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Abstract: Purpose: To develop and validate a radiomics model that uses multiple magnetic resonance imaging 
(MRI) sequences to accurately distinguish hepatocellular carcinoma (HCC) from focal nodular hyperplasia (FNH), 
thereby improving diagnostic precision and decision-making. Methods: We conducted a retrospective analysis in-
cluding 196 patients (97 in HCC and 99 in FNH) diagnosed at the Zhangzhou Affiliated Hospital of Fujian Medical 
University (August 2011-December 2021). Radiomics features were extracted from the MRI images. LASSO logistic 
regression models were constructed for feature selection and to differentiate HCC from FNH. The model was fur-
ther validated using a temporally independent cohort of 91 patients (49 HCC, 42 FNH) from the same institution 
(January 2022-December 2023). The area under the curve (AUC), accuracy, sensitivity, and specificity were used 
to evaluate the model’s performance. Results: We obtained 34 features for T2-weighted imaging (T2WI), diffusion-
weighted imaging (DWI), and contrast enhanced imaging (CEI). The radiomics model demonstrated high diagnostic 
performance, with AUCs of 0.992 and 0.958 in the training and internal validation, respectively. In the independent 
external validation set, the model maintained strong performance with an AUC of 0.903, sensitivity of 88.9%, and 
specificity of 87.2%. In the training and internal validation, the model also showed high accuracy (0.956 and 0.867, 
respectively) and sensitivity (0.957 and 0.900, respectively). The integrated T2WI + DWI + CEI (TDC)-clinical data 
model demonstrated higher diagnostic accuracy than the TDC-only model. Conclusion: The developed multimodal 
MRI radiomics model effectively differentiated HCC from FNH and offers a non-invasive diagnostic tool that surpass-
es traditional imaging techniques. Further research is warranted to confirm these findings and explore the model’s 
applications in broader clinical settings.
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Introduction

Hepatocellular carcinoma (HCC) represents a 
significant contributor to cancer-related mortal-
ity worldwide, with approximately 45% of HCC-
related deaths occurring in China [1, 2]. This 
disease imposes a considerable economic bur-
den on patients, healthcare systems, and soci-
ety, while also substantially impairing patients’ 
quality of life [3, 4]. Conversely, focal nodular 
hyperplasia (FNH) is a benign hepatic condition 
that presents diagnostic challenges. Although 
typically asymptomatic and not necessitating 
treatment, FNH is often difficult to distinguish 
from HCC using conventional imaging tech-
niques, posing a diagnostic dilemma [5-7]. The 
imperative of accurately differentiating FNH 
from HCC cannot be overstated, as the man-

agement and therapeutic approaches for these 
conditions differ markedly [8]. An erroneous 
diagnosis may result in either unnecessary 
aggressive interventions for a benign condition 
or inadequate treatment for a potentially life-
threatening malignancy.

Recent advancements in radiomics have signifi-
cantly transformed the diagnostic process. 
Radiomics employs high-throughput techniques 
to extract and analyze extensive quantities of 
advanced quantitative imaging features from 
standard medical images [9, 10]. This approach 
has demonstrated potential in enhancing diag-
nostic accuracy, particularly in differentiating 
between malignant hepatic conditions, such as 
hepatocellular carcinoma (HCC), and benign 
conditions, such as focal nodular hyperplasia 
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(FNH). For example, sophisticated radiomics 
models that integrate data from multiple mag-
netic resonance imaging (MRI) sequences  
have shown promise in improving diagnostic 
accuracy, which is essential for informing 
appropriate patient management and treat-
ment strategies.

However, the optimal combination of MRI 
sequences for distinguishing FNH from HCC 
remains an area of active investigation. To 
address this, our study sought to develop and 
validate an advanced model that integrates 
T2-weighted imaging (T2WI) and diffusion-
weighted imaging (DWI) with enhanced se- 
quences. We hypothesize that this multi-para-
metric approach can provide a superior frame-
work for the accurate non-invasive differentia-
tion of FNH from HCC, leveraging the distinct 
and complementary information provided by 
each sequence.

Materials and methods

Participants

By reviewing the electronic medical records, we 
retrospectively analyzed the clinical and imag-
ing data of 196 patients who were pathologi-
cally diagnosed with either FNH or HCC at 
Zhangzhou Affiliated Hospital of Fujian Medical 
University, Fujian Province, from August 2011 
to December 2021. This study adhered to the 
Declaration of Helsinki and was approved by 
the Clinical Research Ethics Committee of 
Zhangzhou Hospital in Fujian Province, which 
waived the need for obtaining informed con-
sent from the subjects. Prior to evaluating the 
clinical and imaging data, the patient informa-
tion was anonymized. The following inclusion 
criteria were used: (1) surgical resection, patho-
logical confirmation by immunohistochemical 
results of FNH or HCC; (2) contrast-enhanced 
MRI of the liver or upper abdomen within 15 
days prior to the operation, with complete imag-
ing data of T2WI, DWI, and contrast-enhanced 
sequences. The following exclusion criteria 
were used: (1) HCC patients who received che-
motherapy or radiotherapy before the opera-
tion, (2) patients with unsatisfactory image 
quality or unusable images, and (3) patients 
with incomplete clinical data or unfeasible sta-
tistical analysis. Of the 196 patients, 99 had 
FNH and 97 had HCC. This cohort constituted 
the development set. To robustly assess model 

performance and mitigate overfitting, we 
employed a 10-fold cross-validation strategy 
on this entire development cohort for internal 
validation, rather than a static data split.

Moreover, the external validation was achieved 
through retrospective evaluation of our hospi-
tal’s FNH and HCC case records (January 
2022-December 2023), maintaining uniform 
criteria for clinical and follow-up data ac- 
quisition. The external validation set was tem-
porally independent from the development set. 
Notably, the MRI scanner was the same during 
the study period, providing a consistent test of 
the model’s generalizability.

The diagnosis for every patient included in this 
study, encompassing both the development 
cohort (2011-2021) and the external validation 
cohort (2022-2023), was definitively estab-
lished by histopathological analysis of surgical 
resection or biopsy specimens.

Sample size consideration

As a retrospective study, we included all con-
secutive eligible patients to maximize the sam-
ple size. Although a formal a priori sample size 
calculation was not performed, the final model 
incorporated only 3 key predictors. With 97 
events (HCC cases) and 3 variables, the Events 
Per Variable (EPV) ratio of 32.3 far exceeds the 
recommended threshold of 10-20, ensuring 
model stability.

Data

The outcome variable was the pathological 
diagnosis of FNH or HCC. The predictors were 
the radiomics features extracted from the MRI 
images by ITK-SNAP software (Version 3.8, 
http://www.itksnap.org).

Data sources and image acquisition

We obtained contrast-enhanced MRI data from 
196 patients with hepatic nodular lesions who 
were diagnosed with either HCC or FNH at our 
hospital between August 2011 to December 
2021. A Philips Achieva 1.5T superconducting 
MRI scanner with an abdominal phased-array 
coil was used to perform the MRI scans. The 
patients underwent breathing training before 
scanning, and the following MRI sequences 
and parameters were used: T2WI with a repeti-
tion time (TR) of 2000 ms, echo time (TE) of 80 
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ms, field of view (FOV) of 375 mm × 297 mm, 
matrix size of 268 × 182, slice thickness of 5 
mm, and slice gap of 1 mm; DWI with a TR of 
2187 ms, TE of 73 ms, FOV of 375 mm × 375 
mm, matrix size of 152 × 110, and b value of 
800 s/mm2; and contrast-enhanced imaging 
(CEI) with TR of 4.1 ms, TE of 1.98 ms, FOV of 
370 mm × 297 mm, matrix size of 284 × 175, 
slice thickness of 5 mm, and slice gap of 1 mm. 
A standardized contrast-enhanced protocol 
was followed using the extracellular agent 
gadopentetate dimeglumine. The MRI images 
were stored in Digital Imaging and Commu- 
nications in Medicine format and downloaded 
from the Picture Archiving and Communication 
System of our hospital.

Image segmentation and radiomics feature 
extraction

We used ITK-SNAP software (version 3.8, 
http://www.itksnap.org) to segment the lesions 
from the MRI images. We selected three MRI 
sequences (T2WI, DWI, and CEI) and imported 
them into the software. For the contrast-
enhanced imaging (CEI), radiomics features 
were extracted from the portal venous phase. 
This phase was selected for radiomics analysis 
because it provides the most consistent and 
reliable lesion-to-liver contrast for characteriz-
ing both FNH and HCC, and is less susceptible 
to flow-related artifacts compared to the arteri-
al phase. To assess the inter-observer repro-
ducibility of feature extraction, two radiologists 
who were blinded to the pathological results 
independently performed the manual segmen-
tation. Both readers delineated the entire con-
tour of each lesion slice by slice, carefully avoid-
ing blood vessels and surrounding normal liver 
tissues. The segmented contours were merged 
to form a three-dimensional region of interest 
(ROI) for each lesion. A randomly selected sub-
set of 50 cases (approximately 25% of the 
cohort) was used for this reproducibility analy-
sis. After independent segmentation, the ROIs 
from both readers were used to extract 
radiomics features. The inter-observer agree-
ment was quantified using the intraclass co- 
rrelation coefficient (ICC) for each feature. 
Features with an ICC greater than 0.75 in the 
subset were considered to have good to excel-
lent reproducibility and were retained for sub-
sequent analysis. Any disagreements in the 
remaining cases were resolved through con-

sensus discussion between the two readers. 
We used the PyRadiomics package (version 
3.0, https://pyradiomics.readthedocs.io) to ex- 
tract 1,688 radiomics features from each ROI. 
The extraction was performed using the default 
parameter settings of PyRadiomics unless oth-
erwise specified. This included applying a fixed 
bin width of 25 for discretizing the image gray 
levels and calculating features from the original 
image without applying any filters. Feature 
classes extracted comprised first-order statis-
tics, shape-based (3D) features, and texture 
features including Gray Level Co-occurrence 
Matrix (GLCM), Gray Level Run Length Matrix 
(GLRLM), Gray Level Size Zone Matrix (GLSZM), 
Neighboring Gray Tone Difference Matrix 
(NGTDM), and Gray Level Dependence Matrix 
(GLDM).

Statistical analysis

Software and clinical data analysis: We used R 
software (version 3.8.0) for the analysis of clini-
cal data. The Shapiro-Wilk test was used to 
assess the normality of the age distribution. 
The Kruskal-Wallis test was employed to com-
pare age between the FNH and HCC groups. 
Categorical variables, such as gender, were 
compared using the chi-square test or Fisher’s 
exact test, as appropriate. A p-value < 0.05 was 
considered statistically significant.

Radiomics feature processing and model con-
struction: For radiomics data, we used Python 
(version 3.7.0) with the Scikit-learn (version 
0.19.2) and Pyradiomics (version 3.0.1) pack-
ages for feature extraction, normalization, fea-
ture selection, and model construction.

Feature preprocessing and selection: Feature 
selection was performed separately for the  
features extracted from each MRI sequence 
(T2WI, DWI, and CEI) through a three-step pipe-
line: i) variance Thresholding: We first removed 
radiomics features with near-zero variance 
(variance threshold < 0.8) across the entire 
training cohort; ii) univariate feature selection: 
The remaining features were subjected to uni-
variate logistic regression analysis. Features 
with a significant association with the patho-
logical outcome (HCC vs. FNH, P < 0.05) were 
retained; iii) LASSO Regression: Finally, the 
Least Absolute Shrinkage and Selection 
Operator (LASSO) regression algorithm with 
10-fold cross-validation was applied to further 
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reduce dimensionality and prevent overfitting. 
The optimal regularization parameter (λ) for 
LASSO was determined by selecting the value 
that yielded the most parsimonious model with-
in one standard error of the minimum binomial 
deviance from the cross-validation. Regarding 
the 10-fold cross-validation for LASSO, the 
class distribution (FNH vs. HCC) in the training 
set was approximately balanced (99 vs. 97). 
Therefore, standard cross-validation without 
specific stratification was deemed appropriate, 
as it would likely yield folds with representative 
class proportions.

Model building and evaluation: The features 
with non-zero coefficients derived from the 
LASSO regression for each sequence were 
used to construct the final logistic regres- 
sion (LR) predictive models. The diagnostic  
efficacy of each model was evaluated in both 
the training and validation sets using receiver 
operating characteristic (ROC) curve analysis. 
Performance was quantified by the area under 
the curve (AUC), accuracy, sensitivity, and 
specificity.

Results

Characteristics of the study population

The clinical characteristics of the FNH and HCC 
groups are shown in Table 1. The median age of 
the HCC group was 62.00 years (interquartile 
range, 54.00-68.00), which was significantly 
higher than the 33.00 years (interquartile 
range, 25.50-42.00) of the FNH group 
(U=105.500, P < 0.001). A significant differ-
ence was observed in sex distribution between 
the two groups (χ2=48.460, P < 0.001), with a 
higher proportion of males in the HCC group 
(86.6%) compared to the FNH group (38.4%).

Radiomics feature selection and model con-
struction

The inter-observer reproducibility was assessed 
on a randomly selected subset of 50 cases. 

Based on the intraclass correlation coefficient 
(ICC) analysis, 1,502 out of the total 1,688 fea-
tures (89.0%) demonstrated excellent consis-
tency (ICC > 0.75) and were therefore retained 
for subsequent feature selection and model 
construction. This confirms the high reliability 
of the feature extraction process. To reduce 
dimensionality and select important radio- 
mics features, we performed three-step pro-
cessing of the imaging features extracted from 
various sequences and their combinations. The 
following abbreviations are used for the differ-
ent feature sets: (1) T2WI: Features from the 
T2-weighted imaging sequence alone. (2) TD: 
Combined features from both T2WI and DWI 
sequences. (3) TC: Combined features from 
both T2WI and CEI (contrast-enhanced imag-
ing) sequences. (4) TDC: Combined features 
from all three sequences: T2WI, DWI, and CEI.

First, we used variance thresholding to exclude 
features with a variance threshold < 0.8. 
Second, we performed univariate LR to identify 
features significantly associated with the diag-
nosis (HCC vs. FNH). Finally, LASSO regression 
further reduced the feature set and prevented 
overfitting. The LASSO regression algorithm 
selected 23, 27, 24, and 34 radiomic features 
from the T2WI, TD, TC, and TDC feature sets, 
respectively (as visualized in Figures 1-4). 2WI 
provides the foundational information, and DWI 
adds unique, complementary value. The TC 
model (T2WI + CEI), comprising 24 features, 
retained 23 features from T2WI and 1 addition-
al feature from CEI. This suggests that the 
hemodynamic information from CEI, while high-
ly specific, may partially overlap with the tex-
tural information captured by T2WI. Critically, 
the superior TDC model (T2WI + DWI + CEI), 
with 34 features, was not merely the sum of its 
parts. It integrated a unique set of features, 
indicating a synergistic effect where the combi-
nation of all three sequences captures diagnos-
tic information that is not accessible when any 
sequence is used in isolation. The significant 
performance gain of the TDC model under-

Table 1. Comparison of the characteristics between the FNH and HCC groups
HCC (97) FNH (99) U/χ2 P

Age (years; median [IQR]) 62.00 (54.00, 68.00) 33.00 (25.50, 42.00) 105.500 < 0.001
Sex 48.460 < 0.001
    Male, n (%) 84 (86.6) 38 (38.4)
    Female, n (%) 13 (13.4) 61 (61.6)
FNH, focal nodular hyperplasia; HCC, hepatocellular carcinoma; IQR, interquartile range.
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scores that features reflecting tissue structure 
(T2WI), cellularity (DWI), and vascularity (CEI) 
each provide indispensable and complementa-
ry diagnostic value. These selected features 
were then used to build the corresponding pre-
dictive models.

Diagnostic performance of the three models

Using imaging characteristics, we constructed 
predictive models and evaluated their diagnos-
tic efficacy for FNH via ROC curves. As detailed 
in Table 2 and Figure 5, the T2WI-based model 
produced AUC values of 0.942 (95% CI: 0.909-
0.968) in the training cohort and 0.814 (95% 
CI: 0.707-0.895) in the validation cohort. For 
the TD-based model, the AUCs were 0.967 
(95% CI: 0.941-0.988) and 0.891 (95% CI: 
0.802-0.957) in the training and validation 

sets, respectively. The TC-based model pro-
duced AUC values of 0.963 (95% CI: 0.940-
0.984) for training and 0.901 (95% CI: 0.820-
0.970) for validation. Of particular note, the 
TDC-based model attained the highest training 
AUC (0.989, 95% CI: 0.978-0.997) and the 
strongest validation concordance (AUC: 0.944, 
95% CI: 0.886-0.987), with 90.0% sensitivity 
and 86.7% specificity, underscoring its excep-
tional diagnostic utility.

Building and validation of the combined diag-
nostic model

To integrate clinical risk factors with the 
radiomics signature, we developed a combined 
model. The Rad-score from the optimal TDC 
radiomics model, along with the clinical vari-
ables of age and sex (which were selected due 

Figure 1. T2WI single-sequence group radiomics model construction. A: Image features and correlation coefficients 
of the minimum absolute contraction and selection operator (LASSO); B: Best tuning parameter (λ) selected by 
10-fold cross-validation in the LASSO regression model; C: λ used to obtain the radiomics features of the non-zero 
series (each colored line represents the change of its coefficient).
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to their significant association with the diagno-
sis in univariate analysis, as shown in Table 1, 
and their universal availability in clinical prac-
tice), were incorporated as continuous and cat-
egorical predictors, respectively, into a multi-
variate logistic regression analysis to build the 
combined clinical-radiomics model. The perfor-
mance of this combined model was then evalu-
ated and compared against the radiomics-only 
model in both the training and validation 
cohorts.

Figure 6 presents the combined diagnostic 
model along with a nomogram for predicting 
FNH probability. The model’s discriminatory 
power was assessed via ROC analysis. In the 
training cohort (Figure 7; Table 3), the model 
achieved an AUC of 0.992 (95% CI: 0.979-
1.000), accompanied by a sensitivity of 97.1% 

and specificity of 98.5%. The 10-fold cross-val-
idation cohort yielded an AUC of 0.958  
(95% CI: 0.904-0.993), with 86.7% sensitivity, 
86.7% specificity, a positive predictive value 
(PPV) of 86.7%, a negative predictive value 
(NPV) of 86.0%, and an F1-score of 0.867. 
Importantly, this combined model (TDC + clini-
cal data) outperformed the TDC-only model 
(Figure 5D), confirming its enhanced diagnostic 
accuracy.

External validation

The model’s FNH/HCC classification ability was 
tested via an independent validation set 
derived from hospital records and follow-up 
data (January 2022-December 2023), with 49 
patients with HCC (27 male, 22 female) and 42 
patients with FNH (14 male, 28 female) (Table 

Figure 2. TD (T2WI + DWI) combined sequence dimensionality reduction and radiomics model construction. A: Im-
age features and correlation coefficients of the minimum absolute contraction and selection operator (Lasso); B: 
Best tuning parameter (λ) selected by 10-fold cross-validation in the LASSO regression model; C: λ used to obtain the 
radiomics features of the non-zero series (each colored line represents the change in its coefficient).
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4). As shown in Figure 8, Nomogram-assisted 
risk evaluation yielded an AUC of 0.903 (95% 
CI: 0.834-0.972), with a sensitivity of 88.9%, a 
specificity of 87.2%, a PPV of 89.8%, a NPV of 
88.1%, and an F1-score of 0.893, underscoring 
the nomogram’s excellent differentiation of 
FNH from HCC.

Representative cases

To illustrate the clinical context and the deci-
sion-making process facilitated by our model, 
we present the following case. Although we are 
unable to share the original MRI due to patient 
privacy regulations, we provide a detailed radio-
logical description that aligns with the input 
features of our model.

Case 1: a 38-year-old woman with histologi-
cally proven FNH

T2-weighted Imaging: The lesion appeared 
slightly hyperintense compared to the sur-
rounding liver parenchyma.

Diffusion-weighted Imaging (DWI): The lesion 
showed restricted diffusion, presenting as 
hyperintense.

Contrast-enhanced Imaging (CEI): On the arte-
rial phase, the lesion demonstrated strong and 
homogeneous enhancement. During the portal 
venous and delayed phases, the enhancement 
became isointense to the liver, with a charac-
teristic persistently enhancing central scar 
becoming visible in the delayed phase.

Figure 3. TC (T2WI + CEI) combined sequence dimensionality reduction and radiomics model construction. A: Image 
features and correlation coefficients of the minimum absolute contraction and selection operator (Lasso); B: Best 
tuning parameter (λ) selected by 10-fold cross-validation in the LASSO regression model; C: λ used to obtain the 
radiomics features of the non-zero series (each colored line represents the change of its coefficient).
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The radiomics analysis of this lesion’s ROI on 
the aforementioned sequences yielded a high 
Rad-score, and the combined clinical-radiomics 
model correctly predicted a high probability of 
FNH, which was consistent with the pathologi-
cal diagnosis. This case exemplifies a typical 
presentation where the model can reinforce a 
confident diagnosis.

Discussion

In this study, we developed and validated a mul-
tivariate radiomics model based on T2WI, DWI, 
and contrast-enhanced MRI for distinguishing 
between HCC and FNH in patients with hepatic 
nodular lesions. The accurate differentiation 
between these two entities is crucial for deter-
mining appropriate treatment strategies and 
avoiding unnecessary interventions.

It is crucial to accurately distinguish between 
HCC and FNH for determining the appropriate 
course of treatment and preventing unwarrant-
ed therapeutic procedures. Conventional MRI 
has been widely used for the differential diag-
nosis of FNH and HCC [11], but these examina-
tions have limitations. An example is that for 
diagnosing HCC, the sensitivity and specificity 
of conventional MRI are relatively low, especial-
ly for small HCCs. Conventional MRI also might 
not be able to distinguish between HCC and 
other benign liver lesions, such as FNH [3]. 
Even with these limitations, conventional MRI is 
an important diagnostic tool for liver lesions.

Capitalizing on advancements in radiomics, 
several approaches have been suggested to 
distinguish between benign and malignant liver 
tumors. A previous study developed a CT-based 

Figure 4. TDC (T2WI + DWI + CEI) combined sequence dimensionality reduction and radiomics model construction. 
A: Image features and correlation coefficients of the minimum absolute contraction and selection operator (Lasso); 
B: Best tuning parameter (λ) selected by 10-fold cross-validation in the LASSO regression model; C: λ used to obtain 
the radiomics features of the non-zero series (each colored line represents the change in its coefficient).
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radiomics model that showed good preopera-
tive discrimination between HCC and FNH, with 
AUCs of 0.964 and 0.865 in the training set 
and the validation set, respectively [5]. The 

MRI-based model achieved good differentia-
tion of HCC from FNH in both the training and 
validation datasets (0.956 and 0.941, respec-
tively) [12]. Also, there was a highly accurate 

Table 2. Differential diagnostic performance of the LR model based on different sequences of MRI for 
FNH agent HCC
Model Data Group AUC Accuracy Sensitivity Specificity
T2WI Training cohort 0.942 (0.909-0.968) 0.846 0.841 0.851 

Validation cohort 0.814 (0.707-0.895) 0.750 0.867 0.633 
TD Training cohort 0.967 (0.941-0.988) 0.897 0.899 0.896 

Validation cohort 0.891 (0.802-0.957) 0.833 0.867 0.800 
TC Training cohort 0.963 (0.940-0.984) 0.890 0.899 0.881 

Validation cohort 0.901 (0.820-0.970) 0.800 0.900 0.700 
TDC Training cohort 0.989 (0.978-0.997) 0.956 0.957 0.955 

Validation cohort 0.944 (0.886-0.987) 0.867 0.900 0.833 
LR, logistic regression; MRI, Magnetic Resonance Imaging; FNH, focal nodular hyperplasia; HCC, hepatocellular carcinoma; 
AUC, Area under the curve; T2WI, T2-weighted imaging; T2WI and DWI (Diffusion Weighted Imaging), referred to as TD, T2WI 
and CEI (Contrast Enhanced Imaging), referred to as TC, T2WI, DWI and C, referred to as TDC.

Figure 5. Receiver operating characteristic curves of the training group and test group in the classifier models. 
A: T2WI single-sequence group model; B: TD (T2WI + DWI) combined sequence; C: TC (T2WI + CEI) combined se-
quence; D: TDC (T2WI + DWI + CEI) combined sequence. AUC: Area under the curve. The specific data of the ROC 
curve are presented in Table 2.
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diagnostic model using Gd-EOB-DTPA-enhan- 
ced MRI to preoperatively distinguish HCC from 
FNH in challenging cases where both showed 
iso- or hyperintensity in the hepatobiliary phase 
[13]. It is worth noting that while Gd-EOB-DTPA-
enhanced MRI provides valuable functional 
information, our model utilizes more widely 
available contrast agents, potentially offering a 
more accessible alternative without compro-
mising diagnostic performance. Another study 
developed a CT-based radiomics model to iden-
tify hepatic lesions (including HCC and FNH), 

content and detecting abnormalities, such as 
edema or inflammation [16, 17]. DWI measures 
the random motion of water molecules within 
tissues, which can indicate cellular structure 
changes [18]. It is particularly helpful for identi-
fying areas of restricted diffusion, which are 
often observed in acute stroke or certain tumor 
types. CEI refers to the use of contrast agents 
to enhance the visibility of blood vessels and 
tissue perfusion in scans [19, 20]. The superior 
performance of our TDC model, achieving AUCs 
of 0.992 and 0.958 in training and 10-fold 

Figure 6. Nomogram of the combined diagnostic model combining TDC ra-
diomics with clinical parameters. FNH, focal nodular hyperplasia.

and the classifiers had good 
diagnostic performance, with 
AUC values > 0.900 in the 
training and validation groups 
[14]. A radiomics model based 
on T2W MRI, designed to dis-
criminate between malignant 
and benign solid liver lesions, 
exhibited AUC values ranging 
from 0.74-0.86 across vari-
ous validation datasets [15].

Our study advances this fie- 
ld through two key method-
ological innovations. First, we 
established a comprehensive 
multi-sequence fusion app- 
roach, systematically integrat-
ing features from T2WI, DWI, 
and CEI. This TDC model capi-
talizes on the complementary 
strengths of each sequence. 
While the TC model (T2 + CEI) 
contained only one more fea-
ture than the T2-only model, 
this does not necessarily indi-
cate redundant information in 
CEI. Rather, it reflects our 
stringent feature selection 
process which prioritized the 
most discriminative features. 
The retained CEI feature likely 
captures unique vascular and 
perfusion characteristics cru-
cial for differentiation, com-
plementing the architectu- 
ral information from T2WI. 
T2WI emphasizes the con-
trast between tissues on the 
basis of their T2 relaxation 
times, which is useful for visu-
alizing differences in water 

Figure 7. ROC curve analysis evaluating the diagnostic performance of the 
combined model for FNH identification. ROC, receiver operating characteris-
tic; FNH, focal nodular hyperplasia.
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cross-validation cohorts, respectively, demon-
strates the synergistic value of this multi-para-
metric approach.

To address feature biological significance, we 
analyzed key predictors in our model. The 
radiomics features selected in our final model 
demonstrate plausible biological correlates 
with the underlying pathophysiology of HCC 
and FNH. For example, the texture feature pri-
marily from T2WI likely captures architectural 
heterogeneity, with higher values in HCC co- 
rresponding to its disorganized structure with 
variable cellularity, necrosis, and fibrosis ver-
sus FNH’s organized architecture with uniform 

hepatocytes and characteristic central scar. 
Similarly, features from DWI may reflect cellular 
density differences between hypercellular HCC 
and normal hepatocyte arrangement in FNH 
with relatively free water diffusion. CEI-derived 
features potentially capture the distinct vascu-
lar patterns, and HCC typically demonstrates 
neoangiogenesis with chaotic arterial enhance-
ment and washout, while FNH exhibits homoge-
neous arterial enhancement with sustained 
enhancement in later phases due to its orga-
nized vascular architecture. These interpreta-
tions, while requiring further validation, provide 
plausible biological explanations for our mod-
el’s discriminative capability based on estab-
lished pathophysiology [21, 22]. Then, we 
developed a clinically integrated framework 
combining the TDC radiomics signature with 
essential clinical parameters. The combined 
model showed improved diagnostic accuracy, 
and its robust performance in external valida-
tion (AUC: 0.903) underscores clinical poten-
tial. By synthesizing multi-parametric MRI data 
with clinical variables, our approach can deliver 
a more comprehensive diagnostic profile than 
single-modality radiomics, advancing the pur-
suit of accurate, non-invasive diagnosis in 
hepatology.

To facilitate the clinical application of our com-
bined diagnostic model, we have constructed a 
practical nomogram (Figure 6). This nomogram 
serves as a bridge between the complex algo-
rithm and clinical practice, allowing radiologists 
to manually calculate a personalized probability 
of FNH for each patient by summing points 

Table 3. Diagnostic performance of the nomogram for FNH prediction
AUC ACC Sensitivity Specificity 95% CI

Training set 0.992 0.978 0.971 0.985 0.979-1.000
Validation set 0.958 0.867 0.867 0.867 0.904-0.993
FNH, focal nodular hyperplasia; AUC, area under the curve; CI, confidence interval.

Table 4. Clinical characteristics of patients in the external validation cohort
HCC (n=49) FNH (n=42) t/χ2/U p

Age (years) 55.12±11.00 38.00±11.83 7.150 0.000
Sex 4.329 0.038
    Male 27 (55.10) 14 (33.33)
    Female 22 (44.90) 28 (66.67)
Rad-score (IQR) 0.2 (-0.1, 0.5) 0.4 (0.225, 0.7) 747.500 0.024
FNH, focal nodular hyperplasia; HCC, hepatocellular carcinoma; IQR, interquartile range.

Figure 8. External validation (ROC analysis). ROC, re-
ceiver operating characteristic; AUC, area under the 
curve.
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assigned to their specific radiomics signature, 
age, and sex. While this study represents the 
development and validation phase, our immedi-
ate future work includes the development of a 
user-friendly web-based calculator or mobile 
application. This tool would automate the scor-
ing process, integrating seamlessly into the 
radiologist’s workflow by inputting the Rad-
score and clinical parameters to instantly out-
put the FNH probability. Furthermore, we plan 
to conduct clinical utility studies to evaluate 
radiologists’ diagnostic confidence and accu-
racy with and without the assistance of this 
model, which is a critical step towards its wide-
spread acceptance and adoption.

In this study, we elected to employ the logistic 
regression (LR) classifier due to its high inter-
pretability, computational efficiency, and lower 
risk of overfitting, especially given that our final 
model was parsimonious with only 3 features. 
This aligns with our goal of developing a clini-
cally transparent and deployable tool. While we 
acknowledge that testing a broader range of 
classifiers (e.g., Random Forest, Support Vector 
Machines) and dimensionality reduction meth-
ods (e.g., Principal Component Analysis) repre-
sents a valuable future direction, the strong 
performance of our carefully tuned LR model 
(AUC: 0.903 on external validation) demon-
strates its effectiveness as a robust solution 
for the task at hand. Future work will include a 
comprehensive benchmark of various algo-
rithms to further optimize performance.

This study has several limitations. Its retrospec-
tive, single-center design with a small sample 
size may limit generalizability and introduce 
selection bias. Furthermore, the cohort con-
tained an insufficient number of small lesions 
(≤ 2 cm) to perform a meaningful subgroup 
analysis. While our model relied on portal 
venous phase features, its performance with 
hepatobiliary-specific contrast agents (e.g., 
gadoxetate disodium) remains unverified and 
requires future investigation. The research 
scope was also restricted to differentiating HCC 
from FNH, and the clinical relevance of the 
imaging features remains unclear. Methodo- 
logically, the limited range of algorithms used 
and the absence of decision curve and calibra-
tion analyses affect the evaluation of model 
robustness and clinical utility. Despite these 

limitations, the model demonstrated balanced 
sensitivity and specificity (86.7% each) in exter-
nal validation, indicating its potential to address 
key diagnostic challenges.

Conclusion

The study findings support the use of the multi-
modal MRI model based on T2WI, DWI, and the 
C-sequence can be used to distinguish between 
HCC and FNH. The shorthand diagnostic model 
constructed by use of the LR classifier model 
gave the best performance, and it can assist in 
the differential diagnosis of HCC and FNH, thus 
improving the accuracy of the differential diag-
nosis and realizing individualized precision 
medicine. Our study results have important 
implications for accurate diagnosis and proper 
treatment of HCC and FNH. Further research is 
needed to validate these findings and to explore 
the potential of this approach in other clinical 
settings.
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