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Abstract: Purpose: To develop and validate a radiomics model that uses multiple magnetic resonance imaging
(MRI) sequences to accurately distinguish hepatocellular carcinoma (HCC) from focal nodular hyperplasia (FNH),
thereby improving diagnostic precision and decision-making. Methods: We conducted a retrospective analysis in-
cluding 196 patients (97 in HCC and 99 in FNH) diagnosed at the Zhangzhou Affiliated Hospital of Fujian Medical
University (August 2011-December 2021). Radiomics features were extracted from the MRl images. LASSO logistic
regression models were constructed for feature selection and to differentiate HCC from FNH. The model was fur-
ther validated using a temporally independent cohort of 91 patients (49 HCC, 42 FNH) from the same institution
(January 2022-December 2023). The area under the curve (AUC), accuracy, sensitivity, and specificity were used
to evaluate the model’s performance. Results: We obtained 34 features for T2-weighted imaging (T2WI), diffusion-
weighted imaging (DWI), and contrast enhanced imaging (CEl). The radiomics model demonstrated high diagnostic
performance, with AUCs of 0.992 and 0.958 in the training and internal validation, respectively. In the independent
external validation set, the model maintained strong performance with an AUC of 0.903, sensitivity of 88.9%, and
specificity of 87.2%. In the training and internal validation, the model also showed high accuracy (0.956 and 0.867,
respectively) and sensitivity (0.957 and 0.900, respectively). The integrated T2WI + DWI + CEI (TDC)-clinical data
model demonstrated higher diagnostic accuracy than the TDC-only model. Conclusion: The developed multimodal
MRI radiomics model effectively differentiated HCC from FNH and offers a non-invasive diagnostic tool that surpass-
es traditional imaging techniques. Further research is warranted to confirm these findings and explore the model’s
applications in broader clinical settings.
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Introduction agement and therapeutic approaches for these
conditions differ markedly [8]. An erroneous
diagnosis may result in either unnecessary
aggressive interventions for a benign condition
or inadequate treatment for a potentially life-

threatening malignancy.

Hepatocellular carcinoma (HCC) represents a
significant contributor to cancer-related mortal-
ity worldwide, with approximately 45% of HCC-
related deaths occurring in China [1, 2]. This
disease imposes a considerable economic bur-

den on patients, healthcare systems, and soci-
ety, while also substantially impairing patients’
quality of life [3, 4]. Conversely, focal nodular
hyperplasia (FNH) is a benign hepatic condition
that presents diagnostic challenges. Although
typically asymptomatic and not necessitating
treatment, FNH is often difficult to distinguish
from HCC using conventional imaging tech-
niques, posing a diagnostic dilemma [5-7]. The
imperative of accurately differentiating FNH
from HCC cannot be overstated, as the man-

Recent advancements in radiomics have signifi-
cantly transformed the diagnostic process.
Radiomics employs high-throughput techniques
to extract and analyze extensive quantities of
advanced quantitative imaging features from
standard medical images [9, 10]. This approach
has demonstrated potential in enhancing diag-
nostic accuracy, particularly in differentiating
between malignant hepatic conditions, such as
hepatocellular carcinoma (HCC), and benign
conditions, such as focal nodular hyperplasia
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(FNH). For example, sophisticated radiomics
models that integrate data from multiple mag-
netic resonance imaging (MRI) sequences
have shown promise in improving diagnostic
accuracy, which is essential for informing
appropriate patient management and treat-
ment strategies.

However, the optimal combination of MRI
sequences for distinguishing FNH from HCC
remains an area of active investigation. To
address this, our study sought to develop and
validate an advanced model that integrates
T2-weighted imaging (T2WI) and diffusion-
weighted imaging (DWI) with enhanced se-
quences. We hypothesize that this multi-para-
metric approach can provide a superior frame-
work for the accurate non-invasive differentia-
tion of FNH from HCC, leveraging the distinct
and complementary information provided by
each sequence.

Materials and methods
Participants

By reviewing the electronic medical records, we
retrospectively analyzed the clinical and imag-
ing data of 196 patients who were pathologi-
cally diagnosed with either FNH or HCC at
Zhangzhou Affiliated Hospital of Fujian Medical
University, Fujian Province, from August 2011
to December 2021. This study adhered to the
Declaration of Helsinki and was approved by
the Clinical Research Ethics Committee of
Zhangzhou Hospital in Fujian Province, which
waived the need for obtaining informed con-
sent from the subjects. Prior to evaluating the
clinical and imaging data, the patient informa-
tion was anonymized. The following inclusion
criteria were used: (1) surgical resection, patho-
logical confirmation by immunohistochemical
results of FNH or HCC; (2) contrast-enhanced
MRI of the liver or upper abdomen within 15
days prior to the operation, with complete imag-
ing data of T2WI, DWI, and contrast-enhanced
sequences. The following exclusion criteria
were used: (1) HCC patients who received che-
motherapy or radiotherapy before the opera-
tion, (2) patients with unsatisfactory image
quality or unusable images, and (3) patients
with incomplete clinical data or unfeasible sta-
tistical analysis. Of the 196 patients, 99 had
FNH and 97 had HCC. This cohort constituted
the development set. To robustly assess model
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performance and mitigate overfitting, we
employed a 10-fold cross-validation strategy
on this entire development cohort for internal
validation, rather than a static data split.

Moreover, the external validation was achieved
through retrospective evaluation of our hospi-
tal's FNH and HCC case records (January
2022-December 2023), maintaining uniform
criteria for clinical and follow-up data ac-
quisition. The external validation set was tem-
porally independent from the development set.
Notably, the MRI scanner was the same during
the study period, providing a consistent test of
the model’s generalizability.

The diagnosis for every patient included in this
study, encompassing both the development
cohort (2011-2021) and the external validation
cohort (2022-2023), was definitively estab-
lished by histopathological analysis of surgical
resection or biopsy specimens.

Sample size consideration

As a retrospective study, we included all con-
secutive eligible patients to maximize the sam-
ple size. Although a formal a priori sample size
calculation was not performed, the final model
incorporated only 3 key predictors. With 97
events (HCC cases) and 3 variables, the Events
Per Variable (EPV) ratio of 32.3 far exceeds the
recommended threshold of 10-20, ensuring
model stability.

Data

The outcome variable was the pathological
diagnosis of FNH or HCC. The predictors were
the radiomics features extracted from the MRI
images by ITK-SNAP software (Version 3.8,
http://www.itksnap.org).

Data sources and image acquisition

We obtained contrast-enhanced MRI data from
196 patients with hepatic nodular lesions who
were diagnosed with either HCC or FNH at our
hospital between August 2011 to December
2021. A Philips Achieva 1.5T superconducting
MRI scanner with an abdominal phased-array
coil was used to perform the MRI scans. The
patients underwent breathing training before
scanning, and the following MRI sequences
and parameters were used: T2WI with a repeti-
tion time (TR) of 2000 ms, echo time (TE) of 80
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ms, field of view (FOV) of 375 mm x 297 mm,
matrix size of 268 x 182, slice thickness of 5
mm, and slice gap of 1 mm; DWI with a TR of
2187 ms, TE of 73 ms, FOV of 375 mm x 375
mm, matrix size of 152 x 110, and b value of
800 s/mm? and contrast-enhanced imaging
(CEIl) with TR of 4.1 ms, TE of 1.98 ms, FOV of
370 mm x 297 mm, matrix size of 284 x 175,
slice thickness of 5 mm, and slice gap of 1 mm.
A standardized contrast-enhanced protocol
was followed using the extracellular agent
gadopentetate dimeglumine. The MRI images
were stored in Digital Imaging and Commu-
nications in Medicine format and downloaded
from the Picture Archiving and Communication
System of our hospital.

Image segmentation and radiomics feature
extraction

We used ITK-SNAP software (version 3.8,
http://www.itksnap.org) to segment the lesions
from the MRI images. We selected three MRI
sequences (T2WI, DWI, and CEl) and imported
them into the software. For the contrast
enhanced imaging (CEl), radiomics features
were extracted from the portal venous phase.
This phase was selected for radiomics analysis
because it provides the most consistent and
reliable lesion-to-liver contrast for characteriz-
ing both FNH and HCC, and is less susceptible
to flow-related artifacts compared to the arteri-
al phase. To assess the inter-observer repro-
ducibility of feature extraction, two radiologists
who were blinded to the pathological results
independently performed the manual segmen-
tation. Both readers delineated the entire con-
tour of each lesion slice by slice, carefully avoid-
ing blood vessels and surrounding normal liver
tissues. The segmented contours were merged
to form a three-dimensional region of interest
(ROI) for each lesion. A randomly selected sub-
set of 50 cases (approximately 25% of the
cohort) was used for this reproducibility analy-
sis. After independent segmentation, the ROIs
from both readers were used to extract
radiomics features. The inter-observer agree-
ment was quantified using the intraclass co-
rrelation coefficient (ICC) for each feature.
Features with an ICC greater than 0.75 in the
subset were considered to have good to excel-
lent reproducibility and were retained for sub-
sequent analysis. Any disagreements in the
remaining cases were resolved through con-
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sensus discussion between the two readers.
We used the PyRadiomics package (version
3.0, https://pyradiomics.readthedocs.io) to ex-
tract 1,688 radiomics features from each ROI.
The extraction was performed using the default
parameter settings of PyRadiomics unless oth-
erwise specified. This included applying a fixed
bin width of 25 for discretizing the image gray
levels and calculating features from the original
image without applying any filters. Feature
classes extracted comprised first-order statis-
tics, shape-based (3D) features, and texture
features including Gray Level Co-occurrence
Matrix (GLCM), Gray Level Run Length Matrix
(GLRLM), Gray Level Size Zone Matrix (GLSZM),
Neighboring Gray Tone Difference Matrix
(NGTDM), and Gray Level Dependence Matrix
(GLDM).

Statistical analysis

Software and clinical data analysis: We used R
software (version 3.8.0) for the analysis of clini-
cal data. The Shapiro-Wilk test was used to
assess the normality of the age distribution.
The Kruskal-Wallis test was employed to com-
pare age between the FNH and HCC groups.
Categorical variables, such as gender, were
compared using the chi-square test or Fisher’s
exact test, as appropriate. A p-value < 0.05 was
considered statistically significant.

Radiomics feature processing and model con-
struction: For radiomics data, we used Python
(version 3.7.0) with the Scikit-learn (version
0.19.2) and Pyradiomics (version 3.0.1) pack-
ages for feature extraction, normalization, fea-
ture selection, and model construction.

Feature preprocessing and selection: Feature
selection was performed separately for the
features extracted from each MRI sequence
(T2WI, DWI, and CEI) through a three-step pipe-
line: i) variance Thresholding: We first removed
radiomics features with near-zero variance
(variance threshold < 0.8) across the entire
training cohort; ii) univariate feature selection:
The remaining features were subjected to uni-
variate logistic regression analysis. Features
with a significant association with the patho-
logical outcome (HCC vs. FNH, P < 0.05) were
retained; iii) LASSO Regression: Finally, the
Least Absolute Shrinkage and Selection
Operator (LASSO) regression algorithm with
10-fold cross-validation was applied to further
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Table 1. Comparison of the characteristics between the FNH and HCC groups

HCC (97) FNH (99) U/x? P
Age (years; median [IQR]) 62.00 (54.00, 68.00) 33.00 (25.50, 42.00) 105.500 <0.001
Sex 48.460 <0.001
Male, n (%) 84 (86.6) 38 (38.4)
Female, n (%) 13 (13.4) 61 (61.6)

FNH, focal nodular hyperplasia; HCC, hepatocellular carcinoma; IQR, interquartile range.

reduce dimensionality and prevent overfitting.
The optimal regularization parameter (A) for
LASSO was determined by selecting the value
that yielded the most parsimonious model with-
in one standard error of the minimum binomial
deviance from the cross-validation. Regarding
the 10-fold cross-validation for LASSO, the
class distribution (FNH vs. HCC) in the training
set was approximately balanced (99 vs. 97).
Therefore, standard cross-validation without
specific stratification was deemed appropriate,
as it would likely yield folds with representative
class proportions.

Model building and evaluation: The features
with non-zero coefficients derived from the
LASSO regression for each sequence were
used to construct the final logistic regres-
sion (LR) predictive models. The diagnostic
efficacy of each model was evaluated in both
the training and validation sets using receiver
operating characteristic (ROC) curve analysis.
Performance was quantified by the area under
the curve (AUC), accuracy, sensitivity, and
specificity.

Results
Characteristics of the study population

The clinical characteristics of the FNH and HCC
groups are shown in Table 1. The median age of
the HCC group was 62.00 years (interquartile
range, 54.00-68.00), which was significantly
higher than the 33.00 years (interquartile
range, 25.50-42.00) of the FNH group
(U=105.500, P < 0.001). A significant differ-
ence was observed in sex distribution between
the two groups (x>=48.460, P < 0.001), with a
higher proportion of males in the HCC group
(86.6%) compared to the FNH group (38.4%).

Radiomics feature selection and model con-
struction

The inter-observer reproducibility was assessed
on a randomly selected subset of 50 cases.
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Based on the intraclass correlation coefficient
(ICC) analysis, 1,502 out of the total 1,688 fea-
tures (89.0%) demonstrated excellent consis-
tency (ICC > 0.75) and were therefore retained
for subsequent feature selection and model
construction. This confirms the high reliability
of the feature extraction process. To reduce
dimensionality and select important radio-
mics features, we performed three-step pro-
cessing of the imaging features extracted from
various sequences and their combinations. The
following abbreviations are used for the differ-
ent feature sets: (1) T2WI: Features from the
T2-weighted imaging sequence alone. (2) TD:
Combined features from both T2WI and DWI
sequences. (3) TC: Combined features from
both T2WI and CEl (contrast-enhanced imag-
ing) sequences. (4) TDC: Combined features
from all three sequences: T2WI, DWI, and CElI.

First, we used variance thresholding to exclude
features with a variance threshold < 0.8.
Second, we performed univariate LR to identify
features significantly associated with the diag-
nosis (HCC vs. FNH). Finally, LASSO regression
further reduced the feature set and prevented
overfitting. The LASSO regression algorithm
selected 23, 27, 24, and 34 radiomic features
from the T2WI, TD, TC, and TDC feature sets,
respectively (as visualized in Figures 1-4). 2WI
provides the foundational information, and DWI
adds unique, complementary value. The TC
model (T2WI + CEl), comprising 24 features,
retained 23 features from T2WI and 1 addition-
al feature from CEI. This suggests that the
hemodynamic information from CEIl, while high-
ly specific, may partially overlap with the tex-
tural information captured by T2WI. Critically,
the superior TDC model (T2WI + DWI + CEl),
with 34 features, was not merely the sum of its
parts. It integrated a unique set of features,
indicating a synergistic effect where the combi-
nation of all three sequences captures diagnos-
tic information that is not accessible when any
sequence is used in isolation. The significant
performance gain of the TDC model under-
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Figure 1. T2WI single-sequence group radiomics model construction. A: Image features and correlation coefficients
of the minimum absolute contraction and selection operator (LASSO); B: Best tuning parameter (A) selected by
10-fold cross-validation in the LASSO regression model; C: A used to obtain the radiomics features of the non-zero
series (each colored line represents the change of its coefficient).

scores that features reflecting tissue structure
(T2WI1), cellularity (DWI), and vascularity (CEI)
each provide indispensable and complementa-
ry diagnostic value. These selected features
were then used to build the corresponding pre-
dictive models.

Diagnostic performance of the three models

Using imaging characteristics, we constructed
predictive models and evaluated their diagnos-
tic efficacy for FNH via ROC curves. As detailed
in Table 2 and Figure 5, the T2WI-based model
produced AUC values of 0.942 (95% CI: 0.909-
0.968) in the training cohort and 0.814 (95%
Cl: 0.707-0.895) in the validation cohort. For
the TD-based model, the AUCs were 0.967
(95% Cl: 0.941-0.988) and 0.891 (95% CI:
0.802-0.957) in the training and validation
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sets, respectively. The TC-based model pro-
duced AUC values of 0.963 (95% CI: 0.940-
0.984) for training and 0.901 (95% CI: 0.820-
0.970) for validation. Of particular note, the
TDC-based model attained the highest training
AUC (0.989, 95% CI: 0.978-0.997) and the
strongest validation concordance (AUC: 0.944,
95% Cl: 0.886-0.987), with 90.0% sensitivity
and 86.7% specificity, underscoring its excep-
tional diagnostic utility.

Building and validation of the combined diag-
nostic model

To integrate clinical risk factors with the
radiomics signature, we developed a combined
model. The Rad-score from the optimal TDC
radiomics model, along with the clinical vari-
ables of age and sex (which were selected due
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Figure 2. TD (T2WI + DWI) combined sequence dimensionality reduction and radiomics model construction. A: Im-
age features and correlation coefficients of the minimum absolute contraction and selection operator (Lasso); B:
Best tuning parameter (A) selected by 10-fold cross-validation in the LASSO regression model; C: A used to obtain the
radiomics features of the non-zero series (each colored line represents the change in its coefficient).

to their significant association with the diagno-
sis in univariate analysis, as shown in Table 1,
and their universal availability in clinical prac-
tice), were incorporated as continuous and cat-
egorical predictors, respectively, into a multi-
variate logistic regression analysis to build the
combined clinical-radiomics model. The perfor-
mance of this combined model was then evalu-
ated and compared against the radiomics-only
model in both the training and validation
cohorts.

Figure 6 presents the combined diagnostic
model along with a nomogram for predicting
FNH probability. The model's discriminatory
power was assessed via ROC analysis. In the
training cohort (Figure 7; Table 3), the model
achieved an AUC of 0.992 (95% Cl: 0.979-
1.000), accompanied by a sensitivity of 97.1%
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and specificity of 98.5%. The 10-fold cross-val-
idation cohort yielded an AUC of 0.958
(95% Cl: 0.904-0.993), with 86.7% sensitivity,
86.7% specificity, a positive predictive value
(PPV) of 86.7%, a negative predictive value
(NPV) of 86.0%, and an F1-score of 0.867.
Importantly, this combined model (TDC + clini-
cal data) outperformed the TDC-only model
(Figure 5D), confirming its enhanced diagnostic
accuracy.

External validation

The model’s FNH/HCC classification ability was
tested via an independent validation set
derived from hospital records and follow-up
data (January 2022-December 2023), with 49
patients with HCC (27 male, 22 female) and 42
patients with FNH (14 male, 28 female) (Table
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Figure 3. TC (T2WI + CEI) combined sequence dimensionality reduction and radiomics model construction. A: Image
features and correlation coefficients of the minimum absolute contraction and selection operator (Lasso); B: Best
tuning parameter (A\) selected by 10-fold cross-validation in the LASSO regression model; C: A used to obtain the
radiomics features of the non-zero series (each colored line represents the change of its coefficient).

4). As shown in Figure 8, Nomogram-assisted
risk evaluation yielded an AUC of 0.903 (95%
Cl: 0.834-0.972), with a sensitivity of 88.9%, a
specificity of 87.2%, a PPV of 89.8%, a NPV of
88.1%, and an F1-score of 0.893, underscoring
the nomogram’s excellent differentiation of
FNH from HCC.

Representative cases

To illustrate the clinical context and the deci-
sion-making process facilitated by our model,
we present the following case. Although we are
unable to share the original MRI due to patient
privacy regulations, we provide a detailed radio-
logical description that aligns with the input
features of our model.
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Case 1: a 38-year-old woman with histologi-
cally proven FNH

T2-weighted Imaging: The lesion appeared
slightly hyperintense compared to the sur-
rounding liver parenchyma.

Diffusion-weighted Imaging (DWI): The lesion
showed restricted diffusion, presenting as
hyperintense.

Contrast-enhanced Imaging (CEl): On the arte-
rial phase, the lesion demonstrated strong and
homogeneous enhancement. During the portal
venous and delayed phases, the enhancement
became isointense to the liver, with a charac-
teristic persistently enhancing central scar
becoming visible in the delayed phase.
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Figure 4. TDC (T2WI + DWI + CEl) combined sequence dimensionality reduction and radiomics model construction.
A: Image features and correlation coefficients of the minimum absolute contraction and selection operator (Lasso);
B: Best tuning parameter (A) selected by 10-fold cross-validation in the LASSO regression model; C: A used to obtain
the radiomics features of the non-zero series (each colored line represents the change in its coefficient).

The radiomics analysis of this lesion’s ROl on
the aforementioned sequences yielded a high
Rad-score, and the combined clinical-radiomics
model correctly predicted a high probability of
FNH, which was consistent with the pathologi-
cal diagnosis. This case exemplifies a typical
presentation where the model can reinforce a
confident diagnosis.

Discussion

In this study, we developed and validated a mul-
tivariate radiomics model based on T2WI, DWI,
and contrast-enhanced MRI for distinguishing
between HCC and FNH in patients with hepatic
nodular lesions. The accurate differentiation
between these two entities is crucial for deter-
mining appropriate treatment strategies and
avoiding unnecessary interventions.
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It is crucial to accurately distinguish between
HCC and FNH for determining the appropriate
course of treatment and preventing unwarrant-
ed therapeutic procedures. Conventional MRI
has been widely used for the differential diag-
nosis of FNH and HCC [11], but these examina-
tions have limitations. An example is that for
diagnosing HCC, the sensitivity and specificity
of conventional MRI are relatively low, especial-
ly for small HCCs. Conventional MRI also might
not be able to distinguish between HCC and
other benign liver lesions, such as FNH [3].
Even with these limitations, conventional MRl is
an important diagnostic tool for liver lesions.

Capitalizing on advancements in radiomics,
several approaches have been suggested to
distinguish between benign and malignant liver
tumors. A previous study developed a CT-based
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Table 2. Differential diagnostic performance of the LR model based on different sequences of MRI for
FNH agent HCC

Model Data Group AUC Accuracy Sensitivity Specificity
T2WI Training cohort 0.942 (0.909-0.968) 0.846 0.841 0.851
Validation cohort 0.814 (0.707-0.895) 0.750 0.867 0.633
D Training cohort 0.967 (0.941-0.988) 0.897 0.899 0.896
Validation cohort 0.891 (0.802-0.957) 0.833 0.867 0.800
TC Training cohort 0.963 (0.940-0.984) 0.890 0.899 0.881
Validation cohort 0.901 (0.820-0.970) 0.800 0.900 0.700
TDC Training cohort 0.989 (0.978-0.997) 0.956 0.957 0.955
Validation cohort 0.944 (0.886-0.987) 0.867 0.900 0.833

LR, logistic regression; MRI, Magnetic Resonance Imaging; FNH, focal nodular hyperplasia; HCC, hepatocellular carcinoma;

AUC, Area under the curve; T2WI, T2-weighted imaging; T2WI and DWI (Diffusion Weighted Imaging), referred to as TD, T2WI

and CEI (Contrast Enhanced Imaging), referred to as TC, T2WI, DWI and C, referred to as TDC.
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Figure 5. Receiver operating characteristic curves of the training group and test group in the classifier models.
A: T2WI single-sequence group model; B: TD (T2WI + DWI) combined sequence; C: TC (T2WI + CEl) combined se-
quence; D: TDC (T2WI + DWI + CEl) combined sequence. AUC: Area under the curve. The specific data of the ROC
curve are presented in Table 2.

radiomics model that showed good preopera-
tive discrimination between HCC and FNH, with
AUCs of 0.964 and 0.865 in the training set
and the validation set, respectively [5]. The
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MRI-based model achieved good differentia-
tion of HCC from FNH in both the training and
validation datasets (0.956 and 0.941, respec-
tively) [12]. Also, there was a highly accurate
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combined model for FNH identification. ROC, receiver operating characteris-
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diagnostic model using Gd-EOB-DTPA-enhan-
ced MRI to preoperatively distinguish HCC from
FNH in challenging cases where both showed
iso- or hyperintensity in the hepatobiliary phase
[13]. It is worth noting that while Gd-EOB-DTPA-
enhanced MRI provides valuable functional
information, our model utilizes more widely
available contrast agents, potentially offering a
more accessible alternative without compro-
mising diagnostic performance. Another study
developed a CT-based radiomics model to iden-
tify hepatic lesions (including HCC and FNH),
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0.8

plementing the architectu-
ral information from T2WI.
T2WI emphasizes the con-
trast between tissues on the
basis of their T2 relaxation
times, which is useful for visu-
alizing differences in water
content and detecting abnormalities, such as
edema or inflammation [16, 17]. DWI measures
the random motion of water molecules within
tissues, which can indicate cellular structure
changes [18]. It is particularly helpful for identi-
fying areas of restricted diffusion, which are
often observed in acute stroke or certain tumor
types. CEl refers to the use of contrast agents
to enhance the visibility of blood vessels and
tissue perfusion in scans [19, 20]. The superior
performance of our TDC model, achieving AUCs
of 0.992 and 0.958 in training and 10-fold

1.0
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Table 3. Diagnostic performance of the nomogram for FNH prediction

AUC ACC Sensitivity Specificity 95% CI
Training set 0.992 0.978 0.971 0.985 0.979-1.000
Validation set 0.958 0.867 0.867 0.867 0.904-0.993

FNH, focal nodular hyperplasia; AUC, area under the curve; Cl, confidence interval.

Table 4. Clinical characteristics of patients in the external validation cohort

HCC (n=49) FNH (n=42) t/x2/U p
Age (years) 55.12+11.00 38.00+11.83 7.150 0.000
Sex 4.329 0.038
Male 27 (55.10) 14 (33.33)
Female 22 (44.90) 28 (66.67)
Rad-score (IQR) 0.2 (-0.1, 0.5) 0.4 (0.225, 0.7) 747.500 0.024

FNH, focal nodular hyperplasia; HCC, hepatocellular carcinoma; IQR, interquartile range.
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Figure 8. External validation (ROC analysis). ROC, re-
ceiver operating characteristic; AUC, area under the
curve.

cross-validation cohorts, respectively, demon-
strates the synergistic value of this multi-para-
metric approach.

To address feature biological significance, we
analyzed key predictors in our model. The
radiomics features selected in our final model
demonstrate plausible biological correlates
with the underlying pathophysiology of HCC
and FNH. For example, the texture feature pri-
marily from T2WI likely captures architectural
heterogeneity, with higher values in HCC co-
rresponding to its disorganized structure with
variable cellularity, necrosis, and fibrosis ver-
sus FNH’s organized architecture with uniform
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hepatocytes and characteristic central scar.
Similarly, features from DWI may reflect cellular
density differences between hypercellular HCC
and normal hepatocyte arrangement in FNH
with relatively free water diffusion. CEl-derived
features potentially capture the distinct vascu-
lar patterns, and HCC typically demonstrates
neoangiogenesis with chaotic arterial enhance-
ment and washout, while FNH exhibits homoge-
neous arterial enhancement with sustained
enhancement in later phases due to its orga-
nized vascular architecture. These interpreta-
tions, while requiring further validation, provide
plausible biological explanations for our mod-
el's discriminative capability based on estab-
lished pathophysiology [21, 22]. Then, we
developed a clinically integrated framework
combining the TDC radiomics signature with
essential clinical parameters. The combined
model showed improved diagnostic accuracy,
and its robust performance in external valida-
tion (AUC: 0.903) underscores clinical poten-
tial. By synthesizing multi-parametric MRI data
with clinical variables, our approach can deliver
a more comprehensive diagnostic profile than
single-modality radiomics, advancing the pur-
suit of accurate, non-invasive diagnosis in
hepatology.

To facilitate the clinical application of our com-
bined diagnostic model, we have constructed a
practical nomogram (Figure 6). This nomogram
serves as a bridge between the complex algo-
rithm and clinical practice, allowing radiologists
to manually calculate a personalized probability
of FNH for each patient by summing points
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assigned to their specific radiomics signature,
age, and sex. While this study represents the
development and validation phase, our immedi-
ate future work includes the development of a
user-friendly web-based calculator or mobile
application. This tool would automate the scor-
ing process, integrating seamlessly into the
radiologist’'s workflow by inputting the Rad-
score and clinical parameters to instantly out-
put the FNH probability. Furthermore, we plan
to conduct clinical utility studies to evaluate
radiologists’ diagnostic confidence and accu-
racy with and without the assistance of this
model, which is a critical step towards its wide-
spread acceptance and adoption.

In this study, we elected to employ the logistic
regression (LR) classifier due to its high inter-
pretability, computational efficiency, and lower
risk of overfitting, especially given that our final
model was parsimonious with only 3 features.
This aligns with our goal of developing a clini-
cally transparent and deployable tool. While we
acknowledge that testing a broader range of
classifiers (e.g., Random Forest, Support Vector
Machines) and dimensionality reduction meth-
ods (e.g., Principal Component Analysis) repre-
sents a valuable future direction, the strong
performance of our carefully tuned LR model
(AUC: 0.903 on external validation) demon-
strates its effectiveness as a robust solution
for the task at hand. Future work will include a
comprehensive benchmark of various algo-
rithms to further optimize performance.

This study has several limitations. Its retrospec-
tive, single-center design with a small sample
size may limit generalizability and introduce
selection bias. Furthermore, the cohort con-
tained an insufficient number of small lesions
(£ 2 cm) to perform a meaningful subgroup
analysis. While our model relied on portal
venous phase features, its performance with
hepatobiliary-specific contrast agents (e.g.,
gadoxetate disodium) remains unverified and
requires future investigation. The research
scope was also restricted to differentiating HCC
from FNH, and the clinical relevance of the
imaging features remains unclear. Methodo-
logically, the limited range of algorithms used
and the absence of decision curve and calibra-
tion analyses affect the evaluation of model
robustness and clinical utility. Despite these

9553

limitations, the model demonstrated balanced
sensitivity and specificity (86.7% each) in exter-
nal validation, indicating its potential to address
key diagnostic challenges.

Conclusion

The study findings support the use of the multi-
modal MRI model based on T2WI, DWI, and the
C-sequence can be used to distinguish between
HCC and FNH. The shorthand diagnostic model
constructed by use of the LR classifier model
gave the best performance, and it can assist in
the differential diagnosis of HCC and FNH, thus
improving the accuracy of the differential diag-
nosis and realizing individualized precision
medicine. Our study results have important
implications for accurate diagnosis and proper
treatment of HCC and FNH. Further research is
needed to validate these findings and to explore
the potential of this approach in other clinical
settings.
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