
category, yielding a sensitivity of 74.7% and
specificity of 67.4%. These results suggest that
the BI-RADS category alone is insufficient for
accurately predicting HER2 status.

MLP model for predicting HER2 status

The MLP model, using clinical and ultrasound
characteristics, demonstrated moderate pre-
dictive ability, with an AUC of 0.637 in the train-
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HER2-zero), performance metrics
were as follows: BI-RADS: AUC =
0.696 (95% Cl: 0.607-0.784), accu-
racy = 39.13%; MLP: AUC = 0.790
(95% Cl: 0.711-0.868), accuracy =
57.97%; ResNet50: AUC = 0.689
(95% CI: 0.600-0.778), accuracy =
39.13%; DenseNet201: AUC =
0.783 (95% CI: 0.703-0.862), accu-
racy = 56.52% (Figure 5). In the
validation set (50 patients: 22
HER2-low, 28 HER2-zero), perfor-
mance was as follows: BI-RADS:
AUC = 0.692 (95% CI: 0.537-
0.846), accuracy = 45.45%; MLP:
AUC = 0.795 (95% CI: 0.658-
0.932), accuracy = 59.09%;
ResNet50: AUC = 0.705 (95% ClI:
0.551-0.858), accuracy = 40.91%;

0.0 T T T
0.0 0.2 0.4 0.6

1 - Specificity

Figure 1. The receiver operating characteristic curve for the assess-

DenseNet201: AUC = 0.818 (95%
Cl: 0.687-0.949), accuracy =
63.64% (Figure 6).

1.0

External validation

ment of HER2 status using the Breast Imaging Reporting and Data

System (BI-RADS) category.

ing cohort. Accuracy was 75.1% in the training
cohort and 65.3% in the validation cohort
(Figure 2A). Feature importance analysis
revealed that the TBP and RPF were the most
influential features, followed by weight, RPT,
and height (Figure 2B). Notably, the MLP model
performed better in predicting HER2- status
than HER2+ status, as shown in the boxplot
analysis (Figure 2C).

CNN models for HER2 status prediction

Two CNN models, ResNet50 and DenseNet201,
were applied to the ultrasound images. Den-
seNet201 outperformed ResNet50, with an
AUC of 0.660 compared to 0.537 for ResNet50,
and accuracies of 73% and 67%, respectively
(Figures 3 and 4).

Performance of BI-RADS, MLP, ResNet50, and
DenseNet201 in differentiating HER2-zero and
HER2-low expression

We evaluated the ability of four models -
BI-RADS, MLP, ResNet50, and DenseNet201 -
to distinguish between HER2-zero and HER2-
low expression in 193 HER2- patients. In the
training set (143 patients: 69 HER2-low, 74
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The diagnostic performance of

DenseNet201 for predicting HER2
status was further evaluated using a recruited
validation set of 259 clinical cases. Among
187 HER2- subjects, the average age was
53.42+12.08 years, BMI was 22.18+2.11 kg/
m?2, and tumor size was 22.03+11.26 mm.
HER2+ counterparts (n = 72) had comparable
characteristics: age = 52.89+11.53 years,
BMI = 22.74+2.45 kg/m? tumor size =
22.21+10.83 mm. No significant intergroup
differences were observed (P > 0.05; Table 2).
ROC analysis (Figure 7) indicated an AUC of
0.860 (95% CI: 0.674-1.000; P < 0.05), con-
firming the clinical utility of DenseNet201 for
HER2 status prediction.

Discussion

This study demonstrated that single ultrasonic
features are insufficient for predicting HER2
status in invasive breast cancer (IBC), primarily
due to the similar characteristics between
HER2+ and HER2- cases, such as age > 40,
irregular shape, and non-parallelism, as previ-
ously reported [15, 16]. Unlike prior studies,
this investigation focused on evaluating the
efficacy of three methods - BI-RADS, MLP, and
CNN models - for predicting HER2 status in IBC
[17-19]. Our findings revealed that the BI-RADS

Am J Transl Res 2025;17(10):8020-8032
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Figure 2. The MLP Model for Predicting HER2 Status in IBC. A: ROC curve of The MLP Model for Predicting HER2 Status in IBC. Blue line: HER2 negative status; green
line: HER2 positive status; MLP: multilayer perceptron; B: Feature Importance in the MLP Model for HER2 Status Prediction in IBC, and the length of each yellow bar
indicates the weight assigned to the corresponding feature, with longer bars representing greater significance. Among all evaluated features, the top five features
were identified as: TBP, RPF, weight, RPT and height. MLP: multilayer perceptron; BMI: body mass index; TBP: anteroposterior thickness of breast parenchyma; RPT:
thickness ratio of breast parenchyma to tissue before pectoralis fascia; RPF: thickness ratio of breast parenchyma to mammary fat; BEP: background echotexture of
parenchyma; C: Predictive Performance of the MLP Model for HER2-Positive and HER2-Negative IBC, and this box-plot illustrates the differential predictive capabili-
ties of the MLP model for HER2-positive and HER2-negative cases of IBC.
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Figure 3. ROC Curves of ResNet50 and DenseNet201 models for HER2 status prediction in IBC. A: The figure of
ResNet50 model; B: The figure of DenseNet201 model. 181 x 258 mm (300 x 300 DPI).
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Figure 4. Example predictions of HER2 status in IBC using ResNet50 and DenseNet201 models. A: The correctly
predicted case through using ResNet50 model; B: The correctly predicted case through using DenseNet201 model.
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Figure 5. Performance Comparison of BI-RADS (A), MLP (B), ResNet50 (C), and DenseNet201 (D) Models in Distin-
guishing HER2-Low and -Zero Expression Status (Training Set).

category, while an established ultrasound clas-
sification system, had limited predictive power
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with an AUC of 0.526, consistent with earlier
reports [20, 21]. This highlights the need for
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Figure 6. Performance Comparison of BI-RADS (A), MLP (B), ResNet50 (C), and DenseNet201 (D) Models in Distin-
guishing HER2-Low and -Zero Expression Status (Validation Set).

more objective and quantitative approaches in
HER2 status prediction.

The MLP model, known for its fault tolerance
and capacity for comprehensive feature analy-
sis, demonstrated moderate predictive ability,
with an AUC of 0.637. In this study, features

8028

such as the anteroposterior TBP and RPF were
the most influential, emphasizing the impor-
tance of parenchymal characteristics in pre-
dicting HER2 status [22, 23]. Previous studies
have suggested that dense breast tissue is
closely linked to HER2+ cancer [24]. However,
our analysis found that ultrasonic parenchymal
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Table 2. Baseline characteristics of patients in the external validation cohort

HER2- (n = 187) HER2+ (n=72) t/x? P-value
Age (years) 53.42+12.08 52.89+11.53 0.322 0.750
BMI (kg/m?) 22.18+2.11 22.74+2.45 1.749 0.082
Echo Pattern 4.089 0.394
Hyperechoic 1 (0.53%) 1 (1.39%)
Complex cystic and solid 1 (0.53%) 1 (1.39%)
Hypoechoic 79 (42.25%) 25 (34.72%)
Isoechoic 1 (0.53%) 2 (2.78%)
Heterogeneous 105 (56.15%) 43 (59.72%)
Shape 0.699 0.705
Oval 8 (4.28%) 4 (5.56%)
Round 1 (0.53%) 1(1.39%)
Regular 178 (95.19%) 67 (93.06%)
Margin 5.696 0.127
Circumscribed 2 (1.07%) 3(4.17%)
Indistinct 26 (13.90%) 5 (6.94%)
Angular 63 (33.69%) 21 (29.17%)
Micro-lobulated 96 (51.34%) 43 (59.72%)
Calcification 5.102 0.165
In a mass 62 (33.16%) 26 (36.11%)
Outside of a mass 1 (0.53%) 2 (2.78%)
Intraductal Calcifications 1 (0.53%) 2 (2.78%)
None 123 (65.78%) 42 (58.33%)
Vascularity Distribution Grading 1.262 0.738
Grade | 26 (13.90%) 12 (16.67%)
Grade Il 41 (21.93%) 18 (25.00%)
Grade llI 58 (31.02%) 23 (31.94%)
Grade IV 62 (33.16%) 19 (26.39%)
Lymph node Metastasis 1.480 0.700
Yes 112 (59.89%) 45 (62.50%)
No 75 (40.11%) 27 (37.50%)
Tumor Size (mm) 22.03+11.26 22.21+10.83 0.117 0.907

Note: BMI: body mass index; HER2, human epidermal growth factor receptor 2.

patterns, categorized according to BI-RADS,
were insufficient for distinguishing HER2+ from
HER2- cancers. This highlights the potential of
MLP to integrate clinical and ultrasonographic
features in building a predictive model, though
there remains room for improvement.

Among the CNN models, DenseNet201 exhibit-
ed the highest predictive power. This can be
attributed to DenseNet’s ability to automatical-
ly extract and learn hierarchical representa-
tions from raw ultrasound images without rely-
ing on manual region - of - interest (ROI) delin-
eation. DenseNet201 outperformed ResNet-
50, achieving higher accuracy (73%) and AUC
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(0.660). Despite DenseNet201’s moderate pre-
dictive capacity compared to previous breast
ultrasound studies [25, 26], it is important to
note that those studies focused on differentiat-
ing benign from malignant tumors, whereas our
study addressed the more challenging task of
predicting HER2 status, where ultrasonograph-
ic features are more similar.

HER2- breast cancer includes two distinct sub-
types - HER2-low and HER2-zero - with different
prognostic implications. In our comparative
analyses, DenseNet201 outperformed both
BI-RADS and ResNet50 in distinguishing HER2-
low and HER2-zero statuses. Notably, the MLP

Am J Transl Res 2025;17(10):8020-8032
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improve the accuracy and reliability
of HER2 status prediction.

Conclusions

This study highlights the efficacy
of ultrasound-based CNN models,
particularly DenseNet201, for pre-
dicting HER2 status in IBC. Advan-
ces in automatic feature extrac-
tion and target detection technolo-
gies could further enhance predic-
tive accuracy. DenseNet’s ability
to automatically extract features
holds promise for developing tools
to monitor neoadjuvant therapy
efficacy in HER2+ tumors.
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Figure 7. Receiver Operating Characteristic (ROC) curve for predicting
HER2 status in the external validation set (HER2-: n = 187; HER2+: n

=72).

model showed performance similar to Dense-
Net201, with AUC values of 0.790 and 0.783,
respectively. These results surpass previously
reported models (AUC range: 0.684-0.765)
[27], underscoring the superior capability of
both MLP and DenseNet201 for distinguishing
HER2- subtypes. External validation further
confirmed DenseNet201’s reliability for HER2
status prediction.

Some studies have achieved high AUCs by com-
bining CNN with manual ROI delineation for
HER2 status prediction in IBC [14, 19]. However,
this approach is labor-intensive and not suit-
able for routine clinical application. In contrast,
our study employed fully automated proce-
dures, which improves efficiency and aligns
with the growing use of artificial intelligence in
medical image analysis, offering a more practi-
cal method.

While promising, our findings require validation
in larger cohorts. Due to the limited sample
size, the applicability and accuracy of our
results may be affected. Future studies with
multicenter datasets are needed to confirm
and extend our observations. Additionally, inte-
grating multimodal imaging data could further
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Figure S1. The thickness ratio of breast parenchyma to tissue above the pectoralis fascia (RPT) was defined as
a/c. Specifically, RPT represents the ratio of the maximum thickness of the total breast parenchyma (TBP) to the
thickness of the pectoralis fascia. The thickness ratio of breast parenchyma to mammary fat (RPF) was defined as
a/b, where RPF refers to the ratio of the thickness of TBP to the thickness of mammary fat. In accordance with the
criteria of the fifth edition of the American College of Radiology Breast Imaging Reporting and Data System (ACR
BI-RADS), detailed descriptions of imaging features are as follows: Breast background parenchymal echotexture
comprises fat and fibroglandular parenchyma, which can be categorized as homogeneous or heterogeneous. Ho-
mogeneous echotexture includes two subtypes: fat-dominant homogeneous and fibroglandular-dominant homo-
geneous. Heterogeneous echotexture may present as focal or diffuse; it is characterized by multiple small regions
with increased and decreased echogenicity, and may be accompanied by shadowing. For qualitative parameters of
breast parenchyma and fat adjacent to lesions, measurements were performed at the maximum diameter of the tu-
mor on imaging. The mean diameter was calculated from three repeated measurements, and each mean diameter
was required to be derived from three independent measurements.



