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Abstract: Background Clara cell secretory protein 16 (CC16) has been reported to exert anti-inflammatory and anti-
oxidant effects. However, its underlying mechanism remains unclear. This study aimed to investigate the protective
effect and mechanism of CC16 using an in vitro model of PM2.5-induced mouse pulmonary epithelial cells (TC-1),
with a specific focus on its concentration-dependent effects. Methods: TC-1 cells were exposed to PM2.5 to induce
inflammatory injury and ferroptosis, followed by treatment with CC16 at different concentrations (0.25, 0.5, and
1.0 pg/mL). TC-1 cells were divided into six groups: control, CC16, PM2.5, PM2.5 + CC16 (0.25 pug/mL), PM2.5 +
CC16 (0.5 pyg/mL), and PM2.5 + CC16 (1.0 ug/mL) groups. Cell viability was assessed using the Cell Counting Kit-
8 assay. Levels of inflammatory cytokines (interleukin (IL)-5, IL-6, IL-13, IL-17A, and IL-1B) in the supernatant were
measured by enzyme-linked immunosorbent assay. Protein expression levels of Nrf2, ACSL4, SLC7A11, and GPX4
were detected using western blotting. Intracellular reactive oxygen species (ROS) were detected with a fluorescent
probe, and mitochondrial membrane potential (MMP) was measured by JC-1 staining. Glutathione (GSH), malo-
ndialdehyde (MDA), and Fe?* content were measured using relevant kits. Mitochondrial ferroptosis features were
observed by transmission electron microscopy (TEM). Results: PM2.5 exposure significantly reduced cell viability,
aggravated inflammation, induced ferroptosis, and disrupted the integrity of mouse pulmonary epithelial cells. CC16
treatment reversed these effects in a concentration-dependent manner. Conclusions: CC16 effectively mitigates
PM2.5-induced cellular injury in mouse pulmonary epithelial cells through inhibition of ferroptosis, with its protec-
tive effect showing a clear concentration dependence. These findings suggest CC16 as a novel strategy for PM2.5-
induced respiratory disease.
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Introduction lial cells by inducing iron metabolism disorders
and redox homeostasis, with this novel form of

Rapid industrial development has intensified cell death playing a crucial role in the mecha-

air pollution, particularly the inhalation of par-
ticulate matter, posing a serious threat to
the human respiratory system. Among these
pollutants, PM2.5 - a major component of
atmospheric fine particulate matter, is charac-
terized by its aerodynamic diameter (< 2.5 pym),
enabling it to penetrate the respiratory tract
to reach the alveoli. PM2.5 induces oxidative
stress, inflammatory responses, and other pa-
thophysiologic processes. It ultimately leads to
lung tissue injury and the development of respi-
ratory diseases [1, 2]. Studies have shown that
PM2.5 triggers ferroptosis in bronchial epithe-

nism of pulmonary toxicity [3, 4].

Nuclear factor erythroid 2-related factor 2
(Nrf2), a core regulator of the cellular antioxi-
dant defense system, is essential for maintain-
ing redox balance and regulating ferroptosis
[5-8]. Nrf2 remains sequestered by Kelch-like
ECH-associated protein 1 (Keapl) under resting
conditions, but becomes activated upon expo-
sure to oxidative and electrophilic stimuli [5, 9].
During oxidative stress, Nrf2 translocates to
the nucleus and binds to antioxidant response
elements, thereby inducing the transcription of
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a series of antioxidant genes, including heme
oxygenase-1 (HO-1) [9, 10], glutathione peroxi-
dase 4 (GPX4) [11, 12], and solute carrier
family 7 member 11 (SLC7A11) [12], which
together establish an intrinsic protective mech-
anism. HO-1 catalyzes the degradation of heme
into bilirubin, carbon monoxide, and iron ions,
increasing intracellular antioxidant capacity
and suppressing pro-inflammatory mediators
[13]. GPX4 is the only enzyme capable of spe-
cifically clearing lipid peroxides, playing a criti-
cal role in inhibiting ferroptosis by catalyzing
the reduction of lipid peroxides through gluta-
thione (GSH), thus maintaining cell membrane
stability [14]. SLC7A11, a critical component of
the cystine/glutamate antiporter (system Xc),
facilitates cystine uptake, which is subsequ-
ently converted to cysteine for GSH synthesis,
thus enhancing the cell’s antioxidant capability
[15]. The coordinated expression of these
genes constitutes an effective self-protection
response against damage caused by external
stimuli.

Clara cell secretory protein 16 (CC16), a bioac-
tive protein (molecular weight 16 kDa) secreted
by Clara cells of the respiratory epithelium,
exhibits anti-inflammatory and antioxidant pro-
perties in respiratory diseases. Recent clinical
research has shown that CC16 expression is
negatively correlated with the risk and severity
of chronic airway inflammatory diseases, in-
cluding chronic obstructive pulmonary disease
and asthma [16, 17]. This suggests that higher
CC16 levels are associated with a reduced dis-
ease incidence and milder conditions. The anti-
inflammatory effect of CC16 may involve inhibi-
tion of inflammatory cell activation and sup-
pression of inflammatory factors [18]. How-
ever, its protective role and molecular mecha-
nisms in PM2.5-induced airway epithelial injury
remain incompletely understood. Systematic
research on the potential of CC16 to modulate
PM2.5-induced ferroptosis is scarce, and the
role of the Nrf2 signaling pathway in its pro-
tective effects, as well as their concentration
dependence, remain unknown.

In this study, we established a PM2.5-exposed
mouse pulmonary epithelial cell model to inves-
tigate the cytoprotective effects of CC16 and
its underlying mechanism. The results demon-
strated that CC16 effectively inhibited PM2.5-
induced ferroptosis through activation of the
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Nrf2/GPX4 signaling pathway, with its protec-
tive effects showing a clear dose-response
relationship.

Materials and methods
PM2.5 sample preparation

PM2.5 samples used in this study were pro-
vided by the Guangzhou Institute of Geo-
chemistry, Chinese Academy of Sciences, col-
lected between July and November 2019. The
specific sampling procedure has been de-
scribed previously [18]. Briefly, quartz fiber fil-
ter membranes (20x25 cm?) containing PM2.5
were cut into small pieces and immersed in
300 mL of ultrapure water, subjected to ultra-
sonic vibration, and centrifuged at 4°C and
9000 r/min for 1 h. The supernatant was dis-
carded and the sediment was collected and
freeze-dried at -80°C for 48 h to obtain PM2.5
powder, which was stored at -20°C for subse-
quent experiments.

Cell culture and treatment

TC-1 mouse lung epithelial cells were sub-cul-
tured in RPMI-1640 complete medium (SH30-
027, Hyclone) containing 10% fetal bovine
serum (SH30084.03, Hyclone) and 1% peni-
cillin-streptomycin (SV30010, Hyclone) under
standard culture conditions (37°C, 5% CO,).
Initially, TC-1 cells at 90% confluence were
seeded into 6-well plates at a density of 5x10°
cells/well, allowed to adhere overnight in an
incubator, and then exposed to 100 pg/mL
PM2.5 (sterilized by autoclaving). The cells
were divided into the following treatment
groups: (1) phosphate-buffered saline (PBS)
control; (2) CC16 (2 mg/kg; 50291-MO8H-2-
mg, Sino Biological, China) at different concen-
trations (0.25, 0.5, and 1 ug/mL); (3) PM2.5
exposure; and (4) PM2.5 + different concentra-
tions of CC16. After 24 h of PM2.5 exposure,
the medium was replaced with fresh medium
containing the indicated concentration of
CC16, and the cells were incubated for another
24 h.

Cell viability assay

Following treatment, cells from each group
were seeded into 96-well plates at 5x103 cells/
mL and cultured overnight. Cell viability was
measured using a Cell Counting Kit-8 (CCK-8)
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assay (CKO4, Dojindo, Japan) according to the
manufacturer’s instructions. Briefly, after wa-
shing twice with medium, 100 yL RPMI-1640
medium and 10 yL CCK solution were added
to each well. The absorbance value at 450
nm was measured using a microplate reader
(MULTISKAN MK3, Thermo, USA).

Enzyme-linked immunosorbent assay (ELISA)

Levels of the inflammatory cytokines, including
interleukin (IL)-5 (E-EL-MO722c, Elabscience,
China), IL-6 (EK206/3-96, Multi Sciences,
China), IL-13 (70-EK213/2-96, Multi Scienc-
es, China), IL-17A (E-EL-M0047c, Elabscience,
China), and IL-1B (E-EL-MOO37c, Elabscience,
China), in cell culture supernatants were quan-
tified using ELISA kits, according to the respec-
tive manufacturer’s instructions.

Malondialdehyde (MDA) and Glutathione
(GSH) assays

After rinsing TC-1 cells with PBS, pellets were
collected via low-speed centrifugation, resus-
pended in 0.3 mL isotonic PBS, and lysed by
sonication. MDA (AOO3-1, Nanjing Jiancheng,
China) and GSH (A006-2-1, Nanjing Jiancheng,
China) levels were measured in 0.1 mL of cell
suspension according to the corresponding kit
protocols.

Reactive Oxygen Species (ROS) detection

Intracellular ROS levels were measured using
a dichlorodihydrofluorescein diacetate (DCFH-
DA) fluorescent probe (CA1410, Solarbio,
China). Following treatment, cells were wash-
ed twice with serum-free RPMI-1640 medium,
incubated with 10 uM DCFH-DA solution (dilut-
ed in serum-free medium) at 37°C for 20 min in
the dark, trypsinized, centrifuged at 1000 rpm
for 5 min, washed twice with PBS, and resus-
pended in 500 yL PBS. Fluorescence intensity
was analyzed by flow cytometry (Beckmann
Kurtz, CytoFLEX S) at excitation/emission
wavelengths of 488/525 nm. Three replicate
wells were set per group, and ROS levels were
expressed as mean fluorescence intensity.

Mitochondrial Membrane Potential (MMP) as-
say

MMP was assessed using a JC-1-based detec-
tion kit (M8650, Solarbio, China). Following

7917

treatment, cells were incubated with 1 mL JC-1
working solution (1x) at 37°C for 20 min,
washed twice with JC-1 buffer, and examined
under a fluorescence microscope (Olympus
IX73) to visualize red fluorescence (high MMP)
and green fluorescence (low MMP). The red/
green fluorescence ratio was also quantified by
flow cytometry (excitation/emission: 585/590
nm for red; 510/527 nm for green).

Intracellular Fe?* level detection

Fe?* content was determined using an iron
assay kit (E-BC-F101, Elabscience, China) fol-
lowing the manufacturer’s instructions, and
absorbance was measured at 575 nm using a
fluorescence microplate reader.

Western blot

TC-1 cells were lysed to extract total protein,
and protein concentrations were determined
using a bicinchoninic acid assay. Equal am-
ounts of protein (30 ug) were mixed with 5x
loading buffer (4:1), denatured at 100°C for 10
min, cooled, and stored at -20°C. Samples and
a protein ladder were separated onto sodium
dodecyl sulfate-polyacrylamide gels by electro-
phoresis at 80 V until the dye front reached
the resolving gel, followed by 120 V until com-
pletion. Proteins were transferred onto polyvi-
nylidene difluoride membranes at 100 V for 90
min, blocked with 5% nonfat milk for 1 h, and
incubated overnight at 4°C with the follow-
ing primary antibodies: glyceraldehyde 3-phos-
phate dehydrogenase (GAPDH; abs132004,
Absin, China; 1:2500), GPX4 (ab125066, Ab-
cam, Cambridge, UK; 1:1000), Nrf2 (AO674,
Abclonal, China; 1:1000), SLC7A11 (26864-1-
AP, Proteintech, China; 1:1000), and ACSL4
(@ab155282, Abcam, UK; 1:5000). After wash-
ing with TBST, membranes were incubated with
horseradish peroxidase-conjugated secondary
antibody (7074S, Cell Signaling Technology,
Danvers, MA, USA; 1:10,000) for 2 h at room
temperature. Protein bands were visualized
using a ChemiDoc™ XRS+ system. The band
intensities were quantified using ImageJ soft-
ware with GAPDH as internal control.

Transmission Electron Microscopy (TEM)

Cells were fixed with TEM fixative at 4°C for 2-4
h, pelleted, encapsulated in 1% agarose, and
rinsed three times with 0.1 M PBS (pH 7.4) for
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Figure 1. Effect of CC16 on the viability of mouse lung
epithelial cells exposed to PM2.5. ***P < 0.001, ns
P > 0.05. n=6, Xts.

15 min each. Samples were post-fixed, dehy-
drated, infiltrated, embedded, sectioned into
60-80 nm slices, stained with uranyl acetate
and lead citrate, dried overnight, and visualized
using TEM (HT7700, Hitachi, Japan) for ultra-
structural analysis.

Statistical analysis

Statistical analysis was performed using Gra-
phPad Prism 8.0 (San Diego, CA, USA). Data
were presented as mean * standard deviation.
Multi-group comparisons were performed using
one-way analysis of variance (ANOVA) followed
by Tukey’s post hoc test. Statistical significance
was set at P < 0.05 (two-tailed).

Results

CC16 enhanced the viability of mouse lung
epithelial cells

The effect of CC16 on the proliferation of
mouse lung epithelial cells was assessed using
the CCK-8 assay. Compared to the control
group, cell viability was significantly increased
in the CC16 (0.25 pg/mL) group (P < 0.001),
whereas no significant increases were obser-
ved at 0.5 pyg/mL or 1.0 ug/(P > 0.05).

Cell viability was markedly reduced in the
PM2.5-exposed group compared to the con-
trol group (P < 0.001). Treatment with CC16
(0.5 or 1.0 yg/mL) significantly restored cell
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viability compared to the PM2.5-exposed group
alone, but the difference between the two
(PM2.5+CC16 (0.5 ug/mL or 1.0 ug/mL)) gro-
ups was not significant (P > 0.05). No further
increases in CC16 concentration were there-
fore tested in subsequent experiments (Figure
1).

CC16 attenuated PM2.5-induced inflammatory
injury in mouse lung epithelial cells

To examine the anti-inflammatory effects of
CC16, levels of IL-13, IL-6, IL-5, IL-1B3, and IL-17A
were measured in cell supernatants by ELISA.
Cytokine concentrations were significantly ele-
vated in the PM2.5 group compared to the
controls (P < 0.001). CC16 treatment markedly
reduced the levels of these cytokines, with
more pronounced decreases at higher CC16
concentrations (Figure 2).

CC16 inhibited lipid peroxidation in PM2.5-
exposed mouse lung epithelial cells

To investigate the antioxidative mechanism
of CC16, intracellular GSH and MDA levels
were quantified. PM2.5 exposure significantly
decreased intracellular GSH levels and in-
creased MDA levels compared to the control
group (both P < 0.001). CC16 reversed these
changes, causing more significant effects with
increasing CC16 concentration (Figure 3).

CC16 promoted the expression of Nrf2 and
GPX4 in PM2.5-exposed mouse lung epithelial
cells

To clarify the protective mechanisms of CC16,
the expression levels of the ferroptosis-related
marker Nrf2 and its downstream factor GPX4
were examined by western blot. PM2.5 expo-
sure significantly downregulated both Nrf2 and
GPX4 protein levels compared to the control
group (P < 0.01). CC16 treatment markedly
increased expression levels of both proteins
in PM2.5-exposed cells in a concentration-
dependent manner (Figure 4).

CC16 inhibited mitochondrial ferroptosis in
mouse lung epithelial cells

Mitochondrial morphology was assessed by
TEM to further investigate the protective ef-
fects of CC16 on ferroptosis. Compared to the
control group, PM2.5-exposed cells exhibited
typical mitochondrial ferroptosis, characterized
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Figure 3. Effects of CC16 on glutathione (GSH) (A) and malondialdehyde (MDA)
(B) levels in PM2.5-exposed mouse lung epithelial cells. *P < 0.05, ***P <

0.001, ns P > 0.05. n=6, Xts.

by mitochondrial shrinkage, reduced size, in-
creased outer-membrane density, elevated in-
tramitochondrial electron density, iron deposi-
tion, and mitochondrial cristae swelling or
reduction. CC16 alleviated these pathologic
changes, with reduced mitochondrial shrink-
age, lower membrane density, decreased iron
deposition, and restoration of cristae structure,
with greater effects at higher concentrations
(Figure 5).

CC16 reduced intracellular ROS levels induced
by PM2.5

ROS levels, assessed by fluorescence intensity,
were significantly increased in PM2.5-exposed
cells compared to controls (P < 0.001). ROS
levels were significantly reduced in the PM2.5 +
CC16 (0.25 pg/mL) group compared with the
PM2.5 group (P < 0.01), which were further
decreased in the PM2.5 + CC16 (0.5 ug/mL)
and PM2.5 + CC16 (1.0 pyg/mL) groups in a
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Figure 2. Effects of CC16 on in-
flammatory cytokine levels in the
supernatant of mouse lung epi-
thelial cells exposed to PM2.5. (A)
interleukin (IL)-13; (B) IL-6; (C) IL-5;
(D) IL-1B; and (E) IL-A7A. *P < 0.05,
**P <0.01, ***P < 0.001, ns P >
0.05. n=6, X#s.

dose-dependent manner
(P < 0.001, Figure 6).

CC16 maintained MMP in
PM2.5-exposed cells

TEM and JC-1 staining re-
vealed predominantly red
fluorescence (high MMP)
in mitochondria of the con-
trol group, whereas PM2.5
exposure led to a marked
increase in green fluore-
scence (low MMP; P <
0.001). CC16 treatment
significantly increased the red fluorescence
ratio in PM2.5-exposed cells in a dose-depen-
dent manner, indicating a significant recovery
of MMP in PM2.5+CC16 (1.0 ug/mL) group (P <
0.001, Figure 7).

CC16 reduced intracellular Fe?* accumulation
in PM2.5-exposed cells

Colorimetric assays showed that intracellular
Fe?* content was significantly elevated in the
PM2.5 group compared to controls (25.6 + 3.2
vs. 10.2 + 1.5 pg/mg protein, P < 0.001).
Treatment with CC16 (1.0 uyg/mL) markedly
reduced Fe?* content (15.8 + 2.1 ug/mg pro-
tein) compared to the PM2.5 group (P < 0.01,
Figure 8).

CC16 regulated the expression of the ferropto-
sis-related molecules SLC7A11 and ACSL4

Western blot analysis revealed that SLC7A11
expression was significantly downregulated

Am J Transl Res 2025;17(10):7915-7926
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Figure 4. Effects of CC16 on Nrf2 (A) and GPX4 (B) protein expression in PM2.5-exposed mouse lung epithelial cells.

**P < 0.01, ***P < 0.001, ns P > 0.05. n=6, X#s.

(P < 0.001), whereas ACSL4 expression was
significantly upregulated (P < 0.001) in the
PM2.5 group compared to the control group.
CC16 administration progrssively increased
SLC7A11 levels and decreased ACSL4 levels
compared to the PM2.5 group. When the
CC16 intervention concentration was 1.0 ug/
ml, demonstrating the best effect (both P <
0.01, Figure 9).

Discussion

CC16, encoded by the SCGB1A1 gene located
on chromosome 11q12.3, is a secretory pro-
tein primarily produced by airway Clara cells.
It exerts multiple protective functions in the
respiratory system, including inhibiting inflam-
matory cascades, regulating immune respons-
es, and scavenging ROS [19-21]. Our previous
work demonstrated that recombinant CC16
significantly inhibited LPS-induced apoptosis
in A549 alveolar epithelial cells, promoted cell
proliferation, and reduced pro-inflammatory
cytokine release [22], closely associated with
its anti-oxidative capacity. CC16 also alleviated
airway inflammation by inhibiting airway epi-
thelial pyroptosis in a PM2.5-induced asthma
mouse model [23]. Moreover, extracellular ves-
icle-derived CC16 suppressed inflammation
and DNA damage responses by downregulat-
ing NF-kB signaling, suggesting its potential as
a therapeutic candidate for acute lung injury
[24]. Recombinant CC16 has also been sh-
own to mitigate inflammation, oxidative stress,
apoptosis, and autophagy by inhibiting the
p38MAPK pathway in neonatal rat sepsis [25].
Despite these advances, the concentration-
dependent effects and underlying mechanisms
by which CC16 counteracts PM2.5-induced fer-
roptotic injury in lung epithelial cells, particu-
larly for complex air pollutants such as PM2.5,
however, remain unclear.
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Lung epithelial cells serve as the first line of
defense against inhaled pollutant particles.
PM2.5 exposure can induce airway epithelial
inflammation, increase permeability, and trig-
ger ferroptosis [18, 26, 27]. Consistent with
previous studies, our findings demonstrated
that PM2.5 exposure induced hallmark fea-
tures of ferroptosis in mouse lung epithelial
cells, including mitochondrial shrinkage, cris-
tae fragmentation, and abnormal iron ion depo-
sition in the matrix (manifested as increased
particle density) observed by TEM. We also
detected significant reductions in GSH, eleva-
tions in MDA levels, enhanced ACSL4 expres-
sion, and increased secretion of inflammatory
cytokines in the culture supernatants. This fur-
ther confirmed ferroptosis as a critical patho-
logic component of PM2.5-induced lung toxi-
city.

To further elucidate the mechanisms and con-
centration-dependent effects of CC16, we
assessed intracellular Fe?* levels, mitochondri-
al morphology (TEM), MMP (JC-1 staining), fer-
roptosis-related proteins (Nrf2, GPX4, SLC7A11,
and ACSL4), oxidative stress markers (MDA,
ROS, and GSH), and inflammatory cytokine
release. Notably, CC16 restored mitochondrial
architecture, reduced iron particle deposition,
and reestablished redox homeostasis. In addi-
tion, GSH levels were significantly increased,
while MDA, ROS content, and ACSL4 expres-
sion were decreased. Moreover, CC16 upregu-
lated Nrf2 and its downstream targets GPX4
and SLC7A11. Levels of inflammatory cytokines
(IL-13, IL-6, IL-5, IL-1B, IL-17A) in the cell culture
supernatant were also significantly reduced,
with more pronounced reduction at higher
CC16 concentrations.

Ferroptosis, a novel, iron-dependent form of
programmed cell death, is closely associated

Am J Transl Res 2025;17(10):7915-7926
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Figure 5. Effect of CC16 on mitochondrial ferroptosis in PM2.5-exposed mouse lung epithelial cells observed under TEM. (A) control group, (B) PM2.5 group, (C)
PM2.5 + CC16 (0.25 pg/mL) group, (D) PM2.5 + CC16 (0.5 pg/mL) group, and (E) PM2.5 + CC16 (1.0 pg/mL) group. Green arrows indicate mitochondria; red arrows
indicate iron deposition, reduced or absent cristae, and mitochondrial shrinkage.
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with lipid peroxidation and iron metabolism
dysregulation [28]. Lipid peroxidation produces
lipid peroxides and MDA, both of which ac-
cumulate during ferroptosis, leading to GSH
depletion [29, 30]. Nrf2, a core regulator of the
cellular antioxidant defense system, plays a
pivotal role in antioxidation. Under stress con-
ditions, Nrf2 translocates into the nucleus,
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binds directly to antioxidant response elements
in gene promoters, and activates downstream
antioxidant genes, including GPX4, thereby con-
stituting a major defense against ferroptosis
[31]. GPX4, a selenium-dependent glutathione
peroxidase, uniquely reduces hydrogen perox-
ide in membrane lipids and represents a cor-
nerstone of the anti-peroxidative defense sys-
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0.001, ns: P > 0.05. n=6, X#s.

tem [32]. The Nrf2/GPX4 signaling pathway has
been implicated in ferroptosis across multiple
disease processes [33, 34]. Our results show-
ed that PM2.5 exposure significantly sup-
pressed the Nrf2/GPX4 axis, whereas CC16
treatment activated this pathway in a dose-
dependent manner. Given its anti-oxidative
and anti-inflammatory properties, CC16 may
protect against PM2.5-induced ferroptosis by
scavenging ROS, reducing Nrf2 protein degra-
dation, enhancing Keap1-Nrf2 dissociation,
promoting Nrf2 nuclear translocation, upregu-
lating GPX4 expression, and enhancing cellular
detoxification of lipid peroxidation products.

CC16 also demonstrated a unique bidirectional
regulatory effect on key ferroptosis modulators.
It significantly upregulated SLC7A11 expres-
sion, a target of activated Nrf2 that regulates
the the GSH/GPX4 axis, as the principal path-
way for ferroptosis inhibition [4], while concur-
rently downregulating ACSL4 expression. The
latter effect activates diverse polyunsaturated
fatty acids, remodels cellular lipid composition,
and increases cellular susceptibility to ferropto-
sis [35]. This dual-target mechanism highlights
the ability of CC16 to inhibit ferroptosis by
simultaneously bolstering the antioxidant de-
fense (through the SLC7A11/GSH axis) and
reducing pro-ferroptotic lipid metabolism (th-
rough ACSL4 suppression).
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Activation of the Nrf2/GPX4 pathway by CC16
appears essential for maintaining mitochondri-
al integrity, as the organelle most vulnerable
during ferroptosis [36]. In this study, PM2.5
exposure induced severe mitochondrial dam-
age, including matrix condensation, cristae
fragmentation, and mitochondrial shrinkage,
as hallmark morphologic features of ferropto-
sis. Crucially, CC16 treatment not only pre-
vented MMP depolarization but also reversed
structural damage, thereby preserving mito-
chondrial function and suppressing ferroptotic
progression. Mechanistically, this protection
is closely associated with activation of the
Nrf2/GPX4 axis, and our preliminary data
showed that CC16 promoted Nrf2 nuclear
translocation. Mechanistically, GPX4, upregu-
lated downstream of Nrf2, plays a pivotal role
in detoxifying mitochondrial membrane lipid
peroxides, directly protecting mitochondrial
structure by reducing phospholipid hydroperox-
ides. Collectively, these findings indicate that
CC16, through concentration-dependent acti-
vation of the Nrf2/GPX4 pathway, provides
organelle-level protection against ferroptosis
and represents a novel paradigm for targeting
mitochondrial injury.

In summary, our findings suggest that CC16
alleviates PM2.5-induced cytotoxic injury in
mouse lung epithelial cells by inhibiting ferrop-
tosis by the Nrf2/GPX4 pathway in a concen-
tration-dependent manner, providing a new
theoretical basis for the prevention and treat-
ment of PM2.5-related lung diseases. This
study delineated the critical role of the Nrf2/
GPX4 pathway in mediating the anti-ferroptotic
effects of CC16; however, the precise upstream
mechanisms by which CC16 activates Nrf2 sig-
naling and regulates iron metabolism-related
genes (e.g., FTH1, TFR1) remain to be clarified.
Moreover, as these findings were derived from
in vitro experiments, further in vivo studies are
needed to confirm these findings. Future stud-
ies should also identify the specific receptors
mediating CC16 activity and clarify its direct
effect on iron regulatory networks.
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